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Abstract 
 
The undergraduate laboratory occupies a large fraction of science students’ time. Over 3000 students were asked 

to rate their laboratory learning experience using 12 metrics.  362 academics were asked to predict which of these 

12 aspects of the student experience would correlate with the overall laboratory learning experience. Responses 

from academics in biology, chemistry and physics departments, and from the USA and Australia, are statistically 

the same. However, the correlation between these staff predictions and student results is poor. The student results 

are consistent with extant educational research, but it appears that these findings are not reaching those who are 

responsible for developing undergraduate laboratory courses. There is a great need for educational research to be 

made more accessible for academics who are trained in scientific, but not in educational research. 

 

Introduction 
 

The laboratory has been an integral component in university science education for almost 130 

years (Arzi, 1998; Black & Ogborn, 1979; Avi Hofstein & Mamlok-Naaman, 2007; Romey, 

1968; Rowland, 1886; Schwab, 1962). At an address commemorating the 10th anniversary of 

Johns Hopkins University in 1886, Henry Rowland exhorted that “If they (students) study the 

sciences, they must enter the laboratory, and stand face to face with nature…” (Rowland, 

1886).  In the mid-20th century, Schwab (1962) and Romey (1968) reported how the laboratory 

environment provides a powerful learning environment.  Building upon this, a growing body 

of research has shown that transforming undergraduate science laboratory programs from 

‘cookbook’ labs to an inquiry-based learning environment provides a powerful framework for 

actively engaging students (Abrahams & Saglam, 2010; Volkmann & Abell, 2003).  Rubrics 

have been developed to characterise the level of inquiry in laboratory exercises (Buck, Bretz, 

& Towns, 2008; Fay, Grove, Towns, & Bretz, 2007; Fayer, Zalud, Baron, Anderson, & 

Duggan, 2011), and it is well established that student perceptions of laboratories improve when 

active learning strategies in laboratories are adopted (Domin, 2007; Emenike, Danielson, & 

Bretz, 2011; Fayer et al., 2011; Kirkup, Pizzica, Waite, & Srinivasan, 2010).  Indeed, it is 

widely accepted that engaging students in authentic processes of scientific enquiry, including 

both in the laboratory and post-laboratory writing (Moskovitz & Kellog, 2011), motivate and 
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engage students of varying interest and abilities and from diverse backgrounds (Handelsman 

et al., 2004). 

 

Good laboratory programs provide a learning environment where students can forge links 

between theoretical concepts and experimental observations (Hegarty-Hazel, 1990; A. 

Hofstein, Kipnis, & Abrahams, 2013).  Learning goals that can be achieved through laboratory 

experiences include: subject matter mastery; improved scientific reasoning; an appreciation 

that experimental work is complex and can be ambiguous; and an enhanced understanding of 

how science works (Moore, 2006).  High quality laboratory exercises that meet the above goals 

can teach a wide variety of scientific, professional and generic skills (Bennett & O'Neale, 1998; 

Boud, Dunn, & Hegarty-Hazel, 1986; Reid & Shah, 2007).  Bennett and O’Neal (1998) note 

that high-quality laboratory courses should introduce students to a range of skills in a logical 

and coherent package, introduce students to investigative studies early in their studies and 

incorporate pre- and post-laboratory activities that actively engage students. 

 

Given the widespread agreement in the literature of the value of learning in the laboratory 

(Coppola, 2011; A. Hofstein & Lunetta, 1982; A. Hofstein & Lunetta, 2004), it remains a fact 

that many undergraduate laboratory programs have been slow to adopt the outcomes of this 

research (Baker et al., 2014; Cech, 2003; Wood & Gentile, 2003).  An on-going challenge in 

realising the adoption of research-informed teaching innovation lies with university recognition 

and reward structures that promote research innovation above that of teaching (Cech, 2003).  

Handelsman et al. (2004)  have noted that one contributing factor to the slow pace of change 

is that many science teachers remain unaware of, distrust and/or feel intimidated by the research 

data.  However, the issue is complex; a variety of inter-related factors contribute to the barriers 

to effective student learning.  Interestingly, some evidence suggests that teacher attitudes 

towards the importance of practical work can improve with the introduction of investigative 

laboratory exercises (Abrahams & Saglam, 2010). 

