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Abstract 
 
The purpose of this study was to present a revision and validation of the Learners’ Functional Understandings of 

Proof (LFUP) scale in mathematics using data collected from Grade 11 learners (n = 87) in a high school in South 

Africa. The LFUP scale was linked to the five-factor model (verification, explanation, communication, discovery, 

and systematisation) whose items were derived from existing literature on proof functions. Unlike the previous 

version of the scale, the new scale being validated here blends Likert-scale and constructed-response items to 

evaluate learners’ conceptions of the essence of the functions of an aspect central to mathematical knowledge 

development: proof. It is my contention that the LFUP instrument can be used as either a summative or a formative 

assessment tool, given the argument that learners often require motivation as to why they are required to write 

proofs. In short, this study provided an instrument to introduce learners to the concept of mathematical proof. 

Multiple regression analysis revealed that all five LFUP tenets correlated significantly with the total sum of all 

the functions of proof taken together. In the qualitative analysis, a substantial number of learners (52%) were 

found to hold hybrid beliefs about the functions of proof in mathematics. 

Introduction 

Research studies have shown that learners experience substantial difficulties with Euclidean 

proof (de Villiers, 2012; Hanna, de Villiers, Arzare, Dreyfus, Durand-Guerrier, Jahnke, Lin, 

Selden, Tall, & Yevdokimov, 2009; Harel & Sowder, 2007; Mudaly, 2007). Despite efforts to 

teach proof and improve learners’ performance in Euclidean geometry, few American learners 

finish high school able to formulate conjectures and construct mathematical proofs (Hadas, 

Hershkowitz, & Schwarz, 2000). Given that the ‘failure to teach proofs seems to be universal’ 

(Hadas, Hershkowitz, & Schwarz, 2000, p. 128), functional understanding of proof and 

argumentation, activities Edwards (1997) refers to as the “territory before proof”, need to be 

part of the mathematical activities that precede and support the development of proofs. Along 

this line, Marrades and Gutiérrez (2000) argue that it is vitally important for both teachers and 

researchers in the area of proof to know learners’ conceptions of functions of mathematical 

proof in order to understand their attempts to solve proof problems. Why is proof key in 

mathematics?  

The construction of proofs has always been regarded as a defining activity within the 

mathematics discipline (de Villiers & Heideman, 2014; Lockhart, 2002; Watson, 2008). One 

primary reason is that proof is an essential tool for fostering mathematical understanding (Ball, 

Hoyles, Jahnke, & Movshovitz-Hadar, 2002). Yet, inconsistent with the practices of research 

mathematicians, the focus of high school mathematics has often been on form and established 

results to pass examinations over the activities that are a precursor to the construction of proofs, 

for example, understanding the functions of proof and argumentation. Perhaps more 
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importantly, unless learners understand the purpose in studying proofs beyond the goal of 

preparing for the next mathematics class or test, they are likely to ask the age-old question, 

Why do we need to learn this?  

The general motivation for this study came from the need to measure learners’ understanding 

of the functions of proof in mathematics since lack thereof contributes to difficulties with 

meaningful construction of proofs (de Villiers, 1990; Healy & Hoyles, 1999). According to the 

van Hiele (1986) theory, functional understanding of proof is one of the aspects that determine 

learners’ ability to construct a deductive proof. Mathematical proof performs various functions 

in mathematics including verification, explanation, communication, discovery, 

systematisation, and intellectual challenge for the author of the proof. Although these functions 

are enshrined in mathematics education policy documents (Common Core State Standards 

Initiative [CCSSI], 2010; Department of Basic Education [DBE], 2011; National Council of 

Teachers of Mathematics [NCTM], 2000), learners’ knowledge of these functions is not 

explicitly assessed and thus not measured. Brook and Stainton’s (2001) definition of 

“knowledge” was adopted in this study on the basis that it was plausible, commonly used, and 

provided by philosophers (Ball, Hoyles, Jahnke, & Movshovitz-Hadar, 2002). They argued that 

for a proposition to be regarded as knowledge, it must be held as true by the mathematical 

community and the learner must have justification for believing it. 

