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Appendix 1: The 36 research questions 
 

1.1.  Overall I was satisfied with the quality of teaching by the teacher(s). 

1.2.  The work had been intellectually rewarding. 

1.3.  I developed relevant critical and analytical thinking skills. 

1.4.  I had good access to valuable learning resources. 

1.5.  The assessment tasks challenged me to learn. 

1.6.  I had been guided by helpful feedback on my learning. 

1.7.  Tutorials helped me to learn. 

1.8.  Staff were responsive to students. 

1.9.  Learning outcomes were clear to me. 

1.10. The lecturers were effective in facilitating my learning. 

1.11. The tutors were effective in facilitating my learning. 

1.12. The unit of study materials were effective in facilitating my learning. 

1.13. The exams were effective in testing my knowledge, understanding and aptitude. 

1.14. The quizzes were effective in testing my knowledge, understanding and aptitude. 

1.15. The assignments were effective in testing my knowledge, understanding and aptitude. 

1.16. The homework was effective in testing my knowledge, understanding and aptitude. 

1.17. The feedback in relation to assessment tasks was timely and of high quality. 

1.18. I was personally motivated to pass or do well. 

1.19. The pace was beneficial in facilitating my learning. 

1.20. The timing was beneficial in facilitating my learning. 

1.21. The lecture class sizes were appropriate for facilitating my learning. 

1.22. The tutorial class sizes were appropriate for facilitating my learning. 

1.23. I was able to focus on study without distraction. 

1.24. Social context and interaction within/during scheduled classes were beneficial in facilitating 

my learning. 

1.25. Social context and interaction outside/external to timetabled classes was beneficial in 

facilitating my learning. 

2.1. Which mode of delivery did you find provided you with more enjoyment and satisfaction? 

2.2. Which mode of delivery did you find provided you with better value for money, in terms of 

fees and your own resources? 

2.3. Which mode of delivery did you find provided you with superior educational and learning 

outcomes? 

2.4. Which mode of delivery did you find provided you with better compatibility with your own 

personal style of learning? 

2.5. Which mode of delivery did you find provided you with units of study that were overall easier? 

3.1. What were the reasons that you chose to enrol in mathematics units of study held during 

Summer School? 

3.2. What were the best aspects of Summer School? 

3.3. What were the best aspects of term-time? 

3.4. What aspects of Summer School most need(ed) improvement? 

3.5. What aspects of term-time most need(ed) improvement? 

3.6. Do you have any additional comments that you would like to add to the Summer School versus 

term-time debate in general? 
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Questions 1.1-1.25 and 2.1-2.5 invite Likert responses with five possibilities for each question 

for both Summer School and term-time, as given in the following table. Numerical values were 

assigned in a standard way, for purposes of finding means, medians and p-values for the 

relevant statistical test: 

 
Response Score 

Questions 1.1-1.25 Questions 2.1-2.5  

Strongly Disagree Term-Time (by a large margin)    -2 

Disagree Term-Time (by a small margin)    -1 

Neutral Indifferent 0 

Agree Summer School (by a small margin) 1 

Strongly Agree Summer School (by a large margin) 2 

 

The closed-ended questions (1.1-1.25 and 2.1-2.5) may be grouped as follows, corresponding 

to eleven subsections: 

• Instruction (questions 1.1, 1.6, 1.8, 1.10, 1.11, 1.17) 

• Learning (questions 1.3, 1.9, 1.23, 2.3, 2.4) 

• Classes (questions 1.7, 1.21, 1.22) 

• Motivation (question 1.18) 

• Pace and Timing (questions 1.19, 1.20) 

• Enjoyment (questions 1.2, 2.1) 

• Resources (questions 1.4, 1.12) 

• Assessment (questions 1.5, 1.13, 1.14, 1.15, 1.16) 

• Easiness (question 2.5) 

• Social (questions 1.24, 1.25) 

• Value (question 2.2) 