 

This paper explores practicing teacher expectations of what constitutes a ‘good laboratory 

exercise’ and compares these to the lived experience of students.  Consequently, the research 

gives rise to four Research Questions: 

 

1. Do teacher expectations of what constitutes a ‘good laboratory exercise’ differ between 

the science disciplines of biology, chemistry and physics? 

 

2. Do teacher expectations vary in the distinct higher education environments of Australia 

and the United States? 

 

3. How do teacher expectations compare to the lived experience of students? 

 

4. Why are the predictions of teachers so misaligned with student experiences? 

 

The implications for teaching practitioners and their professional development are discussed 

in the context of the findings of this study. 

Methods 

This study utilises the practitioner-based research approach described by McWilliam (2004) to 

explore teacher and student attitudes towards science laboratory exercises.  We adopt 
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quantitative methods, based upon a survey methodology and statistical approaches, to explore 

teacher and student attitudes to the question of what constitutes a ‘good laboratory exercise’. 

Instruments 

Distinct survey instruments for staff and students were employed, and these are each described 

below. 

 

The Student Survey:  The research was carried out using instruments developed and tested 

under the auspices of the Advancing Science by Enhancing Learning in the Laboratory 

(ASELL) project (Barrie et al., 2015; Yeung et al., 2011), and its progenitors (Buntine et al., 

2007), which has been operating in Australia for over 18 years.  The ASELL Student Laboratory 

Experience (ASLE) instrument (Table 1; see Supplementary Material for the actual instrument) 

was developed to examine student self-assessment of their laboratory learning experience 

(Barrie et al., 2015).  It does not assess learning gains, and is implemented immediately after 

the exercise is finished to ensure the hands-on, in-lab experience is fresh in the students’ minds.  

The immediacy of the survey also divorces feedback on the laboratory experience from issues 

associated with assessment.  Each student is asked to complete the ASLE instrument only once 

for any given exercise.  However, any given student may have completed the ASLE 

questionnaire for multiple laboratory exercises.  We are unable to comment on consistency of 

the student responses due to the anonymity of those providing the data.  Nonetheless, the 

quality of the overall dataset has been extensively discussed in our previous publication (Barrie 

et al., 2015). 

 

In an earlier publication (Barrie et al., 2015) we discuss the evolutionary development of the 

ALSE instrument with particular reference to the instrument’s content and face validity and 

the quality and nature of the overall student response dataset.  In this submission we use the 

student response data to compare to teacher attitudes. 

 

The ASLE student survey implementation, its use in student self-assessment of the laboratory 

experience, and use by academic staff evaluating experiments, has been published several 

times. Read and Kable (2007) reported an educational analysis of an undergraduate 

thermochemistry experiment.  Crisp et al. (2011) used the ASLE survey instrument to explore 

an apparent disconnect between teacher and student perceptions of the educational value of an 

experiment utilising polarimetry to determine sugar concentrations in aqueous solution.  

Bhathal, Sharma and Mendez (2010) reported using this instrument to explore educational 

aspects of an undergraduate physics experiment, while Southam and co-workers (2013) 

explored the impact on student education perceptions of an organic synthesis exercise that was 

conducted at differing times throughout a semester-long laboratory program.  Burgess, Yeung 

and Sharma (2015) describe an analysis of student learning experiences in an introductory 

chemistry program.  These studies demonstrate the wide applicability of the ASLE instrument 

in assessing science laboratories. 
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Table 1:  The ASELL Student Laboratory Experience (ASLE) instrument and how it is 

scored. 

 
Full Item Short Name Scoring 

1. This [experiment] helped me to develop my data interpretation skills Data interpretation 

skills 

(a) 

2. This [experiment] helped me to develop my laboratory skills Laboratory skills (a) 

3. I found this to be an interesting [experiment] Interest (a) 

4. It was clear to me how this [laboratory exercise] would be assessed Clear assessment (a) 

5. It was clear to me what was expected to learn from completing this 

[experiment] 

Clear learning 

expectations 

(a) 

6. Completing this experiment has increased my understanding of 

[discipline] 

Increased 

understanding 

(a) 

7. Sufficient background information, of an appropriate standard, is 

provided in the introduction 

Background material (a) 

