
International Journal of Innovation in Science and Mathematics Education, 32(2), 45-57, 2024 

45 

 

Analysis of Kinematics Graph Interpretation Skills 

Using RapidMiner 
  
Kanokporn Intakaewa and Pornrat Wattanakasiwicha 

 
Corresponding author: pornrat.w@cmu.ac.th 
aDepartment of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, 

Thailand 

 

Keywords: Test of Understanding Graphs in Kinematics (TUG-K), RapidMiner, Video 

analysis skills, Problem-based learning, kinematic graph interpretation skills  

 

Abstract 
 

This study explores the application of data mining techniques in physics education research, 

focusing on the analysis of kinematics graph interpretation skills. The research had two main 

objectives: to demonstrate the utility of RapidMiner, a data mining tool, in analyzing 

educational data, and to compare its effectiveness with traditional item analysis methods. Fifty-

nine Grade-10 students at Chiang Mai University Demonstration School completed the Test of 

Understanding Graphs in Kinematics (TUG-K) before and after participating in a problem-

based learning module integrating high-speed video analysis. Traditional statistical analysis 

revealed significant improvement in student performance (p<0.001, effect size 0.76). 

Association rule mining, conducted using RapidMiner, uncovered key relationships between 

test items that were not apparent through traditional analysis. These relationships provided 

insights into common student misconceptions and areas requiring targeted instruction. The 

study demonstrates the potential of advanced data mining techniques to reveal deeper patterns 

in educational data compared to conventional item analysis methods. This novel application of 

RapidMiner in physics education research offers a promising approach for more detailed 

analysis of student understanding, potentially informing more effective teaching strategies and 

curriculum design in physics education. 

 

Introduction 
 

Understanding the specific areas where students struggle is key to improving teaching 

strategies and designing effective curricula (Wattanakasiwich, Taleab, Sharma & Johnston, 

2013). In physics education, decades of research have revealed a wide range of alternative 

conceptions that students hold, which often hinder their understanding of key concepts. Various 

methods have been developed to identify these misconceptions, with multiple-choice surveys 

being one of the most effective tools (Ding & Beichner, 2009). These surveys, such as the Test 

of Understanding Graphs in Kinematics (TUG-K) (Beichner, 1994), have been instrumental in 

exploring students' understanding of complex physics topics like force and motion (Hestenes 

& Wells, 1992; Thornton & Sokoloff, 1998), energy and momentum (Singh & Rosengrant, 

2003), and mechanical waves (Tongchai, Sharma, Johnston, Arayathanitkul & Soankwan, 

2009). 

 

In analyzing the data from such assessments, traditional methods like classical test theory, 

factor analysis, and item response theory have been widely employed in physics education 

research (Ding & Beichner, 2009). These methods provide important metrics such as item 

difficulty and discrimination indices, but they are limited in their ability to uncover deeper 
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relationships between test items. For instance, classical analysis techniques typically focus on 

individual item performance, overlooking potential associations between items that could 

reveal how students perceive connections between related concepts. 

 

To address these limitations, this study introduces the use of association rule mining—a data 

mining technique that can uncover hidden patterns and relationships between test items. Data 

mining, particularly in the field of education, has emerged as a powerful tool for analyzing 

large datasets and extracting meaningful insights into student behavior and learning outcomes 

(Romero & Ventura, 2010). In the context of physics education, data mining techniques have 

been successfully applied to predict student performance and to identify misconceptions 

(Zabriskie, Yang, DeVore & Stewart, 2019). 

 

Background 
 

Education data mining 

Data mining is the process of extracting patterns, trends, and insights from big databases, often 

via the use of statistical and computer tools (Bachhal, Ahuja & Gargrish, 2021). It is the process 

of analyzing and extracting meaningful information from massive datasets, including 

structured and unstructured data, using sophisticated algorithms and statistical models. 

Educational data mining (EDM) is a growing field that applies data mining techniques to 

educational data to extract insights and improve educational outcomes (Romero & Ventura, 

2010). Educational data can come from a variety of sources, including student performance 

data, demographic data, assessment data, and learning management system data. 

 

EDM has become increasingly important in recent years because of the growing amount of 

data generated in educational settings (Salloum, Alshurideh, Elnagar & Shaalan, 2020). 