The Trends in International Mathematics and Science Study (TIMSS) 2011 report, which 

contains vital information on key factors that can impact the teaching and learning of 

mathematics, revealed that even learners in countries with high national mathematics 

performance struggle with Euclidean geometry. These data on learner achievement trends 

suggest that learners have particular difficulty with proof compared with other concepts within 

the geometry area. The difficulty to prove contributes to the distortion of mathematics as a 

discipline whose rules and procedures are supposed to be memorised to pass examinations and 

tests. This unfortunate perception has unintended consequences; the decline in university 

learners’ enrolment in pure mathematics courses and therefore the reduction in the potential 

pool of future mathematicians. This reduction, in turn, limits the potential of scientific 

discoveries and technological innovations that could assist in ensuring food security and 

combating the devastating effects of climate given that mathematics is the queen of the 

sciences.  Important not to overlook is that as fewer learners take mathematics in high school, 

fewer mathematics teachers are available. It is simply a vicious cycle.  

Returning to the concept of proof, memorisation of proofs suggests that most learners cannot 

do proof for meaning. Thus, gaining insight into the challenges that learners have with proof 

and finding ways to improve its learning is crucial for enhancing struggling learners’ success 

in proof and beyond. Why is meaningful learning of proof so difficult? Various reasons have 

been canvassed. In our daily lives we frequently encounter or use the term “proof”. Although 

mathematicians are accustomed to think of “proof” as an unambiguous term (Epstein & Levy, 

1995), it has a multiplicity of meanings to the extent that its meaning is still unclear in school 

mathematics (Stylianides, 2007). Along this line, Cabassut, Conner, Ersoz, Furinghetti, Jahnke, 

and Morselli (2012) point out that whereas mathematicians are convinced that, in practice, they 

know precisely what a proof is, there exist no easy explanations of what proof is that teachers 

can provide to their learners. The multiple definitions of proof contribute to the difficulty that 

learners experience in their learning of the concept. According to a widely disseminated 

definition of proof provided by the Principles and Standards for School Mathematics (National 

Council of Teachers of Mathematics [NCTM], 2000), proof pertains to the process in which 

conclusions are derived from axioms in a finite sequence of logical steps.  
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Further, Tall (1989) points out that the term “proof” means many different things to learners 

such that interpretation of its meaning may be different from that of the teacher, just as one 

teacher’s interpretation may differ from another’s. However, since the term “proof” has been 

used differently in many situations, in an academic discipline like mathematics education its 

exact meaning would seem to be important (Reid & Knipping, 2010). Similarly, Epp (2003) 

points out that mathematical language is required to be unambiguous. CadwalladerOlsker 

(2011) avers that this difficulty is further compounded by the fact that proof performs several 

different functions in mathematics and may be written for a specific audience. 

In this study, a proof is viewed as an argument based on accepted truths for or against a 

mathematical claim (conjecture). The term “argument” is used to denote a connected sequence 

of statements generated from the axiomatic method. The term “axiomatic method” means a 

method of organising a theory (theorem) by beginning ‘with the list of undefinable terms and 

unprovable axioms, including those terms from which the statements of the theory (theorems) 

should be deduced according to the rules of formal logic’ (Demidov, 1980, p. 215). In keeping 

with de Villiers’ (2012) caution, I did not define proof in terms of its verification or any of its 

multiple functions, to avoid elevating a particular function as more important than the others. 

For instance, Griffiths’ (2000) idea of proof as ‘a formal and logical line of reasoning that 

begins with a set of axioms and moves through logical steps to a conclusion’ (p. 2) reflects the 

systematisation function of proof as it mentions that proof begins with assumptions and 

logically connecting them to reach a conclusion. 