8. The [demonstrators] offered effective supervision and guidance Demonstrators (a) 

9. The [experimental procedure] was clearly explained in the lab manual 

or notes 

Laboratory notes (a) 

10. I can see the relevance of this [experiment] to my [discipline] studies Relevance (a) 

11. Working in team to complete this [experiment] was beneficial Teamwork (a) 

12. The [experiment] provided me with the opportunity to take 

responsibility for my own 

Own learning (a) 

13. I found that the time available to complete this [experiment] was Time (b) 

14. Overall, as a learning experience, I would rate this [experiment] as Overall (c) 

Open-ended questions   

15. Did you enjoy doing the experiment? Why or why not?   

16. What did you think was the main lesson to be learnt from the experiment? 

17. What aspects of the experiment did you find most enjoyable and interesting? 

18. What aspects of the experiment need improvement and what changes would you suggest? 

19. Please provide any additional comments on this experiment here 

Notes: Scales used: (a) A = ‘strongly agree’, B=‘agree’, C=‘neither agree nor disagree’, D =‘disagree’, E=‘strongly 

disagree’; (b) A = ‘way too much’, B=‘too much’, C=‘about right’, D =‘not enough’, E=‘nowhere near enough’;  

(c) A = ‘excellent’, B=‘good’, C=‘average’, D =‘poor’, E=‘very poor’. 

 

Words in square brackets could be changed to suit the laboratory, discipline or country context. The short name is used in 

the text to refer to items, which are responded to on the five-point scale indicated. 

 
In brief, the ASLE instrument uses 14  5-point Likert statements, plus 4 open-ended items for 

a qualitative evaluation of the activity.  Of the Likert items, the first 12 use the standard 

“Strongly Agree” to “Strongly Disagree” measures.  Question 13 probes whether the length of 

time for the experiment was appropriate.  Question 14 asks the student about their overall 

assessment of the laboratory learning experience with a response range from “Outstanding” to 

“Very Poor”.  In all cases, the central response was intended to be neutral.  The dataset used 

for this work comprises 3099 student responses, including 54 experiments from 20 universities 

that range in size from large research-intensive to smaller regional universities in Australia, 

New Zealand (collectively referred to as Australasia) and the USA. 
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A detailed discussion of the nature of the 54-experiment dataset has been previously published 

(Barrie et al., 2015), including a detailed statistical factor analysis that describes the nature of 

the dataset.  Experiments span the range from being predominantly recipe driven (primarily at 

the First Year – or Freshman – level) through to being significantly open-ended investigations 

(mostly at the upper-class level).  As previously mentioned, here we use the student data to 

compare to teacher attitudes. 

 

The Academic Staff Survey comprises the same set of 12 statements as Q1-12 in the student 

survey (see Supplementary Material).  During a series of conferences and department visits 

during 2009-2015, academic staff volunteers were asked to predict which of the 12 ASLE 

statements they expected to correlate with student perception of the overall laboratory learning 

experience.  The academics’ predictions were sought based upon their lived experiences as 

educators, in general, and before any data related to student attitudes were presented and 

discussed. 

 

The 362 academic staff spanned biology, chemistry and physics in mostly the USA and 

Australia.  Academic staff from more than 30 institutions participated in this project.   Thirty-

one of the academic staff respondents had senior administrative responsibilities, including 

Deans and Associate/Assistant Deans.  Staff demographic details are presented in Table 2. 

 

Table 2:  Demographics of academic staff responses to staff survey. 

 

 BIOL CHEM PHYS DEAN TOTAL 

Australasia 60 73 50 27 210 

USA 5 98 30 4 137 

Europe 0 14 1 0 15 

TOTAL 65 185 81 31 362 

 

The respondents were regular members of academic staff, with duties ranging from teaching-

focussed to research-focussed. They were not, generally, science education researchers.  

Indeed, respondents were asked whether they had heard of the ASELL project, and only those 

who indicated they were not aware of the project were included in this analysis. 