Student behavior patterns, such as attendance, academic achievement, and learning 

preferences, may be found through data mining in education (Márquez-Vera, Morales & Soto, 

2013). Overall, educational data mining is a critical tool for improving teaching and learning 

outcomes. By leveraging the power of data, educators and researchers can gain insights into 

student behavior, performance, and learning needs, and use this information to develop 

effective interventions and personalized learning experiences (Romero & Ventura, 2010; 

Bachhal et al., 2021). 

 

Data mining techniques can be useful in identifying student misconceptions in physics, 

predicting student performance (Yang et al., 2020; Zabriskie et al., 2019), improving 

curriculum design and personalizing instruction. Previous physics education research had been 

focused in using data mining to predict student performance in physics courses (Zabriskie et 

al., 2019).  

 

Kinematics graph interpretation skills  

Research on graphical interpretation skills in physics has focused on understanding how 

students learn to read, interpret, and use graphs to understand physical phenomena (Beichner, 

1994; Bollen, De Cock, Zuza, Guisasola & van Kampen, 2016). Previous physics education 

research has found that students often struggle with graphical interpretation in physics, 

particularly when interpreting non-linear graphs or graphs with complex axes. In addition, 

studies have shown that students often have difficulty identifying and interpreting key features 

of graphs, such as slopes, intercepts, and areas under the curve (Susac, Bubic, Kazotti, Planinic 

& Palmovic, 2018). 
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The test of understanding graphs in kinematics (TUG-K) is one of the most widely used tests 

to assess student understanding and interpretation skills in kinematic graphs (Beichner, 1994; 

Klein, Becker, Küchemann & Kuhn, 2021). Physics education researchers use TUG-K to study 

various aspects of students' understanding of kinematics graphs, including the specific 

misconceptions that students have and how those misconceptions can be addressed in the 

classroom, such as the slope and the area under the curve (Susac et al., 2018).  The test is also 

used to compare the performance of students from different backgrounds or educational 

settings, as well as to evaluate the effectiveness of instructional interventions or teaching 

strategies (Araujo, Veit & Moreira, 2008). 
 

Extensive use of the TUG-K test in physics education research has resulted in numerous 

significant findings. However, the quantitative method used to analyze items in TUG-K is still 

limited to classical test analysis (Klein et al., 2021). Large-scale assessment data is usually 

reduced to distractor frequencies and item response accuracy rates, overlooking potential item 

associations that could directly compare how students perceive differences or similarities 

between items. To address these limitations, data mining techniques can be employed to 

analyze student responses from the test. 

 

RapidMiner 

The RapidMiner software package is designed for data mining and modeling. Its user-friendly 

graphical interface allows for the rapid and intuitive implementation and execution of data 

mining processes (Fernández & Luján-Mora, 2017). Two significant trends in its use with 

educational data are analyzing large datasets and developing predictive models which can assist 

educators in identifying at-risk students and providing targeted interventions to enhance their 

outcomes (Márquez-Vera et al., 2013). Another trend is analyzing text data, such as essays or 

forum posts, to identify patterns and themes in the data. RapidMiner's text mining capabilities 

enable researchers to evaluate large amounts of text data. Additionally, it has been used to 

analyze social network data extracted from online learning platforms to identify significant 

trends in student interactions and how these affect learning outcomes (Gao, Li & Wu, 2021).  

 

RapidMiner is a versatile data mining tool that can assist educational researchers in extracting 

insights and improving educational outcomes (Slater, Joksimović, Kovanovic, Baker & 

Gasevic, 2017). RapidMiner can be used to analyze multiple-choice tests in terms of descriptive 

statistics, association rule mining and predictive models. In this paper, RapidMiner was used 

to perform association rule mining to identify relationships between different test items in the 

Test of Understanding Graphs in Kinematics (TUG-K) (Beichner, 1994). This can help to 

identify which test items are strongly correlated, which can be useful for identifying areas 

where students need more instruction. 

 

In comparison, traditional spreadsheet software like Excel is typically limited to basic statistical 

analysis, such as calculating item difficulty and discrimination. While these metrics are useful, 

they lack the ability to reveal complex relationships between test items. RapidMiner, by 

contrast, allows for a deeper analysis by uncovering patterns and correlations between items, 

providing insights into how student responses are interconnected.  