 

All questions invite open-ended comments. 
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Appendix 2: The seven categories (and their subcategories where appropriate) formed from the student statements, 

along with corresponding descriptions, key words and themes 

Category Sub-Categories Description Key Words and Themes 

Structure 

Design 

Pacing 
Timing 

Fitment 

Students reflect upon the structure and design of the teaching and learning 

activities, assessment, materials and resources, and how conducive to 

and/or compatible these are with their own learning styles, preferences and 
capabilities. The pacing and timing of the delivery of the mathematics 

content, as well as the fitment (such as degree, course, or unit requirements) 

are influential factors in the students' learning. 

Acceleration, adjacency, administration, alignment, arrangements, assessment, availability, 

block learning, breaks, clashes, completion, consolidation, constraints, continuation, 

convenience, coordination, cramming, credit points, delivery, demand, density, design, 
efficiency, enrolment, fitment, flexibility, flow, format, frequency, immediacy, integration, 

intensity, length, management, options, pacing, progression, repetition, requirements, 

revision, scheduling, spread, streams, structure, timing, variety, workload. 

Learning 

Outcomes 

Quality 
Satisfaction 

The learning and understanding of mathematics content and underlying 
concepts are often evaluated against a personal measure of ‘enjoyability’ 

and sense of ‘value’. Just how students feel challenged or motivated by 

their studies is dependent upon the balance of difficulty and quality of the 
content and assessment, as well as the learning environment. This in turn 

drives their level of satisfaction and the application of some combination of 

surface and deep learning strategies. 

Alignment, appreciation, atmosphere, attendance, attention, authenticity, challenge, clarity, 
cohesion, comfort, commitment, communication, compatibility, completion, complexity, 

concentration, concepts, confidence, connection, consolidation, depth (of learning), 

development, difficulty, discussion, elaboration, encouragement, engagement, enjoyment, 
experience, exploration, familiarity, formality, formative vs. summative (assessment), 

independence, inspiration, intellect, intensity, interactivity, interest, knowledge, learning, 

motivation, outcomes, personal, practice, pressure, productivity, quality, reflection, relevance, 
retention, revelation, satisfaction, teaching, thinking, understanding, value. 

Community 
Cohort Numbers 

Interactions 

There is considerable discussion as to how and why the number of students 

present in the teaching and learning activities influences their learning 
quality and experience. Regardless, it appears to be intricately shaped by 

their personal relationships and interactions with other students and staff, 

and an overall sense of ‘community’. 

Access (to resources), activity, camaraderie, campus, cohort, collaboration, commonality, 

communication, community, competition, cooperation, crowding, demand, discussion, 
disruption, encouragement, engagement, enrolment, environment, friendship, groups, inquiry, 

interactivity, intimacy, intimidation, liveliness, management, numbers (of students), 

opportunities, personal, rapport, socialising, support. 

Instructors   

The helpfulness and quality of the instruction by the teaching staff 

(lecturers, tutors, coordinators, etc.) is paramount in influencing student 

learning. Often students will either directly name or indirectly mention 
specific teaching staff, their methods, styles and characteristics, which have 

some significant impact upon their learning experiences. 

Anecdotes, approachability, attentiveness, availability, charisma, clarity, effectiveness, effort, 

empathy, engagement, entertainment, enthusiasm, experience, explanations, feedback, 

formality, friendliness, guidance, helpfulness, influence, innovation, interactivity, interest, 
involvement, motivation, personality, position (of teacher), quality (of teaching), rapport, 

style, support, technology (use of), understandability. 

Focus 
Motivation 
Task Management  

Student attitudes, in terms of their ‘drive’ or ‘motivation’ to study 

mathematics, are related to their ability to focus on their studies and varying 
levels of distraction. These depend upon personal circumstances, the 

management and balance of study, work and life tasks and goals. 