 

Analysis 

Academic staff were asked to choose which four of the provided 12 ASELL statements they 

expected to correlate strongly with overall student perception of their laboratory experience 

(the “Yes” response in the instrument), and which four statements would exhibit least 

correlation (the “No” response, see Supplementary Material).  Staff were not asked to rank 

their responses. Therefore each “Yes” response was treated equally, as was each “No” 

response.  In our initial analysis, we assigned a score of +1 for a “Yes” response and –1 to a 

“No” response and did not score blank responses.  This provided a metric that ranged from +1, 

which represents that all staff considered the item to be positively correlated, to a score of –1, 

which represents an item where all staff predicted no, or little, correlation.  However, in 

discussing these results in various seminars, it became clear that the score of –1 was confusing 

because of the association with a negative correlation coefficient, R, for which a value of –1 

indicates a strong but negative correlation, rather than zero correlation, as intended.  Therefore 

we applied a linear scale and offset (halve the range, and add 0.5) to produce a metric that 

ranged from 0 (prediction of no correlation) to 1 (prediction of strong correlation).  Such a 

scale does not distort the distribution and does not change the relative statistics, and, in 
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particular, cannot change the rank.  The final range of 0 – 1 did enhance understanding of the 

metric. 

 

Academic staff responses are compared to responses provided by over 3000 students 

predominately from Australia and the US, with a smaller number of student responses from 

New Zealand.  Student responses related to a total of 54 distinct experimental exercises, of 

which 43 were undertaken at the Freshman/First Year level.  48 of the experiments were 

undertaken in Australian universities, and 49 of the experiments were part of undergraduate 

chemistry programs.  Full experiment demographic details are reported in Table 3. 

 

Table 3:  Demographics of the various experiments and institutional contexts reported in 

this study. 
 

Experiments:   

Total experiments 54 

    

First Year 43 

Upper years 11 

    

Australian experiments 48 

New Zealand experiments 2 

USA experiments 4 

    

Chemistry experiments 49 

Physics experiments 5 

    

Universities:   

Total universities 20 

Australian universities 17 

New Zealand universities 2 

USA universities 1 

    

Students:   

Total students 3099 

Australian students 2772 

New Zealand students 85 

USA students 242 

 

Results 

 

In this study we concentrate on the ASLE overall student experience (Question 14, see Table 

1) and how the other 12 items (also reported in Table 1) correlate with this self-assessment.  

Essentially, what we are examining is, for students who rate their laboratory experience highly, 

which other items are also rated highly, and vice versa.  Without implying causality, we seek 

the items 1-12 that correlate most strongly with the evaluation of the overall laboratory learning 

experience.  To evaluate the strength of agreement with each statement we analysed the data 

in two ways: i) by tallying the %(broad agreement) – %(broad disagreement) for each Likert 

item for every laboratory exercise, and ii) by scoring +2, +1, 0, –1, –2 for Strongly Agree 

through Strongly Disagree.  For reasons explained previously (Barrie et al., 2015), we prefer 
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the second approach, although the results are almost identical either way; the conclusions do 

not change. 

 

Two such examples are compared in Figure 1, where the item on “Interest” is shown to 

correlate quite strongly with the overall experience across the 54 experiments (R2 = 0.69), while 

the item on “Teamwork” correlates very poorly (R2 = 0.0).  These data have been previously 

reported (Barrie et al., 2015), albeit without any comparison of the correlations presented here.  

The correlation of the other 10 items lies between these two extremes.  In the Supplementary 

Material we report, for the first time, the correlation between overall student attitudes to the 54 

experiments with all 12 items in the ASLE student survey. 

 

 

Figure 1:  Example of correlation in students’ responses to two of the 12 items in the 

ASLE survey:  Item 3: “Interest”, and Item 11: “Teamwork” to the students’ overall 

assessment of the laboratory experience.  

 

Research Question 1:  Do teacher expectations of what constitutes a ‘good laboratory 

exercise’ differ between the science disciplines of biology, chemistry and physics? 