Clearly, the question “What is a mathematical proof?” is difficult to answer despite the 

extensive literature on proof. However, Stylianides (2007) provides an apt definition of proof, 

emphasising argumentation: 

Proof is a mathematical argument, a connected sequence of assertions against a 

mathematical claim, with the following characteristics: 

1. It uses statements accepted by the classroom community (set of accepted arguments) 

that are true and available without further justification;  

2. It employs forms of reasoning (modes of argumentation) that are valid known to, or 

within the conceptual reach of, the classroom community;  

3. It is communicated with forms of expression (modes of argument representation) 

that are appropriate and known to, or within the conceptual reach of, the room 

community. (p. 291) 

Having defined proof in this manner, learners’ understanding of the functions of proof was 

understood at three broad and distinct levels: naïve; hybrid; and informed. That is, learners who 

understand that proof has no functions other than verification are classified as holding “naïve” 

views about its functions while those who understand the other functions that proof performs 

in mathematics were labelled as holding “informed” views and thus assumed as being able to 

formulate and prove propositions. The intermediate level at which the understanding of the 

functions of proof included both naïve and informed understanding of the functions of proof 

was labelled as “hybrid”.  

According to the DBE (2018) diagnosis, there has been little progress in addressing the 

persistent underachievement of learners in this domain of mathematics. Various sources of this 

difficulty have been identified. Easdown (2012) suggests that this difficulty manifested itself 

in three ways: appreciating why proofs are important; the tension between verification and 

understanding; and, proof construction. That is, the multiplicity of meanings ascribed to the 

term “proof” contaminates learners’ ability to distinguish between its everyday use and 

technical meaning. In support of Easdown (2012), de Villiers (1990) concludes that on the basis 
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of extensive interviews with learners, most learners’ difficulty with proof seem to ‘not lie so 

much with poor instrumental proficiency nor inadequate relational or logical understanding as 

in poor understanding of the usefulness or function thereof’ (p. 11).  

Theoretical Framework 

Further validation of the LFUP instrument was framed and guided by the following five 

theoretical constructs on the functions of proof in mathematics. I preferred to make a distinction 

between proposition and statement. By proposition and statements here I respectively meant a 

conjecture whose actual proof is under construction and an axiom, definition, major concept, 

or theorem used in the construction of a proof. In the two-column proof format, the latter 

(statements) are the items on the left hand side. The next section frames this study on de Villiers 

(1990) model: 

• Verification.  Proof as a means to verify the truth of a proposition refers to viewing it 

as a tool to establish certainty of a conjecture (Stylianides & Stylianides, 2018), and 

thus to confirm one’s intuition (Schoenfeld, 1992).  

• Explanation. Proof as a means to explain entails the provision of insight into, and 

recording how, a proposition comes to be true (Herbst & Miyakawa, 2008) using well-

known and well-understood properties of the mathematical objects involved (Hanna, et 

al., 2009).  

• Communication. Proof as a means to communicate mathematical knowledge concerns 

sense making, learning of mathematical language, and “transmission” of socially 

constructed knowledge publicly (thus creating a forum for critical debate) – both in 

discourse and in writing – that is acceptable to the mathematical community (de Villiers 

& Heideman, 2014).  

• Discovery. The discovery function of proof related to the generation of new results 

(theorems) in which new ideas, concepts, and methods emerge (Rav, 1999). Similar to 

Stylianides (2009), the phrase “new results” is used to describe proof knowledge that 

learners added to their existing knowledge base as a result of constructing a proof.  

• Systematisation. Proof as a means to systematise mathematical knowledge refers to the 

organisation of results previously thought to be unrelated into the existing deductive 

system of axioms, major concepts (definitions), and theorems (de Villiers, 1990). 

Aims and Research Questions 

The aim of this study was to establish the validity of an existing instrument designed to measure 

Learners’ Functional Understandings of Proof (LFUP) in mathematics by blending qualitative 

measures with quantitative aspects. Although the LFUP scale has been found to be a valid and 

meaningful instrument elsewhere (see, Shongwe & Mudaly, 2017), further validation was 

conducted to improve its use not only as either a summative or formative assessment tool, but 

also to track competence in the learning and teaching of mathematics. The endeavour to 

construct such a scale found expression in the standards and curriculum documents. For 

instance, both the Principles and Standards in the National Council of Teachers of 

Mathematics (NCTM) (2000) and the South African Curriculum and Assessment Policy 

Statement (CAPS) (Department of Basic Education [DBE], 2011) propose greater emphasis on 

the making and testing of conjectures, the formulation of counterexamples and the construction 

of deductive arguments.  

