
International Journal of Innovation in Science and Mathematics Education, 30(4), 29-41, 2022 

29 

Effects of a Digital Math Training 

Intervention on Self-Efficacy: Can Clipart 

Explainers Support Learners? 
 

Markus H. Heftera, Rudolf vom Hofeb, and Kirsten Bertholda 

 
Corresponding author: Markus H. Hefter (markus.hefter@uni-bielefeld.de) 
aFaculty of Psychology and Sports Science, Department of Psychology, Bielefeld University, D-33501 

Bielefeld, Germany 
bFaculty of Mathematics, Bielefeld University, D-33501 Bielefeld, Germany 

 

Keywords: clipart explainers, digital training intervention, self-efficacy, self-explanation, 

worked examples 

 

Abstract 
 
In the mathematics domain, learning from worked examples is a best practice method for initial skill acquisition. 

However, open questions refer to effective digital training interventions in the field. Subject to these questions are 

the potential effects of self-explanations on self-efficacy, and the role of clip art explainers currently in vogue 

(cartoon teachers plus explanations in speech bubbles). We thus developed and field-tested a short-term 

(approximately 45 minutes) digital training intervention on mathematical proportionality with 113 German 

secondary school students (Mage: 14.12 years). We applied a quantitative experimental research design to analyse 

learning processes and outcomes with tests and questionaires. To investigate the potential supportive effects of 

the clipart explainers, we compared two versions of our intervention: with clip art explainers (clipart condition) 

and without them (control condition). Our training intervention revealed a significant positive within-subjects 

effect on the learners’ mathematical self-efficacy related to proportionality tasks. The clipart explainers had a 

significant negative between-subject effect on the subjective difficulty of the instructional material—with no 

indications of being detrimental to learning. Finally, we detected self-explanation quality and task engagement to 

be significant predictors for learning outcomes. Our findings underscore the importance of having learners deeply 

process the given materials. 

 

Introduction 
 

Imagine you want to bake cookies for 12 people, but your recipe calls for 600ml cookie dough, 

which is the recommended amount to satisfy only eight cookie-craving people. To compute the 

required amount of dough for 12 people, you first calculate the amount for one person (i.e. 

600ml divided by 8). Then you multiply this result (i.e. 75ml) by 12, thus figuring out the 

required amount for 12 people (i.e. 900ml). You probably remember this type of calculation as 

the rule-of-three from schooldays. This is a worked example on the principles of direct 

proportionality in mathematics. Worked examples like this appear in manifold forms in 

mathematical schoolbooks, usually following instructional explanations of newly introduced 

principles (e.g. Bakenhus et al., 2013; Bierwirth et al., 2013; Eichenlaub-Fürst, Fischer, Liebau, 

Mohr, & Widl, 2019; Hecht et al., 2013). In particular, but not exclusively in the mathematics 

domain, learning from worked examples is a well-established, intuitively appealing, evidence-

backed, best practice method for initial skill acquisition (e.g. Kirschner, Sweller, & Clark, 

2006; Renkl, 2017). 

However, open questions remain, as we will identify and address three research desiderata in 

the present paper: (1) testing a digital math training intervention based on worked examples in 

realistic field rather than artificial lab conditions, (2) analysing its effects on mathematical self-
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efficacy rather than mere knowledge gains, and (3) analysing potential effects of adding clipart 

explainers currently in vogue (i.e. cartoon teachers plus explanations in speech bubbles). 

Effective learning from worked examples—self-explanation and example-set principles 

Exhaustive research has backed the effectiveness of example-based learning for individuals 

with little or no prior knowledge (Renkl, 2014, 2017). This effectiveness is plausible because 

a worked example presents concrete solution steps to a given problem. These solution steps are 

principles that uninformed learners usually do not know yet. Thus, when confronted with a 

problem, there is nothing else for them to do but try to follow general or superficial solution 

strategies. As cognitive load theory suggests, this search for a solution exhausts learners’ 

limited cognitive resources (Sweller, Ayres, & Kalyuga, 2011). Consequently, cognitive 

overload occurs, thus compromising learning. In contrast, processing a worked example instead 

of a problem frees learners from the search for a solution. Now, cognitive resources are spared 

to apply for learning. However, presenting concrete solutions steps in the shape of a worked 

example is only half the battle. Effective example-based learning requires the implementation 

of instructional guidelines (Renkl, 2021). This paper focuses on two crucial ones for the 

mathematical domain (i.e. self-explanation and example-set principles). 