Figure 2A shows the average responses of academic teachers (excluding those with senior 

administrative responsibilities as their discipline expertise is not known) from biology, 

chemistry and physics plotted against the average for all teacher responses (error bars represent 

one standard error of the mean).  The first point to note is that the responses cover most of the 

dynamic range of the metric; the lowest “all teacher” response (for “teamwork”) is 0.3, 

demonstrating that most academics did not believe that teamwork would correlate with the 

overall laboratory experience.  The highest score was 0.8 (for “interest”), showing that a large 

proportion of teachers believed that the level of student interest in the experiment would 

correlate strongly.  The other 10 scores are distributed across the whole range between these 

values. 
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The second very clear point to gain from these data is that there is no significant difference 

between the discipline cohorts.  The data in Figure 2A attest that, at least for the three 

laboratory-intensive enabling science disciplines reported here (biology, chemistry and 

physics), the staff perception of the students’ laboratory learning experience is remarkably 

uniform. 

 

Research Question 2:  Do teacher expectations vary in the distinct higher education 

environments of Australia and the United States? 

Figure 2B shows the same data, separated according to geography (USA or Australia; there are 

insufficient responses to draw any correlation conclusions from the European teachers).  There 

is, again, no significant difference in the responses of each cohort (again, error bars represent 

one standard error of the mean).  Although there are differences in tertiary science education 

between US and Australian universities (e.g. 4 vs 3-year degrees), perceptions of the scientist-

teachers about laboratory education, as exemplified in this survey, are not different.  Because 

of the clear similarity across regions and disciplines, we aggregate all into a single “teacher” 

response for comparison with student data. 

 

Figure 2:  Reponses of academic staff separated according to A) discipline, and B) 

country.   
Each data point represents the correlation between the overall teacher attitudes and those attitudes based upon 

discipline (top panel) or geography (lower panel) for the 12 items surveyed (see Supplementary Material for the 

staff survey instrument). 
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Research Question 3:  How do teacher expectations compare to the lived experience 

of students? 

The metrics for analysing the academic staff and student responses were necessarily different 

and we therefore applied a rank analysis to further explore similarities and differences.  Plots 

such as presented in Figure 1 were created for all student items, and the squared correlation 

coefficients (R2) calculated (see Supplementary Material for all correlation plots).  The items 

were ranked according to R2, with results shown in Table 4. The four top-ranked items from 

the student surveys were: “responsibility for own learning”, “interest”, “data interpretation 

skills” and “increased understanding”.  The four highest-ranking items in the academic staff 

responses were “interest”, “demonstrators/teaching assistants”, “relevance”, and “practical 

notes”.  A plot of the rank order of teacher versus student data is shown in Figure 3.  Clearly, 

the data are scattered and there is no correlation between the two sets of ranks.  This was quite 

a startling result to us, and was surprising to all audiences from whom we collected data. 

 

Table 4:  Rank order of academic staff and student responses 

 

Student 

rank 
Item 

Academic 

rank 

1 The experiment provided me with the opportunity to take 

responsibility for my own learning  

11 

2 I found this to be an interesting experiment. 1 

3 This experiment helped me to develop my data 

analysis/interpretation skills 

10 

4 Completing this experiment has increased my understanding 

of [discipline]a 

5 

5 It was clear to me what I was expected to learn from 

completing this experiment 

7 

6 The experimental procedure was clearly explained in the lab 

manual or notes. 

4 

7 I can see the relevance of this experiment to my [discipline]a) 

studies. 

3 

8 It was clear to me how this laboratory exercise would be 

assessed. 

8 

9 This experiment helped me to develop my laboratory skills. 6 

10 Sufficient background information, of an appropriate 

standard, is provided in the introduction 

9 

11 The [demonstrators]b offered effective supervision and 

guidance. 

2 

12 Working in a team to complete this experiment was beneficial 12 

a
[Discipline] = biology, chemistry or physics 

b
Replaced by “teaching assistants” in the USA 
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Figure 3:  Ranked academic staff predictions plotted against rank order of student 

feedback.  
Rank 1 indicates highest correlation between the item and the overall laboratory experience, while rank 12 

indicates least correlation.  The statistical correlation is zero.  Circled points highlight items of greatest 

discrepancy as discussed in the text.  The dashed line represents the correlation for the dataset of “Deans”.   