Effective endeavours aimed at developing learners’ informed views of the functions of 

mathematics require a clearer picture of the current baseline views of these functions. Thus, 
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the main research question that guided this study in gaining a more complete picture of LFUP 

was ‘What are learners’ functional understandings of proof in mathematics?’ The following 

sub-questions elucidated this research question and facilitated data analysis:  

• What is the proportion of variance in learners’ functional understandings of proof 

that can be explained by the five functions of proof? 

• Which of these five factors is the best predictor of learners’ functional 

understandings of proof in mathematics? 

• How do learners view the functions of proof in mathematics? 

 

Methods 

Participants and Procedures 

The present study began after approval by the Ethics in Research Committee of the University 

of KwaZulu-Natal (Protocol number: 2/4/8/1126) as well as the KwaZulu-Natal Department 

of Education (Protocol number: HSS/0437/016M) was received. A nonrandom, purposive 

sample of 87 participants was selected from two classes in one of ten Dinaledi high schools1 in 

the Pinetown Education District in KwaZulu-Natal (South Africa) to establish validity for the 

LFUP instrument. The mean age of the participants was 17.35, with a range between 16 and 

20 years, 62% of which were female. The school was located in a township and was not part 

of the main study. The demographic information collected included age, home language, and 

gender. The total time allocated for the administration of the task was 60 minutes. Piloting of 

the task also provided an opportunity to pose questions to participants regarding their 

understanding of the wording, criteria, and instructions, and to evaluate their appropriateness 

for different subgroups of learners. A pilot study helped to identify learners’ reading 

comprehension of the questionnaire items because this ‘may be affected by difficulty of the 

text, the vocabulary words used in the text, and the reader’s familiarity with the subject matter, 

among other factors’ (Nicolas & Emata, 2018, p. 41). 

Development of the LFUP Scale 

My supervisor and I started investigating the validity of the LFUP scale as part of my doctoral 

studies in 2017. I then made a commitment to embark on a journey to develop a long-term 

research agenda to gather evidence using different samples to establish whether the claims of 

validity were reasonable. Initially, the literature on functions of proof was reviewed and a 25-

item questionnaire was constructed from a pool of 30 items. A convenience sample of 10 

learners from the target population of Grade 11 learners, together with two fellow doctoral 

students at the time, were invited to comment on the face and content validity of the 

questionnaire. In addition, three international experts in proof and its functions were requested 

to comment on the items that constituted the initial version of Test. A t-test was used in the 

initial study. 

Instrumentation 

The LFUP instrument consisted of 25 questions in which Likert scale items with five subscales 

and follow-up constructed-response items were embedded within their respective subscales. 

Likert response categories ranged from strongly disagree (1) to undecided (3) to strongly agree 

(5) thus indicating the extent to which statements reflected learners’ opinions on the functions 

of proof in mathematics. A sample of questionnaire items on the LFUP questionnaire are 

depicted in Table 1. The use of these open-ended items was meant to ‘capture idiosyncratic 

 
1 In the quest to increase the participation and performance of historically disadvantaged learners in mathematics 

and physical sciences, the Department of Basic Education established the Dinaledi School Project, in 2001 

(Department of Basic Education [DBE], 2009). 
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differences’ (McMillan & Schumacher, 2010, p. 198), eliminate the effect of guessing, and 

facilitate subsequent categorisation of data for analysis. 

 

Table 1: Sample items theoretically clustered under the “systematisation” function of 

proof 

 

Function Code Description 

Systematisation s1 Proving doesn't require deciding which statements 

to be chosen as true. 

 s2 Proving involves reasoning & argumentation that's 

different from rest of maths. 

 s3 Proving may lead to a replacement of statements 

that could be used in later proofs. 

 s4 Proof brings together & connects maths results. 

 s5 Proving may lead to addition of new statements to 

be used in later proofs. 

With examples, explain how the theorems you are asked to prove were dependent OR 

independent of one another. 

