Appendix A: Implementation of the Maths for Einstein's Universe program, 2021–2024.

This table summarises the trials of the program across different schools and year levels, including dates, duration, and the specific modules trialled with each group.

Table A. Implementation of *Maths for Einstein's Universe* in 2021-2024:

Program	Modules	Dates	Duration & Sessions	Participants /
				Year Level
a)	1 and 5	May 2021, Nov. 2022	4 weeks (3 x 1 hr, 1 x 1	28 / 5-9
			hr)	
b)	3	Jul. 2021	2 days (2 x 2 hr)	27 / 4
c)	1 and 3	Jul. 2021	2 days (3 x 2 hr)	9 / 5-6
d)	1	Sept. 2021	4 weeks (4 x 1.5 hr)	27 / 5-6
e)	1-5	Feb. 2022 - Oct. 2024	100 weeks (100 x 2 hr)	35 / 2-9
f)	1, 2, 3, 5	Jul. 2022, Sept. 2022	3 days (2 x 2 hr, 1 x 2 hr)	26 / 5-9
g)	1	Aug. 2022	4 weeks (4 x 1.5 hr)	30 / 5-6
h)	3	May 2023	4 weeks (16 x 1 hr)	100 / 5-6
i)	1	June 2024 - Aug.	6 weeks (24 x 1 hr)	112 / 5-6
		2024		
Totals	1-5	2021-2024	269 hr	389

Notes: a) After-school voluntary workshops were advertised through the website (https://www.einsteinianphysics.com/) and held at the Einstein-First facility; b), g), h), i) mainstream government schools; c), d) high-achieving groups in government schools; e) long-term program for a stable multi-age class, taught in three different age groups; and f) remote Aboriginal school. The modules column indicates which of Modules 1-5 were trialled with a particular group.

Appendix B: Overview of professional development courses delivered to teachers.

The table presents venues, duration, and audience for teacher workshops and micro-credential courses delivered as part of the project.

Table B. Maths for Einstein's Universe teacher -education courses.

	Name of course/workshop	Dates	Duration	Audience
Program				
A.	Maths of arrows	Oct. 2021	1 hr	20/Pre-service
				teachers
B.	Maths for Einstein's Universe	Jan. 2022-	18 hr	9/Primary and
	(micro-credential courses)	Feb. 2022		secondary teachers
C.	Maths for Einstein's Universe	Aug. 2022-	18 hr	8/Primary and
	(micro-credential courses)	Oct. 2022		secondary teachers
D.	How small is an atom? /Numbers in the	Oct. 2022	1.5 hr	12/Primary
	Universe on a Chessboard			teachers
E.	Maths for Einstein's Universe	May. 2023-	9 hr	15/Primary and
	(micro-credential courses)	Jul. 2023		secondary teachers
F.	Maths for Einstein's Universe	Jan. 2024-	2x10hr	100/Primary and
	(micro-credential courses)	Oct. 2024		secondary teachers
Totals	Totals		66.5 hr	163
Note: a) a	Note: a) and d) workshops; b), c), e) and f) part of a 72-hour micro-credential course			

Appendix C: Examples of common student misconceptions prior to instruction.

This table presents misconceptions identified in students' responses before participating in the program, across all five module

Table C. Examples of Student Misconceptions prior to the program.

Module	Misconception	Example
1. Extreme	Students are unaware of	Asked to guess how many halving you need to
numbers	the nature of exponential	reduce a 1-meter tape measure to 1 mm, students
	processes.	often guessed 100 or 1000 when it actually needs
		only 10.
2.Estimation	Exact numbers always	Students believe that it is important to use all the
	improve understanding.	significant figures in the speed of light to estimate
		the size of light year.
3. Vectors	No understanding of the	Students believe that the resultant obtained by
	concept of performing	adding several arrows will be different if they are
	mathematics with vectors.	added in a different order
4. Probability	A lack of understanding	Students believe that future coin toss results are
	regarding the concept of	dependent on previous ones.
	independent probability.	
5. Curved	All geometric concepts are	Students can not envisage the geometric
Space	based on flat space	consequences of space being curved such as the fact
		that parallel lines may cross each other in curved
		space.

Appendix D Detailed descriptions of four core activities in Module 1 (Extreme Numbers).

Each activity includes its objective, brief description, and the corresponding test question used to assess student understanding.

Table D. Four activities from Module 1 and expected outcomes.

Activity Name	Description	Post-test question
Ancestor Counts Outcome a) Understanding powers of 2 through doubling and halving.	Doubling using powers of two, students calculate the number of ancestors in any generation. They create an imaginary family tree in the classroom, with classmates playing the roles of parents, grandparents, etc. Starting with themselves, they double to represent their parents, then continue to double for each subsequent generation until they run out of classmates to represent ancestors.	Q1. Here is a family tree. How many great-great-grandparents do you have?

Tape Measure Halving Outcome a) understanding powers of 2 through doubling and halving.	Students explore exponential decrease in size by halving of a one-meter tape measure ten times. They count the number of pieces after each cut, imagining each piece being further divided and defining the size of each piece.	Q2. How many times do you have to halve a 1 metre tape measure until you get to approximately 1 millimetre?
Lazy Numbering Outcome b): application of powers of 10 plus multiplication and division.	Arithmetic with powers-of-ten. Students practice quick calculations, finding answers to questions like, 'How many meters is a light year?' or 'How long would it take to travel to the moon at the speed of a car?' They also hold a competition in writing numbers using powers-of-ten versus writing them with zeros.	Q3. What is the answer to ten to the power of three times ten to the power of eleven as shown below? 10 ³ x 10 ¹¹ =
Powers of the Universe book Outcome b) application of powers of 10 plus multiplication and division with powers; and Outcome c) expanded logarithmic thinking through activity book Powers of the Universe.	Students use an activity book called <i>Powers</i> of the Universe in which page numbers are powers of ten, allowing all objects in the visible Universe to be matched to the appropriate scale in meters or kg.	Q4. In your <i>Powers of the Universe</i> book, the mass of Jupiter is on page 27 and the mass of Sun is on page 30. Roughly how many Jupiter's do we need to create the Sun? Please give your answer using powers of ten.

Appendix E: Summary of key activities used in Module 3 (Vectors).

The table outlines practical classroom activities used to introduce and develop students' understanding of vectors in classical and quantum contexts.

Table E. The main activities for Module 3, Vectors

Activity Name	Description	
Arrow Addition	This activity uses a set of 4-6 magnetic arrows to explore vector addition and the	
	concept of a resultant (Fig. 4a).	
Vectors for	These activities explore vector addition to explain forces and introduce the	
Forces	concept of a resultant. Examples include pushing the teacher's car in a carpark	
	tug-of-war, and pulling wooden blocks with rubber bands (Fig. 4b).	
Vectors for	These activities introduce the quantum nature of light through simple	
Interference	interference experiments (see Fig. 4c) and interpreting bright and dark bands in	
	terms of vector addition represented by a phasor wheel described below.	
Phasor Wheel	This simple rolling phasor wheel represents a photon probability wave, allowing	
	students to predict interference patterns on paper and estimate photon arrival	
	probability.	

Spinning Tops	This set of activities introduces the concept of spin vectors in the context of
and Gyroscopes	spinning tops, wheels, and gyroscopes to draw connections to quantum spin.