 

 

 

 



International Journal of Innovation in Science and Mathematics Education, 32(2), 45-57, 2024 

48 

 

Purpose of the study 
 

The aim of this study is twofold. First, it seeks to demonstrate the utility of RapidMiner in 

analyzing educational data and gaining insights into students' understanding of kinematic 

graphs. By applying association rule mining to responses from the Test of Understanding 

Graphs in Kinematics (TUG-K), the study identifies relationships between test items. Second, 

the study compares the effectiveness of data analysis using RapidMiner with traditional item 

analysis using Excel. 

 

Methodology 
 

Participants  

Participants in this study consisted of 60 students in grade 11 at Science Classrooms in 

University - Affiliated School Project (SCiUS Project) at Chiang Mai University 

Demonstration School. This project is to establish science classrooms in schools for talented 

students in science and technology under the supervision of university. All 60 students took the 

test before starting the STEM learning module “Sport science” and after finishing the module. 

The Sports Science module is part of the Integrated Science and Mathematics 8 curriculum, 

where students explore the application of physics principles, such as kinematics and dynamics, 

to analyze motion in sports. This hands-on approach helps students understand the relationship 

between forces, energy, and movement in physical activities. The module emphasizes both 

theoretical learning and practical data analysis, such as measuring and correlating speed, 

acceleration, and other variables in sports scenarios. However, only 59 students completed the 

post-test because one student went abroad for an exchange program. Therefore, we analyzed 

the data collected from the 59 students who completed both pre-test and post-test. 
 

Instrument 

The Test of Understanding Graphs in Kinematics (TUG-K) is a tool that is commonly used to 

assess a student's ability to interpret and analyze graphs in the context of kinematics, which is 

the study of motion (Beichner, 1994). The modified version of TUG-K has been made to 

achieve parallelism of the objectives of the test and proven to be better in terms of item 

difficulty, item discrimination and reliability (Zavala, Tejeda, Barniol & Beichner, 2017). 

However, we used the original version of the TUG-K test in this study because we would like 

to later compare findings with student responses over the past 12 years. The test consists of 21 

multiple-choice questions that depict various aspects of kinematic graphs, such as position, 

velocity, and acceleration, and students are asked to answer questions related to these graphs. 

The TUG-K is designed to assess a student's graphical interpretation skills, as well as their 

understanding of kinematic concepts. In order to perform well on the test, students must be 

able to read and interpret the information presented in the graphs, including the axes, units, 

scales, and key features of the graphs. In this study, the Thai version of TUG-K was used and 

administered to students. An example of question 2 in the test is displayed in Figure 1. 
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When is the acceleration the most negative? 

(A) R to T 

(B) T to V 

(C) V 

(D) X 

(E) X to Z 

 
 

Figure 1 Question 2 of the TUG-K test 

 

Data Mining Process with RapidMiner 

For the data analysis process using data mining, a model of the Cross-Industry Standard 

Process for Data Mining (CRISP-DM) process is utilized, which consists of six steps as 

illustrated in Figure 2 (Wirth & Hipp, 2000). 

 

 
Figure 2 The CRISP-DM process is used to provide a framework for the data mining 

process. 

 

In this study, the data mining analysis process is as follows: 

 

1. Systems Understanding— The system in our study is the Test of Understanding Graph in 

Kinematics or TUG-K, consisting of 21 multiple-choice questions. TUG-K is a well-known 

conceptual test in assessing students’ understanding and interpretation of kinematic graphs.  

 

2. Data Understanding—TUG-K pre-test and post-test responses were collected from 59 

students in grade 10 at Chiang Mai University Demonstration School.  

 

3. Data Preparation—The students' correct answer to each question was represented with a 

numerical value of "1" and the incorrect answer with a numerical value of "0." 

 

4. Modeling— The Frequency Pattern (FP) Growth operator is used to determine the frequency 

of item sets and uncover any relationships among items in the dataset. This operator analyzes 

the transaction database by constructing an FP-tree data structure to calculate all frequent item 
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sets from an example set. The frequency of each item set is computed using the FP-tree data 

structure. Figure 3 displays a process of association rules with multiple operators in 

RapidMiner. 

 

 

Figure 3 Process of creating association rules with multiple operators in RapidMiner, 

including Read Excel, Replace Missing Value, Numerical to Binominal, FP-Growth and 

Create Association Rules 

 

• “Read Excel” operator is for importing data from Excel spreadsheet into RapidMiner. 