………………………………………………………………………………………………

………………………………………………………………………………………………

……………………………………………………………………………………………… 

 

The constructed-response items were assessed and classified into three categories: “adequate”, 

“hybrid”, or “inadequate”, a categorisation that provided the basis for interpreting the data. 

Learners’ constructed responses were assigned the code “adequate” category if they reflected 

notions of functions of proof which were deemed as consistent with current literature on proof, 

“inadequate” if they reflected views which represented common learners’ naïve beliefs about 

the functions of proof that are not consistent with current literature on proof, and “hybrid” if 

they integrated elements of both adequate and inadequate views. 

Results 

Determination of the scale’s reliability took two forms: internal consistency and item-total 

statistics. The high positive correlations were an indication of reliability of the LFUP 

questionnaire. By “item-total”, it is meant the correlation between each item and the overall 

score of the scale (McDowell, 2006). An examination of the item-total correlations (Table 2) 

indicates that all items in each dimension contributed to the consistency of scores with item-

total correlations higher than .51 thus exceeding the acceptable cutoff value of .30 (Tabachnick 

& Fidell, 2013). 

 

The Cronbach’s alphas of each subscale or factor on the LFUP instrument confirmed our 

hypothesis that the functions of proof are independent and therefore not interrelated. 

Specifically, the alpha values for each subscale were found to be as follows: Verification (α = 

.60); Explanation (α = .73); Communication (α = .69); Discovery (α = 0.74); and 

Systematisation (α = .78). Given that the alpha values approximated 1.00 across the five factors 

suggests that LFUP can be used as a reliable assessment and diagnostic tool in instructional 

practices and research. 
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Table 2: Item-total statistics for independent variables 

 

Independent 

variables 

Scale Mean if 

Item Deleted 

Scale Variance if 

Item Deleted 

Corrected Item-

Total Correlation 

Cronbach's Alpha 

if Item Deleted 

AV 11.8588 6.218 .630 .766 

AE 12.2824 6.324 .618 .770 

AC 12.1882 6.321 .657 .757 

AD 12.0588 6.699 .601 .775 

AS 12.3176 7.719 .508 .802 

AV-average of verification; AE-average of explanation; AC-average of communication; AD-

average of discovery; AS-average of systematisation 

Quantitative Analysis 

Quantitative analysis of data consisted of two components. First, descriptive statistics and 

multiple regression were performed for the Likert scale items of the LFUP instrument. 

Statistical Package for the Social Sciences (SPSS) Version 16 was used to perform these 

analyses. The data were screened for normality, outliers, and multicollinearity. Learners’ 

responses were coded as 5 if they reflected the most informed view of functions of proof and 

as 1 for the naïve view. Mean scores for each of the five functions of proof and the overall 

LFUP instrument were determined. Thus, the five subscales (with 5 as maximum value) were 

correlated with the total score (with 35 as the maximum value) with a larger score 

demonstrating informed functional understandings of proof. 

Sample characteristics  

In order to ensure that inferences we made in the tests were valid, the sample data were drawn 

from a normally distributed population. A multiple of sources for evidence of normality were 

used. For example, as shown in Figure 1, a visual inspection of the histogram showed that the 

scores on learners’ functional understandings of proof were approximately normally 

distributed.  

 

Figure 1: Histogram showing relative normal distribution of LFUP scores 

 



International Journal of Innovation in Science and Mathematics Education, 28(3), 24-36, 2020 

31 

 

 

As explained in Figure 2, the dots on the Normal P-P plot generally followed the diagonal line 

thus showing that the LFUP scores were approximately normally distributed with acceptable 

absolute values of skewness of .374 (SE = .365) and kurtosis of .584 (SE = .717), respectively 

(Doane & Seward, 2011).  

