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Abstract: This paper presents the first stage in the development of a Physics Goal Orientation survey - a survey 
identifying students’ beliefs about how to be successful in physics studies. The analysis method used is exploratory factor 
analysis, a powerful statistical method requiring subjective decision making. Instead of taking a ‘black box’ approach, 
which can easily lead researchers to draw incorrect conclusions, we have provided the mathematical basis for principal 
components analysis, the most common type of exploratory factor analysis.  
 
Introduction 
 
Goal orientation theory forms part of the motivation literature, and is perhaps the most prominent 
theory today (Urdan, Kneisel and Mason 1999). It focuses on students’ reasons for engaging in 
academic tasks, as these affect important educational outcomes such as types of cognitive strategies 
used, and how well newly learnt material is retained (Anderman, Austin and Johnson 2002). Studies 
of high school students’ motivation in the general settings of ‘classroom’ and ‘sports’ have identified 
four different goal orientations, each associated with a certain belief in how success is achieved 
(Duda and Nicholls 1992; Skaalvik 1997). Task orientation is associated with the belief that success 
is a product of effort, understanding and collaboration. Ego orientation describes the belief that 
success relies on greater ability and attempting to outperform others. Cooperation oriented students 
value interaction with their peers in the learning process; and lastly, work avoidance describes the 
goal of minimum effort – maximum gain. A similar study in physics, however, has not been found, 
so the first aim of the paper is to develop a Physics Goal Orientation survey. 
 

Factor analysis has become an increasingly popular statistical method over the past few decades, 
primarily due to the ease of use with statistical packages such as the Statistical Package for the Social 
Sciences (SPSS). Whereas the availability of such analysis has the potential to improve work in 
science education, it is a double edged sword if a solid understanding of the underlying statistics does 
not accompany its use, as shown by Preacher and MacCallum (2003). Unfortunately, however, the 
literature on factor analysis is seemingly divided into the thoroughly mathematical and the purely 
practical. Therefore, the second aim of this paper is to provide adequate mathematical insight to 
support decision making in the process of using the most common statistical approach to exploratory 
factor analysis, principal components analysis. The mathematics requires familiarity with vectors or 
linear algebra.  
 
Research method 
 
In developing a new survey, statements are written or adapted from previous surveys and 
accompanied by a Likert scale. Each underlying construct has statements, each measuring a different 
aspect of the construct. Some statements will need to be removed, and a minimum of four statements 
must be retained for each factor. The requirement on sample size is not clear. In general, the 
conceptual basis of the statements (theory driven) and results from factor analysis (data driven) are 
useful guides. 
 

In 2006, 125 first year physics students at The University of Sydney completed the Physics Goal 
Orientation survey. For each of the 20 statements students responded on a 5-point Likert scale 
ranging from strongly disagree (1) to strongly agree (5). All statements were adapted from Duda and 
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Nicholls’ (1992) surveys to suit tertiary physics education (see Table 1). 
 
Table 1. Statements on the Physics Goals Orientations Survey 
I feel really successful when… 
Item 1 I know more physics than other people 
Item 2 what I learn in physics makes sense 
Item 3 the other students in my tutorial group and I manage to solve a tutorial problem together 
Item 4 I don’t have to try hard to do well in physics 
Item 5 I get a high exam mark 
Item 6 I solve a problem by working hard 
Item 7 I do my very best 
Item 8 I work in a group on physics problems 
Item 9 I can complete an assignment without really having understood the answers 
Item 10 others get physics problems wrong and I don’t 
Item 11 I can answer more physics questions than other students 
Item 12 a group of us help each other 
Item 13 I learn something interesting 
Item 14 I can copy an assignment off somebody else 
Item 15 I am in a group and we help each other figure something in physics out 
Item 16 others know more than me so they can answer the questions 
Item 17 something I learn makes me want to find out more 
Item 18 I do better than others in physics 
Item 19 I have somebody else to discuss physics problems with 
Item 20 I know I can pass the exam without studying too hard 

 
Theory of factor analysis 
 
Factor analysis is a data reduction method, allowing a reduction in the number of variables in a data 
set, while retaining a large fraction of the information. In science education factor analysis is 
commonly used with surveys that measure some psychometric construct, which cannot be measured 
directly (such as self-efficacy or students’ study strategies). Respondents indicate on a Likert scale 
their level of agreement with several statements that focus on different aspects of the construct. 
Factor analysis is then used to evaluate whether the statements indeed measure aspects of the same 
underlying construct, and finally give each individual respondent to the survey an overall score on 
the construct. 
 