 

Discussion 

 

The results reported above begs the fourth Research Question, “Why are the predictions of 

teachers so misaligned with student experiences?”  Closer examination of Figure 3 and Table 

4 reveals that three items stand out.  These are highlighted in bold in Table 4 and circled in 

Figure 3.  Teachers predicted a strong correlation for “demonstrators” (“teaching assistants” 

in the US), while this did not prove to correlate strongly in student responses.  At the other end, 

teachers predicted “responsibility for own learning” and “data analysis” would not correlate 

well, but the students perceive these as important for their learning.  If these three items are left 

out of Figure 3, the squared correlation coefficient increases to R2 = 0.65, therefore we restrict 

our discussion below to these three discrepant items.  Informal feedback from academics after 

presentations at ASELL staff development workshops inform this discussion.  Our overarching 

conclusion from this feedback, coupled with the quantitative data analysis, and elaborated by 

the discussion below, is that when academic staff adopt a teacher-centred reference frame they 

become at risk of being disconnected from what motivates students to learn.  One possible 

strategy to overcome this disconnect is to encourage teachers to recast their thinking into a 

student-centred framework. 

 

“Demonstrators/Teaching assistants” (T.A.) and “teamwork” are the only two items that 

specifically probe the interpersonal interactions with others in the laboratory – with student 

colleagues in the teamwork item and with their instructors in the T.A. item.  Academics 

anticipated correctly that the quality of the teamwork experience would not correlate strongly 



International Journal of Innovation in Science and Mathematics Education, 28(4), 1-15, 2020 

11 

 

with the overall laboratory experience (Figure 1).  However, they mistakenly believe that the 

quality of the instructor should strongly influence the overall laboratory learning experience.  

Students are more discerning than this.  They can clearly separate the quality of the instructor 

from the quality of the laboratory experience. Some of the most engaging experiments have 

little reliance on T.A.s. In many of the poorer experiments (in terms of student ratings of 

‘overall learning experience’ Question 14), T.A.s were thanked profusely, for example, from 

one of the most poorly rated exercises: “Thank you to all the demonstrators in … lab. You are 

all very helpful.”  Our mantra, born from comments by many students, is that ‘poor T.A.s can 

destroy a good experiment, but good T.A.s cannot rescue a poor one’. 

 

For students, “Responsibility for own learning” was the most highly correlating item with the 

overall laboratory experience across the 54 surveyed laboratory exercises (R2 = 0.70; see 

Supplementary Material).  Students were not told how to interpret this item; neither were 

academics.  The item was designed to explore the influence of open-ended, or research-type 

experiments, versus “cookbook” experiments, but avoiding phrases like “discovery” or 

“inquiry” (Barrie et al., 2015).  Experiments in the 54-exercise dataset spanned from being 

strongly recipe-driven to being overwhelmingly open-ended.  Students rated the recipe-driven 

exercises poorly in terms of them taking responsibility for their own learning.  Conversely, the 

more open-ended an experiment, the more highly students rated it in terms of their learning 

responsibility.  Many of the experiments in this dataset are available at the ASELL website 

(www.asell.org). 

 

Inquiry-based approaches have been shown to facilitate learning in undergraduate science 

laboratories (Beck, Butler, & Burke da Silva, 2014).  Education researchers have long 

considered student interest to be important for learning and engagement (Hidi & Renninger, 

2006). While this item on the survey does not probe the multifaceted nature of ‘interest’, the 

results clearly demonstrate that students finding an experiment interesting is an important 

ingredient for a positive overall laboratory experience. 

 

Although beyond the scope of this paper, the interest item captures what laboratory educators 

have been telling us for years – that exploratory, research-based, open-ended experiments are 

very engaging and contribute strongly to a positive student laboratory experience.  In academic 

staff interviews, this opinion was well-recognised.  It was simply that the staff did not believe 

that students would recognise this in the survey.  They were both right and wrong.  

Responsibility for own learning is a powerful motivator, and students do recognise it. 

 

“Data interpretation skills” has a surprisingly strong correlation with the overall student 

experience, especially given the immediate post-laboratory timing of the survey administration.  

The types of experiments that scored well on this item required the students to process their 

observations or measurements in order to understand the underlying principles.  The types of 

experiments that scored poorly are ones where the observation or measurement itself was the 

result.  Research-type experiments, again, score very strongly here, and indeed, the process of 

analysing one’s own data to learn about the underlying science underpins research by the 

academics themselves.  It is well established that students find a well-designed laboratory that 

involves making meaningful choices and gaining control both stimulating and motivating 

(George, Wystrach, & Perkins, 1985; Paris & Turner, 1994). 