Self-explanation principle 

For a start, learners need to deeply process the given examples to understand, memorise, and 

eventually apply their underlying principles later. That is where self-explanations come into 

play (self-explanation principle, Renkl, 2014). Generating self-explanations means explaining 

the worked examples’ principles to oneself (Renkl, 2014) and thereby integrating and/or 

generalising knowledge (Rittle-Johnson, Loehr, & Durkin, 2017). This is a powerful and 

productive learning strategy that can promote learning outcomes such as conceptual or 

procedural knowledge (Wylie & Chi, 2014). As learners seldom engage spontaneously in self-

explaining, so-called self-explanation prompts offer effective instructional support (e.g. 

Berthold & Renkl, 2010). Usually, such prompts simply request that learners explain the given 

solution steps to themselves and type their self-explanations in a text box. Learners commonly 

fulfil these requests, and researchers thus can rate the quality of learners’ typed-in self-

explanations (e.g. Hefter, Fromme, & Berthold, 2022). Such ratings of self-explanation quality 

are a measure of learners’ performance in self-explaining, such as generating correct and 

exhaustive self-explanations. Overall, striving for high self-explanation quality is reasonable, 

as it is the quality of deeply processing to-be-learned principles in the form of knowledge 

integration and/or generalisation. Indeed, self-explanation quality was a significant mediator 

of immediate learning outcomes (e.g. Berthold, Eysink, & Renkl, 2009) as well as of learning 

outcomes in delayed posttests (e.g. Hefter, ten Hagen, Krense, Berthold, & Renkl, 2019; Hefter 

et al., 2022). 

Example-set principle 

Let us assume the aforementioned self-explanation principle is in action and learners 

successfully generate high-quality self-explanations. There is still another instructional 

guideline to consider for effective learning from worked examples in mathematics, which 

Renkl (2014) calls the example-set principle. According to this guideline, a set of examples 

should make the important to-be-learned principles salient to the learners. In mathematics, 

worked examples feature these to-be-learned principles (i.e. the structure) as well as some sort 

of arbitrary cover story (i.e. the surface). These little cover stories, like that about baking 

cookies or booking tickets, exemplify the to-be-learned principles. 

For instance, a typical worked example’s story is about a fictive person (Erik) who needs to 

bake cookies for 12 people but his recipe’s amount of dough accounts for only eight people. 
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To calculate the amount for 12 people, Erik applies the principles of direct proportionality 

(divide the given amount by 8 and multiply it by 12). Another cover story for a worked example 

on direct proportionality is about buying tickets (without discount), when the number of people 

is in direct proportion to the ticket costs. Very similar but slightly more complicated, there are 

also the principles of inverse proportionality to consider. In our fictive case, Erik has a fixed 

amount of dough for eight people, but he expects 12 people. Thus, to bake more cookies from 

the same amount of dough, they—the cookies—need to be smaller. To calculate the mass of 

one cookie for 12 people, Erik needs to multiply the previous cookie mass by 8 and divide that 

product by 12. To concoct a similar ticket cover story for a worked example on inverse 

proportionality, consider a fixed ticket price for a group of people. Reducing the group size 

increases the ticket prize for each group member. 

All in all, it is crucial that learners realise that they should focus on the examples’ structure 

(here: principles of direct or inverse proportionality). They should not be tempted to assume 

that a certain cover story (here: cookies or tickets) implies a certain solution (Renkl, 2014). 

Hence, it is reasonable to implement structure-emphasising example sets (Quilici & Mayer, 

1996) that vary both the examples’ structure and surface, making the key learning principles 

salient. In the present case, this would mean a set of four worked examples combining both 

structure (here: principles of direct and inverse proportionality) and surface features (here: 

cookies and tickets cover story). 

Overall, for our training intervention in the present study, we follow both instructional 

guidelines for example-based learning (i.e. self-explanation and the example-set principles). 