Figure 2:  The Normal P-P plot for assessing normal distribution of data 

  

The proportion of learners’ functional understandings explained by the five subscales 

Multiple linear regression was performed to investigate multicollinearity so as not to make 

interpretation of results difficult. That is, we needed to determine which of the functions were 

highly correlated with each other because if this were the case, it would be difficult to identify 

the function which best predicted learners’ functional understandings of proof. Correlations of 

.80 or higher between subscales were indicative of multicollinearity (Wilson & MacLean, 

2011). In this case, all the correlations between the subscales were significant in that they were 

above the threshold of .30 (Tabachnick & Fidell, 2013) and below the limit of .80 and therefore 

indicating that there likely was not a problem using any of two subscales correlated. More 

precisely, each of the variance inflation factors (VIF) were less than 10 (Myers, 1990) thus 

enabling the retention of all subscales. Further support for the absence of multicollinearity was 

found in the fact that the average VIF value was not substantially greater than 1 (Myers, 1990). 

As depicted in Table 4, correlation coefficients (r) for each of the five subscales (predictor 

variables) with the functional understandings of proof scores (criterion variable) were unique. 

The data were examined for multicollinearity by determining tolerance and VIF. The small 

tolerance values of between .56 and .73 were above the recommended minimum value of .20 

indicated the absence of multicollinearity (Menard, 1995).  
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Table 3: The LFUP correlation matrix (n = 87) 

 

 1 2 3 4 5 6 

ACV –      

      

ACE .547** –     

.000      

ACC .515** .518** –    

.000 .000     

ACD .487** .403** .554** –   

.000 .000 .000    

ACS .362** .429** .406** .417** –  

.001 .000 .000 .000   

Score_ 

Total 

.723** .772** .777** .749** .658** – 

.000 .000 .000 .000 .000  

 

In the Model Summary depicted in Table 5, the sizes of the prediction variables are laid out. 

The overall correlation of the five subscales with functional understandings of proof was an 

adjusted R2 of .78. Therefore, only 78% of the overall variation in functional understandings 

of proof was explained by these five subscales. This is a strong effect size. 

 

Table 4: The effect size 

  

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate Durbin-Watson 

1 .976a .953 .950 3.30525 2.007 

a. Predictors: (Constant), ACS, ACV, ACD, ACE, ACC; b. Dependent Variable: Score_Total 

 

The function that best contributes to functional understandings of proof 

In order to provide an explanation (model) of the data and thus determine which of the functions 

of proof best contributed to the prediction of learners’ functional understandings of proof, the 

standardised regression coefficients (βs) were considered. By “standardised” it is meant that 

the coefficients are converted into a standard format thus allowing direct comparison (Wilson 

& MacLean, 2011). From the Coefficients table (as depicted in Table 6), it is noted that the 

explanatory function of proof has the largest influence (β=.548) than the others on functional 

understandings of proof in mathematics.  
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Table 5: Multiple regression analysis of five variables predicting learners’ functional 

understanding of proof 

 

Model 

Unstandardised 

Coefficients 

Standardised 

Coefficients 

t Sig. 

Collinearity 

Statistics 

  

B 

Std. 

Error Beta 

Zero-

order Partial Tolerance VIF 

1 (Constant) 15.558 1.902  8.179 .000     

AV 3.080 .513 .191 6.002 .000 .723 .560 .589 1.698 

AE 5.225 .520 .319 10.041 .000 .772 .749 .593 1.687 

AC 4.484 .557 .263 8.046 .000 .777 .671 .558 1.791 

AD 5.166 .562 .288 9.201 .000 .749 .719 .610 1.640 

AS 5.192 .660 .225 7.867 .000 .658 .663 .731 1.367 

a. Dependent Variable: Score_Total       

Qualitative Analysis 

Learners’ constructed-response items were scored using the LFUP rubric as depicted in Table 

7. This rubric was developed as a guide to analyse and promote consistent coding from one 

constructed response to another. Participants’ constructed-response items were assigned a label 

to the four different achievement levels: adequate, hybrid, inadequate or indeterminate. 

However, if there is no response or response is idiosyncratic (unrelated to functions of proof) 

it is labelled indeterminate. Values ascribed to responses were as follows: adequate (=3), hybrid 

(=2), inadequate (=1), or not classifiable (=0).  A sample of fifty questionnaires whose 

constructed-response items were independently scored by the first author and an outside coder 

experienced in the teaching of high school geometry, were randomly selected. The coded 

questionnaires had an interrater reliability of 74.8%. To improve reliability, coding decisions 

were subsequently compared and an interrater reliability of 80.2% was reached following 

refinement of discrepancies in coding of constructed responses. The remaining questionnaires 

were scored primarily by the first author.  