Two different types of factor analysis exist. Exploratory factor analysis is used to identify 
underlying structure in the data. Confirmatory factor analysis is used in hypothesis testing, and is the 
only method for confirming whether modeled factor structures are compatible with the data. Only 
exploratory factor analysis is discussed in this paper. Please note that normally distributed variables 
are only required if the data are used to generalise findings (Field 2000). The novice user will find 
Field (2000) helpful, whereas Gorsuch (1983) and Floyd and Widaman (1995) provide fine detail. 
The brief discussion below bridges the gap.  
 
The correlation matrix 
The basis of factor analysis is that people show a pattern in their responses to groups of statements or 
variables. From Table 1, respondents would be expected to indicate a similar level of agreement with 
Items 1 and 18. A scatter plot of responses should therefore produce a strong, linear correlation. The 
Pearson’s r correlation coefficients between each pair of variables are presented in the Correlation 
matrix or R-matrix in the SPSS output of a factor analysis; a k × k matrix for k variables. All further 
analysis of the data is based on this matrix; individual responses are no longer considered. However, 
before the analysis can proceed, several assumptions on the Correlation matrix must be met.  

 
Firstly, no two variables must correlate too strongly. Since the purpose of a factor analysis is to 
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identify underlying concepts using statements that target different aspects of a concept, two almost 
identical statements do not satisfy this requirement. Therefore, the determinant of the Correlation 
matrix is required to be greater than 10-5. If this condition is violated, correlations with r > 0.8 should 
be eliminated by removing one item at the time until the determinant is satisfactory. 

 
The second test is Bartlett’s test of sphericity, which reports how similar the Correlation matrix is 

to an identity matrix. The statistical significance of the similarity is quoted, and since the Correlation 
matrix is required to be considerably dissimilar to an identity matrix, which has no intervariable 
correlation, the p-value must be less than 0.05. 

 
The last test is the Kaiser-Mayer-Olkin measure of sampling adequacy, or KMO. This measure 

predicts whether the data is expected to factor well. Its value should be greater than 0.5 for an 
adequate sample, but the greater the value, the better. In the Anti-image matrix, the diagonal elements 
are individual KMOs, whose average is the sample KMO. Variables with individual KMOs lower 
than 0.5 should be considered removed as they show an unacceptably high level of multicollinearity 
(see Hutcheson and Sofroniou 1999, for more detail). 
 
Constructing the vector space 
The remaining factor analysis will be explained invoking multi-dimensional vector spaces, where 
each variable is considered a unit vector. The correlation, r, between two variables is represented in 
vector space according to r12 = x1 x2 cos12, where  is the angle between the two vectors. However, 
since each variable is a unit vector, this simplifies to r = cos. In this representation r is the fractional 
length of one vector projected onto the other. Note that r2 represents the variance shared between the 
two vectors. 
 

The following procedure will build up a k-dimensional space dimension by dimension. Let x1 

represent the first variable, its base defining the origin of the vector space. The direction of x1 defines 
the first dimension. The second variable, x2, is placed at the origin at an angle 12 to x1 according to 
r12, thus introducing the second dimension. All remaining variables are introduced in the same way, 
ensuring that each new variable is positioned at the correct angle to all previously introduced 
variables until a k-dimensional space is constructed (assuming each variable introduces some unique 
variance). 

 
The subsequent task is to introduce a coordinate system with k orthogonal axes. Introducing one 

axis at the time, the first axis is placed in the direction which maximizes the sum of squares of all 
vector projections onto the axis. The remaining axes are introduced according to the same condition, 
subject to the additional requirement of being orthogonal to the previously introduced axes. That is, 
the mth coordinate axis is positioned so as to maximize Em, given by  
 
 
 
 
where m,n is the angle and rm,n is the correlation coefficient between the nth vector and the mth axis. 
 