Moreover, we focus on the domain of mathematics. So did Rittle-Johnson et al. (2017), who 

analysed 26 published studies that compared self-explanations prompts with no self-

explanation prompts in mathematics content. Learners’ age varied from preschool to adulthood. 

However, only seven of these studies featured a realistic classroom environment, unlike the 

majority that took place in a laboratory environment. Rittle-Johnson et al. (2017) plausibly 

suggest less effort by learners in such realistic field conditions than in lab conditions. Hence, 

field-testing is an important research desideratum—combined with assessing learners’ task 

engagement—, which we thus address in this paper. 

Fostering self-efficacy through learning from worked examples 

Another important research desideratum relates to self-efficacy. The concept of self-efficacy 

goes all the way back to Bandura (1977) and concerns—in a tiny nutshell—the belief about 

one’s own confidence in the ability to successfully perform a particular given task. It is 

important to note self-efficacy’s focus on specific tasks or problems. Ever since, a substantial 

body of research has identified self-efficacy’s influence on performance, effort, persistence, 

and motivation (e.g. Dunlap, 2005; Lindstrøm & Sharma, 2011; Siegle & McCoach, 2007; 

Sharp, Rutherford II, & Echols, 2022). In light of this, it is not surprising that researchers have 

investigated how to improve learners’ self-efficacy. For instance, Siegle and McCoach (2007) 

developed a teacher training intervention to improve students’ self-efficacy by focusing on 

goals and feedback. Moreover, Dunlap (2005) showed positive effects on self-efficacy through 

a 16-week problem-based software engineering course. Finally, Hicks, MacDonald, and Martin 

(2017) fostered learners’ science-related self-efficacy in their targeted intervention over a 

period of four weeks. Such long-term courses are all well and good, but what about short-term 

yet effective example-based learning interventions and their effects on self-efficacy? 

Rittle-Johnson et al.’s (2017) meta-analysis provided a comprehensive overview of 26 

published studies (i.e. 22 papers between 1998 and 2014) on short-term mathematical 

interventions built around self-explaining and worked examples. Notably, though, none of 
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those 26 studies assessed self-efficacy. At least Crippen and Earl (2007) detected positive 

effects of a worked example with a self-explanation prompt on self-efficacy in their quasi-

experiment in the chemistry domain. In a follow-up study, Biesinger and Crippen (2010) 

obtained mixed results of a web-based learning environment that included selective additional 

worked examples in the domain of chemistry on self-efficacy. Finally, Hoogerheide, Loyens, 

and Van Gog  (2014) found positive effects of example-based learning on self-efficacy in two 

experiments across three different types of examples (worked examples, modelled examples 

with visible model, and modelled examples without visible model). Overall, the research on 

worked examples, self-explaining and self-efficacy is rather scant. 

A possible explanation for this peculiarity is provided in Van Gog and Rummel’s (2010) 

remarks on the difference between the two research perspectives on worked examples and on 

modelling examples. In short, worked examples rather focus on presenting (mostly written) 

solution steps to a learner, whereas modelling examples rather focus on presenting a model’s 

demonstration of solving a problem (for an overview of both perspectives, see also Renkl, 

2014). All commonalities and similarities aside, the research on modelling examples has tended 

to focus on how they affect learners’ self-efficacy. By contrast, research on worked examples  

has focussed more on skill acquisition and cognitive load. Consequently, Van Gog and Rummel 

(2010) point out the potential of combining the strong points of both perspectives. Hence, we 

eagerly answer their call to analyse possible effects of (self-explaining) worked examples on 

self-efficacy in the present paper. 

Moreover, we argue that an effective training intervention based on worked examples and self-

explanation has the potential to foster mathematical self-efficacy in two ways. Studying worked 

examples might have an effect similar to expert modelling, improving self-efficacy (Schunk, 

1981, 1996). Furthermore, Crippen and Earl (2007) identified no effect from the worked 

example on self-efficacy—until they added a self-explanation prompt. Thus, self-explaining 

might play a role in reinforcing a worked example’s potential positive effect on self-efficacy 

and go the extra mile by experiencing mastery in the form of generating self-explanations. 