Attendance, attention, attitude, balance, commitment, concentration, cramming, 

determination, discipline, distraction, focus, incentive, intensity, interest, isolation, laziness, 
motivation, multi-tasking, number (of tasks), pressure, quietness, responsibility, simplicity, 

simultaneity, stress, task management. 

Affordability   

‘Value for money’ is an important outcome of satisfaction for students; they 

express the desire to feel as if their learning outcomes are commensurate 

with the effort and financial costs involved. The affordability associated 

with undertaking particular mathematics units (of the students’ choices) 
determine their ability to enrol and participate in delivery modes that suit 

their personal study needs. 

Accessibility, affordability, choice, commitments, deferral, demand, deterrent, employment, 

expenses, fairness, fees, financing, free offer, funding, hinderance, hindsight, informedness, 

motivation, opportunity, outrage, payments, pressure, redo, responsibilities, satisfaction, 

subsidy, upfront, value-for-money. 

Resources   

The quality, availability and helpfulness of the teaching and learning 

resources (course notes, lecture slides, exercise sheets, etc.) are influential 
towards student learning. 

Access, connection, consultation, demand, discussion board, exercises, external (resources), 

homework, infrastructure, legibility, LMS, MLC, notes, online, organisation, past papers, 
practice, quizzes, recordings, references, seating, slides, spaces, supplementary, technology, 

textbooks, venues, websites, worksheets. 
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Appendix 3: Techniques from phenomenography, the paradox of the 

Chinese Learner and modifications of the Presage-Product-Process (3P) 

model 
 

Watkins and Biggs (1996, 2001b) had compiled studies, investigating a wide-spread 

phenomenon, in which students from countries with a Confucian Heritage Culture (CHC) were 

learning more effectively than Western research might have predicted in large class 

environments that emphasised memorisation and harsh socialisation practices. Our study 

similarly tries to understand the underlying dynamics of intensive learning environments, such 

as Summer School, that lead to unusually strong learning outcomes. 

 

In the case of the Chinese paradox, plausible solutions were suggested within the context of 

Confucian cultures and their effects on cognitive abilities of learners (Watkins & Biggs, 1996, 

2001a). That research employed a paradigm known as Student Approaches to Learning (SAL) 

(Biggs, 1987, 1993b; Entwistle & Ramsden, 1983), focusing on how students conceptualise 

learning. They used coding techniques from phenomenography, in the sense of Marton (1981) 

and Marton & Booth (1987), looking for qualitatively different categories, and connections 

between them, that underly how people experience or conceptualise phenomena.  

 

In the spirit of SAL, we also focus on student perspectives and use techniques from 

phenomenography. For general references about coding, which allow categories to emerge 

from qualitative data, the reader is referred to Dewar et al. (2018), Ezzy (2002), Silverman 

(2014), Neumann (2011), Glaser & Strauss (1967), Bowden & Walsh (2000), Bowden & Green 

(2005) and Khan (2014).  

 

The aim is to find similarities across perceptions of some given phenomenon (in our case, 

learning at Summer School and in term-time) expressed by some diverse group of individuals 

(in our case, students that took at least one unit at Summer School in the period 2009-2016). 

The focus is on collective characteristics of perceptions rather than individuals (Barnacle, 

2005). Phenomenography derives its strength by looking at experience holistically, even 

though phenomena may be perceived differently by different people under different 

circumstances (Åkerlind, 2005). Groupings that emerge are called categories of description (or 

simply categories). Interviews are the main source of data in phenomenography, but open-

ended responses in surveys are also common (Åkerlind & McKenzie, 2003; Åkerlind, 2005). 

After identifying categories, the task is to clarify and display relationships, using a table or 

network diagram (Dewar et al., 2018). We used the dynamical systems approach of Biggs 

(1996b) to create a 3P diagram (Figure 32). 