Identifying and extracting factors 
Much of the SPSS output in a factor analysis is direct reporting of variables described above. Each 
coordinate axis represents a factor, and Em is the eigenvalue of the mth factor, which is found in the 
SPSS output Total variance explained. In the same table, the Percentage of variance explained by the 

mth factor is given by 
k

Em . The Scree plot displays eigenvalue as a function of component number 

(factor). 
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Based on these outputs, the number of factors to extract is decided. Recall that the purpose of 
factor analysis is to maximize the amount of variance explained in the data with the minimum 
amount of factors. There are two methods to decide on the number of factors, which should be used 
in tandem: Kaiser’s criterion and the Scree test. Kaiser’s criterion states that all factors with an 

eigenvalue greater than 1 should be kept. Each factor accounts for 
k

1
 of the information, but 

k

Em  of 

the variance in the data. Consequently, factors with Em > 1 account for a larger proportion of the 
variance explained than information retained. However, the Scree plot should also be consulted 
before the final decision is made. The plot consists of two parts: a steep decline at the first few 
factors, and a relatively flat plateau at higher order factors. The inflection point occurs immediately 
before the plateau, which represents factors containing mostly uninteresting, noisy variance. The 
factors prior to the inflection point stand out as they contain more variance per factor than those in 
the plateau, and we associate this with the underlying constructs. Generally both Kaiser’s criterion 
and the Scree plot produce the same number of factors, but when this is not the case care should be 
taken to extract a sensible number of factors based on knowledge of the data set (see the next section 
for an example). 

 
Once the number of factors or dimensions (f) has been chosen, all variables are effectively 

projected onto this f-dimensional sub-space. The squared length of each projected vector is the 
variance explained by the extracted factors collectively. These values are reported in the 
Communalities table. The resulting ‘unexplained’ variance is therefore simply the information 
discarded along with the discarded dimensions. The coordinates of each vector are referred to as the 
loadings onto each factor (or axis), and are reported in the Component matrix. When the coordinate 
axes are orthogonal the factor loadings correspond to the r-values for each variable-factor pair. 
Generally, only factor loadings greater than 0.4 are quoted for ease of table interpretation.  

 
The current solution is referred to as the unrotated solution. The variables loading heavily onto 

one factor form a cluster of vectors intersected by the corresponding axis. However, due to the way 
the coordinate system was generated, this cluster intersection may not be optimal. Therefore, to 
optimize the individual factor loadings the entire f-dimensional coordinate system can be rotated. The 
criterion used is that each variable should load strongly onto only one axis (that is, the variable 
belongs to one underlying construct only). In an orthogonal rotation the axes are required to remain 
orthogonal, whereas an oblique rotation allows the axes to move independently of each other. The 
resulting angles between axes reflect correlations between the factors, which are presented in the 
Component correlation matrix. 

 

 
Figure 1. Scree Plot produced by SPSS for the Physics Goal Orientations survey 
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After rotation, the total variance explained by the factors remains the same since the projection of 
each variable onto the sub-space (i.e. the communality) is unrelated to the position of the coordinate 
axes. The factor loadings, however, have changed, and are presented in the Rotated component 
matrix for orthogonal rotations and in the Pattern matrix for oblique rotations. Note that after an 
oblique rotation the factor loadings are no longer equivalent to the variable-factor correlations. The 
correlations are presented in the Structure matrix, but this is generally ignored since a correlation in a 
non-orthogonal vector space includes information that is not unique to the particular variable-factor 
pair. 
 
Analysis and interpretation 
 
From the SPSS output the data were found suitable for factor analysis (determinant = 0.001, Bartlett’s 
test: p = 0.000, and KMO = 0.664). All individual KMOs were > 0.5, except for two variables which 
had values of 0.484 and 0.483. However, being very close to 0.5, the variables were kept to consider 
their overall contribution to the analysis. 

 
Kaiser’s criterion initially extracted six factors. Investigation of the Scree plot (Figure 1), 

however, suggested retention of five factors only. The Component matrix supported this, as the sixth 
factor only contained one variable, hardly satisfying the critrion as a factor. 