Risks and potentials of providing additional clipart explainers 

Besides following the aforementioned instructional guidelines, another rationale for 

developing an effective digital training intervention on mathematical proportionality was to 

employ authentic schoolbook materials. In recent years, small instructional measures that we 

call clipart explainers have emerged in various mathematic schoolbooks (e.g. Bakenhus et al., 

2013; Bierwirth et al., 2013; Eichenlaub-Fürst et al., 2019; Hecht et al., 2013). They consist of 

a clipart or comic-like drawing of a young and supposedly hip person who provides short, 

simple explanations in a speech bubble. Clipart explainers are usually located on pages that 

introduce a new topic, accompanying instructional explanations and worked examples. 

Specific studies on the effect of these clipart explainers are sparse at best, but previous research 

offers food for thought about their potential and risks. 

On the potential side, clip art explainers might help learners acquire deeper understanding 

because they might reduce the learning material’s difficulty. Learning material consists of 

different representations such as texts, calculations, tables, etc. Hence, learners need to connect 

different representations in their working memory, which is considered difficult and 

cognitively demanding (Seufert & Brünken, 2006). They have to integrate information from 

multiple representations (Ainsworth, 2006). Concerning authentic schoolbook material on 

mathematical proportionality (e.g. Bierwirth et al., 2013), these multiple representations 

comprise at least two information sources: the worked example’s written text (similar to this 
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paper’s introduction) and a typical proportionality table. Figure 1 shows such a table from our 

intervention. 

 

Figure 1. Proportionality table for a worked example on direct proportionality 
 

A clipart explainer that uses simple and short language might actually serve as support on a 

“deep structure level” (Seufert & Brünken, 2006), because it explicitly exposes how the 

corresponding structures are semantically connected. Figure 2 illustrates a clip art explainer 

such as the ones from our intervention. 

 

Figure 2. Clipart explainer for a worked example on direct proportionality. Illustrated 

by Carla Miller. Adapted with kind permission of Westermann Gruppe, Braunschweig, 

Germany, Copyright (2020). 

 

On the downside, clipart might trigger side effects that jeopardise learning from a cognitive 

load perspective. First, adding such clip art explainers might be rather irrelevant for learning. 

However, they might catch learners’ interest (i.e. seductive details) and thus bind their limited 

cognitive resources (Mayer, Griffith, Jurkowitz, & Rothman, 2008). Their potential 

motivational and cognitive (side)-effects should therefore be carefully considered (Magner, 

Schwonke, Aleven, Popescu, & Renkl, 2014; Mayer & Moreno, 2003). Second, learners have 

to pay attention to both the clipart explainers and the material it accompanies, because they 

somehow need to integrate both information sources mentally. While doing or trying to do so, 

they are prone to the split-attention effect, which again bears the risk of binding their limited 

cognitive resources (Ayres & Sweller, 2014).  Summing up, as open questions remain 

regarding the potential benefits and risks of these clipart explainers, we analysed their effects 

in the present paper. 
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Hypotheses 
 

In light of these considerations and to address the initially mentioned research desiderata, we 

developed a short-term (~45 minute) digital math training intervention. We followed a twofold 

rationale: (1) Implementing state-of-the-art instructional guidelines for example-based learning 

(such as the self-explanation and example-set principles) and (2) using authentic and well-

established schoolbook materials (such as worked examples and instructional explanations). 

In particular, we assumed that… 

H1: …our training intervention positively affects learners’ mathematical self-efficacy. 

H2: …self-explanation quality and task engagement positively influence learning outcomes. 

Our final research desideratum was to investigate the supportive potential of clipart explainers 

during the training intervention. Thus, we analysed whether presenting clipart explainers… 

H3: …affects learners’ self-explanation quality and learning outcomes. 

H4: …affects learners’ subjective mental effort and perceived task difficulty. 

Method 
 

Sample and design 

The ethics committee of Bielefeld University (No. 2019–159) approved the experiment. We 

recruited four classes at one German secondary school, yielding a sample of 113 students in 

the eighth grade. We received written informed parental consent for all participants (N = 113; 

Mage = 14.12, SDage = 0.67; 61 female, 52 male; 53 native and 60 non-native speakers). Our 

study took place in the schools’ computer room during regular mathematics lessons. The 

students were under our complete supervision in the presence of their mathematics teacher. 