• “Replace Missing Value” operator is for replacing the missing data with 0.  

• “Numerical to binominal” operator is for changing the type of the selected numeric 

attributes to a binominal type. 

• “FP-Growth” operator is shorted for “The Frequent Pattern Growth” operator. The FP-

Growth is a method used to identify frequent patterns by scanning the Transaction ID 

(TID) just twice and constructing a tree to locate support. To identify frequent item sets 

in RapidMiner, we can set the minimum support value to 0.5 and examine which 

minimum support ranges occur frequently with this item set. After identifying these 

ranges, we can adjust the minimum support value to 0.78 ; Support refers to the 

proportion of transactions that contain both item X and item Y ; the equation for support 

is  

 

Support =  
No. of students who answered correctly

Total No. of students
 

 

• “Create Association Rules” operator is for creating association rules, setting the 

minimum confidence level at 0.80; confidence measures how often item in Y appear in 

transactions that contain X; the equation for confidence is  

 

Confidence =
Support (premises,conclusion) 

Support (premises)
 

While premises are the antecedent conditions that determine the probability of a 

consequent, conclusions refer to the predicted item sets or conditions that follow from 

the premises. For example, consider the TUG-K test, where answering Question 5 

correctly might represent a premise indicating that the student is likely to answer 

Question 20 correctly. 

  
5. Evaluation—Consider how each question relates to other questions on TUG-K. 

6. Deployment—The relationship rules obtained from the modeling step will be used to 

analyze other data sets of students’ answers to TUG-K exams from previous academic years. 

 

Results and discussion 
 

The statistical results from both pre and post-tests showed that the mean scores significantly 

differed at the 0.001 level, indicating that the mean scores after the instruction (mean = 14.3, 
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SD = 3.7) were significantly higher than the pre-test mean scores (mean = 12.4, SD = 3.2). The 

effect size was 0.76, which suggests that the post-test scores were substantially different from 

the pre-test scores. The classical test theory was used to analyze each item based on item 

difficulty, item discrimination index and point-biserial coefficient.  

Item Analysis 

 

Item Difficulty 

The Item Difficulty Index (P) measures the level of difficulty of a question, calculated by the 

ratio of correct responses to total responses. The average difficulty ratings of 59 students are 

shown in Figure 4, where a P value of 0.0 indicates no correct answers and 1.0 indicates all 

correct answers. A question is considered to be easy if P > 0.9, and it is considered to be difficult 

if P < 0.3 (Wuttiprom, Sharma, Johnston, Chitaree, & Soankwan, 2009). As illustrated in Figure 

4, most questions in TUG-K have a difficulty index between 0.3 and 0.8, with a few items 

slightly below 0.3 or above 0.9. The average P values for the pre-test and post-test were 0.59 

and 0.67, respectively, which are close to the ideal value of 0.5. 

 
 

Figure 4 Figure 4 Item difficulty on the pre-test and post-test using the TUG-K (Thai 

version). 

 

Item Discrimination 

The discrimination index (D) measures how well a question distinguishes between competent 

and less competent students. Specifically, it distinguishes those who performed well on the 

survey from those who did not. A satisfactory question discrimination index is D ≥ 0.3 

(Wuttiprom et al., 2009). Figure 5 shows the discrimination index for each question. More than 

15 questions have a D value greater than 0.3 for both the pre-test and post-test, and the average 

discrimination index is 0.46. Although 6 other questions fall slightly below the standard range, 

they are still acceptable, as noted by Adams and Wieman (2011). These researchers state that 

the acceptable range of values for item analysis was established for single constructs and 

summative tests designed to differentiate individual students. However, instruments used for 

formative assessments "may have statistics that fall outside of the "standard" range" (Adams 

& Wieman, 2011). 
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Figure 5 Discrimination index of all 21 TUG-K questions for both pre-test and post-test 

 

Point-biserial coefficient 

The point-biserial coefficient (PBI) measures the correlation of each question with the total 

score of the TUG-K test. A high PBI value indicates that students who answered the question 

correctly are more likely to have a high overall score. The desired value of the coefficient is 

greater than 0.2, as suggested (Wuttiprom et al. 2009). Figure 6 illustrates the PBI for each 

question. Most questions have a coefficient higher than the criterion value, except for questions 

5, 7, and 21 in the pre-test. The average coefficient for the pre-test is 0.34, and for the post-test, 

it is 0.42, indicating that the questions are internally consistent with the whole TUG-K test. 