 

Phenomenography usually produces a relatively small number of categories. Watkins and 

Biggs (2001b) identified six main categories affecting learning quality in the context of the 

culture of the Chinese learner. Kember (1997) proposed five categories for studying 

conceptions of teaching in a Western context. Lingbiao and Watkins (2001) develop a model 

of conceptions using six categories, overlapping with Kember’s, but overlayed with five 

categories that cut through “orthogonally”, producing a cascade of dynamic models, with 

feedback loops. Dahlin et al. (2001) explored systemic relations between teachers and learners 

and the so-called “backwash effect” (see Biggs, 1995, 1996a; Hargreaves, 1997; Cheng, 1998; 

Prosser & Trigwell, 1999; Trigwell et al., 1999). Their analysis used the constant comparative 
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method of Glaser and Strauss (1967), by rereading scripts until categories emerged (see also 

Ng et al., 2001, from a linguistic viewpoint). They identified six dimensions, with four 

dimensions “orthogonal” to two dimensions, culminating in dynamic relationships. Tang 

(2001), in studying the Chinese paradox, investigated relationships between conceptions of 

learning and teaching, producing six categories for each, and explored relationships between 

them. Biggs (1993a) sees the classroom as an ecosystem with interacting components. This 

may be part of a larger system, such as a school or institution, which embeds in even larger 

systems, such as the community and the broader culture. These systems produce complex 

multilayered equilibria, with “pedagogical flows” that may be characteristics of a particular 

mode of teaching and learning. Authors have investigated this as a cultural or geographical 

phenomenon (Schmidt, 1996; Stigler & Hiebert, 1999; Mok et al., 2001; Biggs & Watkins, 

2001), noticing relative uniformity within cultures, such as in Japan, the United States, 

Germany and CHC countries, compared with vast differences between cultures. Biggs and 

Watkins (2001) observe that Japanese schools have a mechanism, kounaikenshuu, for 

enhancing the quality of learning, involving observation, analysis and refinement, and that 

similar reflective mechanisms exist in Chinese schools. They explain the Chinese paradox by 

noting that, in the West, focus on presage factors tends to be in isolation rather than as part of 

an integrated cultural system. They refer to three levels: at the lowest level, teaching is 

exposition and differences in learning outcomes are dependent on personal attributes of the 

student. At the next level, teachers think about presentation skills, with emphasis on their 

performance, disregarding whether this results in improved learning. At the highest level, 

teachers encourage students to engage in appropriate activities, where all aspects of the 

teaching/learning context interact, including design, delivery and assessment, creating an 

integrated system. We investigate, in our study, distinctive features of Summer School, sharing 

certain aspects with term-time, that possibly lead to a vibrant culture of learning, operating at 

this highest level. 

 

Biggs (1996b), in studying the Chinese paradox, modifies his 3P model. The cultural context 

for CHC students is of fundamental importance and is incorporated in his “culturally modified” 

3P model (Figure 33). Salili (2001) also argues that culture has a profound impact on 

motivation to learn and students’ interactions, creating reciprocal effects and feedback loops 

(see also Pintrich & Schunk, 1996). Cortazzi & Lixian (2001) model interactions in large 

classes in China, on the premise that learning is fundamentally cultural. Their model, however, 

is teacher focused, with ideological background and culture as the starting point, and quality 

learning outcomes as the finishing point, with scope for dynamic interaction. 
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Figure 33. The Biggs’ “culturally modified” 3P Model in the CHC context. 
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Appendix 4: Background and context for mathematics units of study at 

The University of Sydney Summer School 
 

The IMD (Summer School) program at The University of Sydney, in the period 2009-2016, 

spanned six weeks in January and February. The two regular semesters each spanned 13 weeks. 

Each semester contained two study breaks, one mid-semester, and one between the end of 

lectures and examinations. Relatively long breaks did not feature in Summer School. Nine 

mathematics units of study were offered at Summer School, practically identical to their term-

time counterparts, with at most minor changes to facilitate and optimise scheduling. These units 

were categorised as follows: 

 

• Fundamental (two first year) – designed for students who do not intend to take 

mathematics beyond first year, featuring applications in biological and social sciences. 