Our digital training intervention entailed a simple built-in randomisation routine for our 

experimental design with two conditions: Each participant had a 50/50 chance of starting one 

of two versions: (a) with clipart explainers (clipart condition, n = 55), (b) without clipart 

explainers (control condition, n = 58). 

In general, we refrained from simply comparing the conditions training intervention versus no 

intervention for two reasons: First, to avoid triviality, because—as discussed in the 

introduction—there is already exhaustive research on example-based interventions’ 

effectiveness on learning outcomes. Second, to avoid disadvantages for students who would 

not participate in the intervention during regular math lessons. Hence, learners in both 

conditions received our training intervention (albeit with or without additional clipart 

explainers). Consequently, we conducted between-subject comparisons to check for effects of 

the clipart explainers on learning processes and outcomes. To check for the effect of the whole 

intervention on self-efficacy, we conducted within-subject comparisons. 

Digital training intervention on mathematical proportionality 

Our digital training intervention featured the topic of mathematical proportionality. It was 

developed as a repetition of direct and inverse proportionality—concepts already introduced 

and taught in previous school years. We designed it to last approximately 45 minutes. Learners 

had no time limit and could move forward through the intervention via button click. We 

implemented four phases as shown in Table 1. 
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Table 1. Versions of the Digital Training Intervention 

Phase Content Student Activity 

Introduction Phase on 

Direct Proportionality 

Instructional Explanation with 

Worked Example 

Reading 

Consolidation Phase on 

Direct Proportionality 

Worked Example 1 

Self-Explanation Prompt 1 

Worked Example 2 

Self-Explanation Prompt 2 

Reading 

Self-Explaining 

Reading 

Self-Explaining 

Introduction Phase on 

Indirect Proportionality 

Instructional Explanation with 

Worked Example 

Reading 

Consolidation Phase on 

Indirect Proportionality 

Worked Example 1 

Self-Explanation Prompt 1 

Worked Example 2 

Self-Explanation Prompt 2 

Reading 

Self-Explaining 

Reading 

Self-Explaining 

 

The introduction phases provided the schoolbook’s basic instructional explanations of the 

principles of direct/inverse proportionality (i.e. when the base amount increases, the mapped 

amount increases/decreases at the same rate) as well as a worked example (Bierwirth et al., 

2013). During the introduction phases, the participants’ only task was to carefully read the 

material and—whenever ready—click the button to proceed. 

Each of the two consolidation phases (i.e. direct and inverse proportionality) consisted of two 

worked examples (cookies and tickets cover story). As mentioned above, we implemented 

structure-emphasising example sets. Hence, to make the key learning principles salient, we 

combined structure (here: principles of direct and inverse proportionality) and surface features 

(cookies and tickets cover story). A self-explanation prompt accompanied each worked 

example and encouraged the participants to generate an explanation of how the worked 

example had been calculated (e.g. “Explain, how Erik calculated the amount of dough for 12 

people“). 

Participants in both experimental conditions underwent the same digital training intervention, 

except for one crucial difference: The clipart condition additionally featured six clipart 

explainers, one in each introduction phase and two in each consolidation phase. These clipart 

explainers are combinations of graphics and texts in the shape of cartoon teachers plus 

explanations in speech bubbles. Their purpose was to serve as coherence-formation support on 

a “deep structure level” (Seufert & Brünken, 2006). Therefore, they provided a simple and 

direct statement on how to calculate the first principle of proportionality (here: the amount of 

dough or the ticket price for one person). Figure 2 illustrates our intervention’s clipart 

explainer. 

Instruments 

Prior math knowledge 

To check and control for potential differences in prior math knowledge between conditions, we 

used two measures: First, we asked our participants to type in their last mathematics grades. In 

Germany, these grades range from 1 (highest) to 6 (lowest). Second, we gave them three simple 

calculation tasks that afforded to apply the so-called rule of three. We used the mean number 
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of correct calculations from 0 (lowest) to 3 (highest) for another measure of prior mathematics 

knowledge. 