 

 
 

Figure 6 Point biserial coefficient (PBI) of all 21 TUG-K questions for both pre-test and 

post-test 

 

While the item analysis performed using Excel provided valuable insights into the difficulty 

and discrimination indices of each test item, it did not offer information about the relationships 

between the items. Traditional item analysis is limited to evaluating individual item 

performance metrics, but it lacks the capability to identify how students' responses to different 

items may be interconnected. To address this limitation, we employed association rule mining 

with RapidMiner to uncover relationships between test items, offering a deeper understanding 

of how students' responses to one question may influence their performance on others.  
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Association between items 

 

In analyzing the correlation of questions in the TUG-K test from the post-learning scores of 

students using RapidMiner, it was found that 4 questions passed with a minimum support of 

0.78 and a minimum confidence of 0.80, which was specified in Questions 5, 12, 19, and 20 as 

in Table 1.  

 

Table 1: Displays the correlation pairs among questions in the TUG-K test that meet both the 

minimum support and minimum confidence requirements. 

Premises Conclusion Support Confidence 

T19 T12 0.787 0.960 

T05 T20 0.803 0.907 

T05 T12 0.803 0.907 

T20 T05 0.803 0.891 

T12 T05 0.803 0.891 

T20 T12 0.803 0.891 

T12 T20 0.803 0.891 

T19 T12 0.787 0.873 

 

An analysis conducted using RapidMiner indicated an interesting relationship between 

Questions 5 and 20, and between Questions 12 and 19, as each of these pairs exhibited the 

highest effective confidence. Table 1 displays the relationships between the questions, and it 

can be observed that row 2 and row 9 (indicated by the red frame) correspond to the relationship 

between Questions 12 and 19, while row 3 and row 5 (indicated by the blue frame) correspond 

to the relationship between Questions 5 and 20. 

 

To understand how to interpret the correlation chart in RapidMiner, as illustrated in Figure 

7(A), note that the values in parentheses on the left indicate support, while the values on the 

right represent confidence values obtained by constructing correlation rules in RapidMiner. 

 

 
(A) (B) 

Figure 7   (A) question pairs that are associated with Question 20  

               (B) question pairs that are associated with Question 5 

 

According to the analysis of Questions 5 and 20 in Figure 7, it was discovered that a correct 

answer to Question 5 would also result in Question 20 being correct ( shows in Figure 7 (A) ) . 

The confidence value for this relationship was determined to be 0.907. This means that if 100 

students took the TUG-K test and all of them answered Question 5 correctly, then 98 out of the 

100 students would also get Question 20 correct. But if Question 20 is answered correctly, then 

it is likely that Question 5 will also be answered correctly ( shows in Figure 7 ( B) ) . The 

0 

0 

0 
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confidence value for this relationship was found to be 0.891, which indicates a slight decrease 

compared to the previous relationship. In other words, if all 100 students answered Question 

20 correctly on the TUG-K test, then it is estimated that 89 out of the 100 students would also 

get Question 5 correct.  

 

When taking these two questions into consideration in more detail, it was found that Question 

5 (shown in Figure 8) is a consideration of finding the speed. Students must understand the 

slope as well, but for Question 20 (shown in Figure 9) they can count the area under the graph 

to find the answer. So, Question 20 seems simpler than Question 5. However, these two 

questions ask similarly about how to find the slope and area under the graph. As a result, the 

correlation between these two questions is high. 

 

5. The velocity at the 2 second point is: 

(A) 0.4 m/s 

(B) 2.0 m/s 

(C) 2.5 m/s 

(D) 5.0 m/s 

(E) 10.0m/s  

Figure 8 Question 5 in TUG-K 

 

20. An object moves according to the graph 

below. How far does it move during the 

interval from t = 4 s to t = 8 s? 

(A) 0.75 m (B)  8.0 m 

(C) 3.0 m (D) 12.0 m 

(E)  4.0 m 

 
 

Figure 9 Question 20 in TUG-K 

 

 
(A) 

 
(B) 

 
Figure  10   (A) question pairs that are associated with Question 12  

                    (B) question pairs that are associated with Question 19 

 

From the analysis of Questions 12 and 19, it was found that if Question 19 were done correctly, 

it would result in Question 12 being correct (shows in Figure 10 (A)). with a confidence value 

of 0.960, but if Question 12 were done correctly, it would result in Question 19 being correct 

(shows in Figure 10 (B)).  with a confidence value of 0.873. 
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12. Consider the following graphs, noting the different axes: 

 
Which of these represent motion at constant velocity? 