 

Data analysis is intrinsically more challenging than simple observation, so these results are 

broadly consistent with motivational theory. The importance of the undergraduate research 

experience has been published in the science education literature many times (Buck et al., 2008; 

http://www.asell.org/
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Emenike et al., 2011; Fay et al., 2007; Fayer et al., 2011; A. Hofstein & Lunetta, 1982; A. 

Hofstein & Lunetta, 2004; Avi Hofstein & Mamlok-Naaman, 2007; Kirkup et al., 2010; 

Moskovitz & Kellog, 2011; Volkmann & Abell, 2003).  Indeed, ‘Data interpretation skills’ 

and ‘Increased understanding’ of the discipline are part of what defines the unique learning 

environment of the undergraduate laboratory in the enabling sciences. 
 

As a final observation, the correlation for the set of “Deans” (academics with senior 

administrative responsibilities) is shown as a dashed line in Figure 3, and we note that it has a 

negative slope!  Due to the limited sample size of the Deans’ responses (n=31), the difference 

between Deans’ and academic staff predictions does not reach significance at p = 0.05.  As 

such, the next comment must be considered carefully.  Could it be that the further removed an 

academic is from the teaching laboratory, the less understanding they have of what makes for 

a good student learning experience? 
 

The professional development challenge 

The four items that correlate most strongly with the overall student laboratory experience are 

“responsibility for own learning”, “interest”, “data analysis” and “increased understanding”.  

Only two of these were predicted by academics (see Table 4). These four items are broadly in 

agreement with the science education literature as discussed above, and therefore the student 

results would not be surprising to science education researchers.  However, the demography of 

the respondents to our teacher survey are mostly coalface science academics; discipline 

experts, not science education experts. Handlesman et al. (2004) found that academics are 

largely unaware of the research findings in science education.  If the academic staff from the 

>30 universities across Australasia and the USA are representative of the broader university 

community, then the results presented here make it clear that this remains a significant 

professional development challenge for universities. 
 

All universities to our knowledge offer professional development in learning and teaching to 

their academic staff. In some, attendance at these courses is compulsory for new staff; at others 

it is optional. Many universities offer formal certificates, diplomas and degrees in higher 

education. The results presented here, however, show that these professional development 

programs, whether they are undertaken or not, are not having the desired impact for academic 

staff who are responsible for undergraduate laboratories. 
 

But is it reasonable to expect researchers in one discipline (science) to also be experts in the 

research of another (education)? The language, literature, background, methodology and 

training are all different. Another approach is needed. If effective curriculum change is to be 

achieved, university science leaders need to embrace science education as a valued research 

discipline in their universities.  These researchers will need to be discipline experts to teach at 

university, as well as education experts to achieve effective curriculum change. Tertiary 

education is undergoing a digital and on-line revolution. If these new technologies are to be 

used effectively in curricula, then the expertise in both the discipline and in education will be 

more valuable than ever. 
 

Conclusions 
 

Three hundred and sixty two US, European and Australasian academic staff were surveyed 

about what they consider constitutes a good undergraduate laboratory learning experience for 

students. Over 3000 US and Australian students were surveyed using the same questions.  

Biology, chemistry and physics academics were in complete agreement. However, the 

correlation between responses of the teachers and students is zero. 
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These results are confronting.  Although the student responses would not be surprising to 

science education researchers, this work indicates that the findings of science education 

research are not making their way to the teachers who are responsible for undergraduate science 

teaching or curriculum design.  This is a professional development challenge that science 

faculties and universities are not addressing satisfactorily. 

 

A key factor that we identify in this study is that teacher expectations of what constitutes a 

‘good laboratory experience’ are inconsistent with the lived experiences of students.  We find 

that these staff misalignments are independent of both scientific discipline (biology, chemistry, 

physics) and geography (Australia, USA).  Our results beg the question, ‘are teachers using 

their laboratory curriculum development time effectively?’, and suggest that greater emphasis 

on the professional development of academic staff, beyond the educational literature, is 

required. 

 

Supplementary Material 
 

The student and staff survey instruments are presented in Supplementary Information, together with correlations 

between ASLE Items 1-12 and Item 14. 
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