• Mainstream (five first year and two second year) – designed for students who intend 

to take mathematics beyond first year (including engineering and mathematics majors), 

featuring physical sciences applications as well as abstract or pure mathematics. 

 

It is worth noting that Advanced units were not available at Summer School. Advanced units 

are typically taken by talented students, contemplating pathways towards Honours or 

postgraduate research degrees. Though there was nothing to prevent them from enrolling in 

Summer School, such high achieving students were not represented in this study. 

 

In what follows, we denote the units taught at Summer School as F1a and F1b (Fundamental 

first year); M1b, M1c, M1d, M1e (Mainstream first year) and M2a and M2b (Mainstream 

second year). The paragraphs have been taken verbatim (aside from the pseudonyms given to 

the unit of study names) from the University of Science Faculty of Science Handbook 2015. 

 

 

[F1a] is designed for science students who do not intend to undertake higher year mathematics 

and statistics. It establishes and reinforces the fundamentals of calculus, illustrated where 

possible with context and applications. Specifically, it demonstrates the use of (differential) 

calculus in solving optimisation problems and of (integral) calculus in measuring how a system 

accumulates over time. Topics studied include the fitting of data to various functions, the 

interpretation and manipulation of periodic functions and the evaluation of commonly 

occurring summations. Differential calculus is extended to functions of two variables and 

integration techniques include integration by substitution and the evaluation of integrals of 

infinite type. 

 

[F1b] is designed for science students who do not intend to undertake higher year mathematics 

and statistics. In this unit of study students learn how to construct, interpret and solve simple 

differential equations and recurrence relations. Specific techniques include separation of 

variables, partial fractions and first and second order linear equations with constant 

coefficients. Students are also shown how to iteratively improve approximate numerical 

solutions to equations. 

 

[M1a] is designed to provide a thorough preparation for further study in mathematics and 

statistics. It is a core unit of study providing three of the twelve credit points required by the 
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Faculty of Science as well as a Junior level requirement in the Faculty of Engineering. This 

unit of study looks at complex numbers, functions of a single variable, limits and continuity, 

vector functions and functions of two variables. Differential calculus is extended to functions 

of two variables. Taylor's theorem as a higher order mean value theorem. 

 

[M1b] is designed to provide a thorough preparation for further study in mathematics and 

statistics. It is a core unit of study providing three of the twelve credit points required by the 

Faculty of Science as well as a Junior level requirement in the Faculty of Engineering. This 

unit of study introduces vectors and vector algebra, linear algebra including solutions of linear 

systems, matrices, determinants, eigenvalues and eigenvectors. 

 

[M1c] is designed to provide a thorough preparation for further study in mathematics and 

statistics. It is a core unit of study providing three of the twelve credit points required by the 

Faculty of Science as well as a Junior level requirement in the Faculty of Engineering. This 

unit of study first develops the idea of the definite integral from Riemann sums, leading to the 

Fundamental Theorem of Calculus. Various techniques of integration are considered, such as 

integration by parts. The second part is an introduction to the use of first and second order 

differential equations to model a variety of scientific phenomena. 

 

[M1d] is designed to provide a thorough preparation for further study in Mathematics. It is a 

core unit of study providing three of the twelve credit points required by the Faculty of Science. 

This unit provides an introduction to fundamental aspects of discrete mathematics, which deals 

with 'things that come in chunks that can be counted'. It focuses on the numeration of a set of 

numbers, viz. Catalan numbers. Topics include sets and functions, counting principles, 

Boolean expressions, mathematical induction, generating functions and linear recurrence 

relations, graphs and trees. 

 

[M1e] is designed to provide a thorough preparation for further study in mathematics and 

statistics. It is a core unit of study providing three of the twelve credit points required by the 

Faculty of Science as well as a Junior level requirement in the Faculty of Engineering. This 

unit offers a comprehensive introduction to data analysis, probability, sampling, and inference 

including t-tests, confidence intervals and chi-squared goodness of fit tests. 