Learning outcomes 

Our digital training intervention’s domain was mathematical proportionality. As a measure of 

learning outcomes, we thus assessed participants’ knowledge about this domain in the posttest 

thereafter. Three tasks showed them a table featuring the so-called rule of three, and 

participants had to calculate a result. To assess mathematical proportionality knowledge, we 

used the mean number of correct calculations from 0 (lowest) to 3 (highest). 

Mathematical self-efficacy 

We assessed the participants’ mathematical self-efficacy related to proportionality tasks before 

and after the intervention. We used a four-item test (see Appendix), with very high internal 

consistency (Cronbach’s αpretest = .95 and Cronbach’s αposttest = .95). Regarding validity, the 

mathematics grades correlated moderately with both pretest (r = -.21, p = .026) and posttest 

measures (r = -.30, p = .002). In other words, the better (i.e. lower in the German grading 

system) the mathematics grades, the higher the mathematical self-efficacy and vice versa. 

Moreover (and unsurprisingly), both pretest and posttest measures of self-efficacy are 

intercorrelated (r = .44, p < .001). 

Self-explanation quality 

We rated each participant’s answer to each self-explanation prompt on a scale from 0 (very low 

quality) to 6 (very high quality) in relation to a correct solution. We gave the maximum of six 

for a correct and exhaustive self-explanation of how the rule of three is performed. Rating 

points were given for correctly naming which side of the table must be divided or multiplied 

by which number; in other words, naming the correct table column, operation, and factor 

scored. We used the mean rating of all four self-explanations to assess self-explanation quality. 

Internal consistency was high (Cronbach’s α = .86). 

Task engagement 

Task engagement represented the ratio of on-task answers that a participant typed into the input 

boxes during the whole study. An on-task answer was any noticeable attempt to answer the 

respective self-explanation prompt or calculation task including incorrect answers and 

comments such as “I don’t know.” By contrast, we counted comments such as “boring”, “I’m 

so cool”, or “your mother” as off-task answers. To calculate the ratio of on-task answers, we 

divided the number of off-task answers by the total number of answers, and subtracted the 

result from 1. 

Subjective mental effort 

We assessed participants’ mean subjective mental effort during both our introduction and 

consolidation phases. For that purpose, we implemented a one-item 7-point rating scale from 

1 (lowest) to 7 (highest) on the subjective invested mental effort (e.g. “How much effort did 

you invest in explaining how Erik calculated the amount of dough for 12 people?”). This scale 

was based on Paas’ (1992) one item scale and is widely used (e.g. Schmeck et al., 2015). 

Perceived task difficulty 

Likewise, we assessed the mean perceived task difficulty with a one-item 7-point rating scale 

from 1 (lowest) to 7 (highest) (e.g. “How difficult was it for you to explain how Erik calculated 

the amount of dough for 12 people?”). Recent research has also used this scale widely to assess 

instructional interventions’ cognitive demands (e.g. Schmeck et al., 2015). 
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Learning time 

Learning time was the difference between the logged timestamps when participants started and 

finished working with the digital training intervention. 

Procedure 

At the beginning, participants filled out the pretests on mathematical self-efficacy and 

mathematical proportionality knowledge. They then worked individually and on their own with 

the digital training intervention according to their experimental condition (clipart or control 

condition). Finally, they completed the posttest on mathematical self-efficacy and 

mathematical proportionality knowledge, and filled out a demographic questionnaire. 

Results 
 

We applied an alpha-level of .05 for all analyses and used Cohen’s d as the effect size measure 

for our t tests—qualifying values around 0.20 as small, values around 0.50 as medium, and 

values of 0.80 or more as large effects (Cohen, 1988). Table 2 shows all measures. 