 
The analysis was therefore rerun specifying extraction of five factors. Note that the following 

tables and figures were unaffected by the number of factors extracted: Descriptive statistics, 
Correlation matrix, KMO and Bartlett’s test, Anti-image matrices, and the Scree plot. The Total 
variance explained and Component matrix only saw the sixth factor removed. The Pattern matrix, 
Structure matrix, and Component correlation matrix did change, however. 

 
Having decided the number of factors, the type of rotation was chosen. An oblique rotation (Direct 

Oblimin) was performed first to allow the data itself to reveal any correlations between factors, 
which were indeed observed. Had there been none, an orthogonal rotation (Varimax) could have 
subsequently been performed.  

 
The Pattern Matrix (Table 2) revealed that variable 8 did not contribute strongly onto any of the 

extracted factors since it had no factor loadings greater than 0.4. This was not surprising as the 
variable showed a factor loading of 0.638 onto the initially extracted sixth factor, which was 
discarded. The variable was therefore removed.  

 
Considering that the purpose of the Physics Goal Orientation survey is to obtain statements that 

collectively give indications about underlying psychological constructs, variables 1 and 4 were 
problematic. By loading onto two different factors, both variables targeted elements of two constructs 
simultaneously. The variables were therefore discarded. 

 
Communalities reflect how much of the information in a variable is retained by the factors.  
Generally, a sample of less than 100 is acceptable if all communalities are above 0.6, and 100-200 is 
acceptable for communalities in the 0.5 range. Alternatively, if a factor has four or more factor 
loadings greater than 0.6 it is reliable. With an average communality of 0.58 after extracting five 
factors, the sample size was considered adequate. Since a reliable factor should have a minimum of 
four factor loadings greater than 0.6, only factors 1 and 5 currently satisfy this criterion. 
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Table 2 The Pattern matrix showing the factor loadings after an oblique rotation 
 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5
Item 6 .860     
Item 3 .701     
Item 2 .614     
Item 7 .612     
Item 5 .417   
Item 8    
Item 11  .890    
Item 10  .802    
Item 18  .789    
Item 1  .584 .469   
Item 13   .822
Item 17   .778
Item 16    .709  
Item 9    .660  
Item 14    .650  
Item 20     -.660 
Item 19     -.646 
Item 15     -.634 
Item 12     -.607 
Item 4  .416   -.416 

 
As demonstrated above, factor analysis is not a clear cut process. Decisions have to be made and 

these are often not presented in research articles. The subjective nature makes it even more important 
that one has an understanding of the mathematical basis when practicing factor analysis or relying on 
studies that use factor analysis. As seen in this paper, the factors identified by Duda and Nicholls 
(1992) could not be reproduced in a physics setting. For a first trial of an adapted survey the structure 
is very promising, but addition of items and a retrial of the survey are necessary before it is fully 
developed. 
 

What does Table 2 tell us? First, factor 1 reflects task or mastery orientation and this is clearly 
demonstarted both conceptually and in the data. It is interesting to note that item 3 on ‘group work in 
tutorials’ is in this factor reflecting the focus on constructive meaning making in learning physics. 
Factor 2 represents the ego orientation and factor 4 is clearly work avoidance. We have called factor 
3 the interest orientation, but having only two items more will need to be added for the second trial of 
the survey. Factor 5 is the cooperation orientation, but it also contains an item (number 20) which 
does not conceptually belong with the rest of the items, even though all the items group 
mathematically. Item 20 will therefore be removed from the survey. This highlights one of the most 
important aspects of factor analysis: the mathematical sophistication of the analysis is of little worth 
if it is not accompanied by a critical mind.  
 
Conclusion 
 
This paper has demonstrated that surveys used within one area may not be directly applicable in 
another area. However, certain constructs do emerge clearly despite the change in discipline area.  In 
our case task orientation, ego orientation and work avoidance were readily identifiable. The paper 
also aimed to give an insight into principal components analysis, and how subjective decisions need 
to be made when carrying out factor analysis. It is the hope of the authors that this will inspire fellow 
science education researchers to develop a more profound understanding of this complex statistical 
method. 
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