 

[M2a] starts with an investigation of linearity: linear functions, general principles relating to 

the solution sets of homogeneous and inhomogeneous linear equations (including differential 

equations), linear independence and the dimension of a linear space. The study of eigenvalues 

and eigenvectors, begun in junior level linear algebra, is extended and developed. The unit 

then moves on to topics from vector calculus, including vector-valued functions (parametrised 

curves and surfaces; vector fields; div, grad and curl; gradient fields and potential functions), 

line integrals (arc length; work; path-independent integrals and conservative fields; flux 

across a curve), iterated integrals (double and triple integrals; polar, cylindrical and spherical 

coordinates; areas, volumes and mass; Green's Theorem), flux integrals (flow through a 

surface; flux integrals through a surface defined by a function of two variables, though 

cylinders, spheres and parametrised surfaces), Gauss' Divergence Theorem and Stokes' 

Theorem. 

 

[M2b] is an introductory course in the analytical solutions of PDEs (partial differential 

equations) and boundary value problems. The techniques covered include separation of 

variables, Fourier series, Fourier transforms and Laplace transforms. 
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Appendix 5: Representative student comments that accompany histograms 
 

For Instruction (Figures 2-7): 

 

Teachers in [Summer School] were more likely to engage with us on an individual and 

personal basis, remembering the mistakes made in previous weeks, having a good idea of 

individual student level. 

 

For Learning (Figures 8-12):  

  

When you have more time (as it was during Summer School) you get to engage [with] 

content and learn and appreciate it more, and therefore I think I thought about 

assessments critically and analytically rather than being robotic about it like during term-

time. 

  

For Classes (Figures 13-15):  

  

Term-time classes were too large. 

  

The Summer School lectures felt a lot more like tutorials. 

  

For Motivation (Figure 16):  

  

The motivation is stronger for Summer School because you become much more involved in 

learning, so it becomes natural to be motivated. 

  

I just wanted to get my degree done as fast as possible, so I took two subjects at Summer 

School. 

  

For Pace and Timing (Figures 17-18):  

  

The fast pacing of Summer School meant it was easier to recall and revise concepts from 

the beginning of the course when studying for exams. However, the fast pacing also made 

it difficult to keep on top of all the content and stay organised. 

  

It's hard to have timing effective in Summer School because many people are only 

attending one subject and may be travelling [from] far away. I personally found it 

overwhelming covering two weeks’ worth in normal term[-time] in two days during 

Summer School …  

  

For Enjoyment (Figures 19-20):  

  

The help of focusing on one unit in Summer School allowed me to both concentrate and 

find enjoyment in solving the problems, as opposed to term-time where you have less time 

to appreciate the work. 
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For Resources (Figures 21-22):  

  

Summer School extra practice questions were the real differentiator. 

  

The Mathematics Learning Centre was a valuable resource during term-time. Would have 

been good to have access to during Summer School.  

  

For Assessment (Figures 23-27):  

  

Summer School assessment tasks felt more challenging. 

  

Term-time assessment tasks weren't that different from Summer School. 

  

For Easiness (Figure 28):  

  

… it was easier in Summer School with the smaller class, lecturer and tutor being the 

same person and them having a lot of time to help each student … 

  

They felt easier in term-time – again because all the content wasn't as rushed. 

  

For Social (Figures 29-30):  

  

It's easier to learn from peers during term-time because people hang around more. 

  

During term-time I felt like the stupid one in the class whereas in Summer School most of 

the people in the class were in a similar position to me, which meant I felt more 

comfortable asking questions and discussing the content with my peers. 

  

For Value (Figure 31):  

  

If Summer School cost the same as the regular courses in [term-time], I would say 

Summer School is better value …  

 

 

 

 