The results provided evidence that learners held relatively similar views of the mathematical 

practice, ranging from naïve to hybrid. Participants’ responses to open-ended items provided 

additional evidence on their views of the mathematical practice. For instance, responses to what 

mathematicians do showed that many of them (89%) held the somewhat naïve views that a 

mathematician is a tutor to help with or to do test setting and marking of scripts. These 

responses were interpreted as evidence that preservice teachers indeed lack knowledge about 

the practice of mathematicians, but hold hybrid views of the various methods used in proving 

mathematical truths. However, the naïve responses on the proof of the proposition that the sum 

of two even numbers was an even number were interpreted as demonstrating concerns about 

difficulties these teachers have with regard to constructing a mathematical proof. The rubric 

depicted in Table 7 is a sample used to score the qualitative aspect of the scale. 
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Table 6: Scoring Rubric for Qualitative Data 

 

Function Adequate Hybrid  Inadequate Indeterminate 

Systematisation     

With examples, 

explain how the 

theorems you 

are asked to 

prove were 

dependent OR 

independent of 

one another 

A proof 

organises 

individual 

statements into 

a coherent 

deductive 

system AND 

Proof exposes 

the underlying 

logical 

relationships 

between 

statements 

A proof organises 

individual 

statements into a 

coherent 

deductive system 

AND/OR Proof 

exposes the 

underlying 

logical 

relationships 

between 

statements 

A proof 

organises 

individual 

statements into a 

coherent 

deductive 

system 

AND/OR Proof 

exposes the 

underlying 

logical 

relationships 

between 

statements. 

No attempt 

made; Merely 

mention that “I 

don’t know”; 

Response is 

irrelevant to 

the prompt. 

 

 

The consistency between these responses and their Likert-scale items and thus answer to the 

third research question, “How do learners view the functions of proof in mathematics?” was 

analysed. Analysis of constructed-response items revealed that only a few participants (8%) 

demonstrated adequate views about the systematisation function.  Noteworthy perhaps is that 

the majority of learners held inadequate views about the verification function of proof. With 

regard to the explanatory function of proof, fewer participants (18%) held adequate views about 

proof as a means to discover new results. However, a majority of participants’ responses 

belonged to the hybrid category across all the five functions of proof. This result meant that for 

the majority of learners, proof represented a variety of functions some of which could be 

described as either consistent with current proof literature while some would be found to be 

naïve. 

Conclusion 

The purpose of this study was to validate the LFUP questionnaire by understanding the extent 

to which the independent attributes (five functions of proof) predicted learners’ functional 

understandings of proof in mathematics. To do this, additional to the Likert-scale, open-ended 

components were employed to provide opportunities for in-depth investigation learners’ views 

of the functions of proof in mathematics. This was done to understand which of the five 

functions of proof was the most important in predicting learners’ functional understandings of 

proof. It was hypothesised that the verification function explained a significant amount of the 

variance in learners’ functional understandings of proof. The results not only showed that the 

five functions explained a sizeable amount of the variation in learners’ functional 

understanding of proof but also that the explanatory function of proof was the single most 

important subscale that explained the variance in the scores on functional understandings of 

proof when all the five functions of proof were considered together. These results suggested 

that the LFUP scale was both a reliable and valid instrument to measure learners’ functional 

understanding of proof. In addition, learners’ functional understanding of proof was 

characterised as hybrid. 
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The study reported in this paper made two contributions. First, it emphasises the importance 

for establishing validity each time an instrument is used with a different sample. Second, the 

LFUP scale provides a reliable tool to measure learners’ appreciation of the concept of proof 

for meaningful learning. All in all, the instrument supports current research in learning, 

teaching, and assessment underscoring the importance of eliciting learners’ preconceptions of 

the proof. Future studies may need to incorporate open-ended interviews to probe learners’ 

responses in the questionnaire. 
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