(A) I,II and IV        (B) I and III        (C) II and V       (D) IV only      (E) V only 

 

Figure 11 Question 12 in TUG-K  

19. Consider the following graphs, noting the different axes: 

 
Which of these represent motion at constant, non-zero acceleration? 

(A) I,II and IV          (B) I and III           (C) II and V          (D) IV only         (E) V only 

 

Figure 12 Question 19 in TUG-K  

 

When taking these two questions into consideration in more detail, it was discovered that both 

Question 12 (shown in Figure 11) and Question 19 (shown in Figure 12) share the same graph. 

Question 12 inquired about identifying a graph with constant velocity, while Question 19 asked 

about identifying a graph with constant and non-zero acceleration. The analysis revealed that 

Question 19 is more complex than Question 12, as understanding the graph regarding velocity 

is a prerequisite for correctly answering Question 19, which, if done correctly, can also result 

in a more accurate answer to Question 12. Due to their interconnectedness, the correlation 

between these two questions is high. 

 

The analysis of item relationships using RapidMiner has provided valuable insights into how 

certain questions on the TUG-K test are interconnected, particularly between Questions 5 and 

20 and between Questions 12 and 19. These associations highlight underlying conceptual links 

in students' understanding, such as the connections between interpreting the slope and area 

under a graph. This type of insight, which traditional item analysis methods in Excel cannot 

reveal, demonstrates the enhanced capability of RapidMiner in uncovering deeper patterns in 

educational data. By identifying these correlations, the study fulfills its second purpose—

comparing the effectiveness of data analysis using RapidMiner with traditional item analysis 

in Excel—and underscores the advantage of employing advanced data mining techniques to 

gain richer insights into student learning and test item relationships. 

 

Conclusion 
 
This study aimed to achieve two main objectives: first, to demonstrate the utility of advanced 

data analysis techniques using RapidMiner in educational research, and second, to compare 
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these techniques with traditional item analysis methods, such as those performed using Excel. 

Initially, the classical approach to item analysis was applied to the Test of Understanding 

Graphs in Kinematics (TUG-K), providing insights into the difficulty, discrimination, and 

point-biserial correlations of individual test items. While useful, these traditional methods are 

limited in their ability to reveal relationships between items or identify patterns in how students 

approach different concepts. 

 

To overcome these limitations, association rule mining was used to analyze post-test responses 

with RapidMiner. This technique uncovered significant relationships between certain test 

items, such as the strong correlations between Questions 5 and 20 (velocity and the area under 

the curve) and between Questions 12 and 19 (motion graph interpretation). These associations 

provided deeper insights into the conceptual connections and common misunderstandings 

among students—insights that traditional item analysis techniques cannot reveal. 

 

The comparison between these two techniques highlights the value of complementing 

traditional item analysis with more advanced data mining approaches. While classical methods 

offer foundational metrics for evaluating individual test items, techniques like association rule 

mining offer a richer understanding of how students engage with related concepts, providing 

deeper insights for improving both assessment and instruction. 
 

Implication for practice 
 

For educators, these findings suggest that using advanced data analysis techniques, such as 

association rule mining, can reveal patterns of student misconceptions and highlight 

connections between different concepts. This allows for more targeted interventions and 

instructional strategies aimed at addressing specific areas where students struggle. 

Additionally, insights from this analysis can be used to refine assessments, ensuring they 

capture not only isolated knowledge but also the relationships between key concepts. 

 

For researchers, this study demonstrates the benefit of combining traditional item analysis with 

advanced data mining techniques. Doing so can uncover more complex patterns in student 

responses and provide a more comprehensive view of how students interact with assessment 

items. Future research could apply these methods to larger datasets to further explore learning 

behaviors in various educational contexts. 

 

In conclusion, by employing more advanced analysis techniques such as association rule 

mining, educators and researchers can gain a deeper understanding of student learning. These 

techniques offer the potential to move beyond surface-level metrics and provide more detailed 

insights into conceptual understanding, ultimately enhancing both educational research and 

teaching practices. 
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