Table 2. Means (with standard deviations in parentheses) for all measures 

 

Measure Clipart condition Control condition Overall 

Prior math knowledge 

     Grades1 

     Test2 

 

3.19  (0.94) 

0.42  (0.33) 

 

3.00  (1.08) 

0.46  (0.37) 

 

3.09  (1.01) 

0.44  (0.35) 

Learning Outcomes2 0.46  (0.40) 0.45  (0.37) 0.45  (0.38) 

Self-Efficacy3 

     Before 

     After 

 

2.32  (1.22) 

2.56  (1.36) 

 

2.38  (1.32) 

2.83  (1.45) 

 

2.34  (1.27) 

2.71  (1.41) 

Subjective mental effort4 

     Introduction phase 

     Consolidation phase 

 

3.45  (1.92) 

3.45  (1.94) 

 

3.81  (1.95) 

3.69  (2.01) 

 

3.64  (1.93) 

3.58  (1.97) 

Perceived task difficulty4 

     Introduction phase 

     Consolidation phase 

 

2.85  (1.67) 

3.00  (1.80) 

 

3.40  (1.72) 

2.94  (1.82) 

 

3.13  (1.71) 

2.97  (1.80) 

Self-explanation quality5 1.77  (1.30) 2.16  (1.52) 1.96  (1.42) 

Task engagement6 0.77 (0.25) 0.78  (0.28) 0.77  (0.26) 

Learning time7 40.00  (16.87) 39.64  (17.01) 39.81  (16.87) 

Notes. 1School grades (German grading system) in math from 1 (highest) to 6 (lowest), 2Number of correct 

proportionality calculations from 0 (lowest) to 3 (highest), 3Scale from 1 (lowest) to 5 (highest), 4Scale from 1 

(lowest) to 7 (highest), 5Scale from 0 (lowest) to 6 (highest), 6Ratio of on-task answers, 7Time in minutes 

 

Control variables 

There were no statistically significant differences between experimental groups with respect to 

prior mathematics knowledge, prior mathematical self-efficacy, or learning time. Nor was there 

any difference in the ratio of male/female or native/non-native speakers. 
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Effects on mathematical self-efficacy and learning outcomes 

As our first hypothesis (H1), we assumed our training intervention would positively affect 

learners’ mathematical self-efficacy. Indeed, participants described higher mathematical self-

efficacy in the posttest than in the pretest, t(103) = 2.56, p = .006, d = 0.27 (one-sided within-

subjects t test, small effect). Furthermore, with respect to our second hypothesis (H2), we 

detected a statistically significant regression to predict learning outcomes based on self-

explanation quality and task engagement, F(2, 76) = 8.83, p < .001, R² = .19. Self-explanation 

quality was a statistically significant predictor, β = .21, t(78) = 1.92, p = .030 (one-sided t test), 

as was task engagement, β = .33, t(78) = 3.07, p < .002 (one-sided t test). Participants’ learning 

outcomes amounted to 0.43 + 0.05 (self-explanation quality) + 0.87 (task engagement). 

Specific effects of the clipart explainers 

In our further hypotheses (H3 and H4), we addressed the clipart explainers’ potential specific 

effects. We found no statistically significant effects on self-explanation quality, t(104) = -1.38, 

p = .168, on learning outcomes, t(78) = 0.07, p = .944, or on subjective mental effort, t(111) = -

0.64, p = .523 (all two sided between-subjects t tests). 

However, we did identify a significant effect on perceived task difficulty during the 

introduction phase. Learners in the clipart condition rated the introduction phase as less 

difficult than those in the control condition, t(111) = -1.73, p = .044, d = 0.32, (one-sided 

between-subjects t test, small effect). 

Discussion 
 

Theoretical contributions and practical implications 

For a start, our findings make two contributions to the literature on learning from worked 

examples and self-explanations. First, the aforementioned majority of studies on self-

explanations in the mathematics content featured artificial lab conditions (Rittle-Johnson et al., 

2017). By contrast, our study featured a realistic classroom environment. As Rittle-Johnson et 

al. (2017) suggested, this classroom setting might cause learners to make less effort than they 

would in a laboratory setting. Hence, we assessed the participants’ task engagement and found 

almost 25% of our participants’ answers to be off-task. However, this finding highlights our 

effects, assuming they would be larger under lab conditions. Secondly, we contribute to the 

sparse research analysing worked examples and self-explanations’ effects on self-efficacy. We 

answered Van Gog and Rummel’s (2010) call to analyse possible effects of (self-explaining) 

worked examples on self-efficacy. Our findings show that our intervention’s example-based 

effectiveness also arose regarding the learner’s mathematical self-efficacy: Learners exhibited 

greater self-efficacy related to proportionality tasks after the digital training intervention than 

before. These results underscore the idea that studying worked examples has the potential to 

improve self-efficacy—similar to expert modelling (Schunk, 1981, 1996). Furthermore, as 

Crippen & Earl (2007) showed, the worked example’s effect on self-efficacy might be caused 

by experiencing mastery in the form of generating self-explanations. 

Under the perspective of cognitive load theory and instructional design, our study provided 

another novelty: we analysed the effects of additional clipart explainers. Our between-group 

comparisons revealed that our clipart explainers affected neither self-explanation quality nor 

learning outcomes. In other words, the quality of both experimental groups’ self-explanations 

during the intervention did not differ statistically significantly; neither did either group’s 

performance in the mathematical proportionality test after the intervention. As a reasonable 

interpretation for these results, note that both experimental groups received a concentrated 
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intervention that combined authentic schoolbook materials with state-of-the-art instructional 

guidelines for example-based learning. The only difference between the two digital training-

intervention versions was the implementation of small clipart explainers—six in total. We thus 

assume that both self-explanation quality and learning outcomes were robust enough to not be 

affected by such a relatively low-dose add-on to a training intervention already packed with 

effective instructional measures. Furthermore, the clipart explainers had no effect on the 

learners’ self-rated mental effort. We assume that they did not induce higher cognitive demands 

on the learners because the subjective mental effort performance measures (self-explanation 

quality and learning outcomes) also remained unaffected by the clipart explainers. However, 

what was negatively affected was the perceived task difficulty during the introduction phase. 

Concisely, clipart explainers have the potential advantage of making instructions appear easier 

to learners—with no indications of being detrimental to their learning. From a more practical 

point of view, this result could lead to a cautious recommendation: When carefully considering 

the potential risks of side effects (such as seductive detail and split-attention effects), there is 

hardly anything to be said against implementing clipart explainers. 

Key predictors to learning outcomes turned out to be self-explanation quality and task 

engagement, as both exerted a significant positive influence on learning outcomes in our 

regression analysis. This finding underscores the importance of having learners deeply process 

the given materials. It is in line with previous research that identified self-explanation quality 

as a predictor of immediate (e.g. Berthold et al., 2009) and delayed (e.g. Hefter et al., 2022) 

learning outcomes. 

Limitations and implications for future research 

As one of this study’s limitations, we used the topic of proportionality in the domain of 

mathematics. Thus, its generalisability to other domains that future studies might address is 

limited. We also used different tests to assess prior mathematics knowledge before the 

intervention and learning outcomes after the intervention. This approach had the advantage of 

preventing a memorisation effect due to identical tests, but came at the cost of within-subject 

analyses. Moreover, future studies might implement delayed posttests for assessing more long-

term learning outcomes. 

Furthermore, our short 45-minute intervention revised the concepts of direct and inverse 

proportionality, which students had already been taught in previous school years. Future studies 

might focus on longer interventions, which would then not just revise but actually introduce 

the concepts of proportionality. Moreover, direct and inverse proportionality might differ in 

their cognitive demands for learners. Comparing both concepts with respect to how self-

explanations and clipart explainers might support learners to grasp them, seems promising. 

Summing up, our carefully designed digital training intervention based on worked examples 

combined instructional psychology guidelines with authentic schoolbook materials. It stood the 

field test and fostered mathematical self-efficacy. Additional clipart explainers were at least 

harmless, while at best, they reduced (perceived) task difficulty. The key to learning was 

engaging with the given tasks and deeply processing the materials by self-explaining the 

worked examples’ principles. 
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Appendix 

 
Mathematical self-efficacy 

4 items, 5-point-scale from 1 (lowest) to 5 (highest) 

How confident are you that you are able to perform the following tasks? 

1. I can explain direct proportionality. 

2. I can apply the rule of three for direct proportionality. 

3. I can explain inverse proportionality. 

4. I can apply the rule of three for inverse proportionality. 
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