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Abstract: One of the most difficult learning thresholds for students of mathematics is the concept of proof. The difficulty 
manifests itself in several ways: (1) appreciating why proofs are important; (2) the tension between verification and 
understanding; (3) proof construction. The first case study describes a spurious but ‘convincing’ proof and a correct but 
‘unconvincing’ proof of a deep result in linear algebra. A brief discussion introduces The Plateau Principle, an unspoken 
credo for successful research in mathematics, which says simply: ‘look for and be prepared to use a variety of plateaus 
as starting points for a mathematical investigation.’ The second case study illustrates an underlying ‘proof template’ that 
assists in the development of proof technique, in much the same way as a sense of perspective is essential for the ability to 
draw well. 
 
Introduction 
 
Students entering university are often very adept at performing algorithms and finding their way 
through the maze of sophisticated calculations. However they tend to have very little experience with 
mathematical proofs even though these are central to verifying mathematical facts and building a 
corpus of reliable knowledge. It is common for new students to say that they ‘like mathematics’ but 
‘hate proofs’. For many, proof technique is a difficult hurdle to overcome and has all of the hallmarks 
of a threshold concept, in the sense of Meyer and Land (2003, 2005). The ability to understand and 
construct proofs is transformative, both in perceiving old ideas and making new and exciting 
mathematical discoveries. It is irreversible and often accompanied by a ‘road to Damascus’ effect, 
not unlike a religious conversion or drug addiction. The most inspiring mathematical proofs are 
integrative and almost always expose some hidden counter-intuitive interrelations. And of course 
they are troublesome: it can take a long time, even years, for students to learn to appreciate proofs 
and to develop sufficient technique to write their own proofs with confidence. Wrestling with and 
finally grasping the concept of proof ‘becomes a rite of passage’ (Bradbeer 2005), as a student seeks 
full membership of the mathematical community. 

 
It is common in pure mathematics courses for proofs to take centre stage, presented sequentially 

and without much discrimination as to quality or quantity of detail or information being processed. It 
is as though the physical, willy-nilly act of justification is indispensible and inexorably leads to the 
learner’s acquisition of mathematical knowledge. However, it is important to distinguish between 
knowledge of mathematical truth and the understanding of mathematics (Manin 1990). Indeed the 
whole premise of the SOLO taxonomy, for example, is that deep learning takes place when one 
passes from factual knowledge (isolated pieces of information or techniques in the unistructural or 
multistructural phases) to conceptual knowledge (in the relational and extended abstract phases) 
(Biggs 2003). 

 
The mathematics teacher therefore has to be very careful about the selection of proofs to include 

when introducing topics, and filtering out certain details which can obscure important ideas. Indeed the 
word ‘proof’ is often equated with ‘obfuscation’. A poorly presented proof, even if meticulously 
prepared, can be frustrating and wasteful in terms of time and effort in concentration. It is extremely 
common for students to get lost, and think ‘why bother?’ or ‘what’s the point?’ ‘We believe you if 
you tell us something is true. There is no need to confuse us or put us to sleep.’ 

 
This article is in two parts. The first is a case study involving a deep theorem in linear algebra, 

with two specimen proofs, the first of which is fallacious but convincing. This introduces briefly the 
idea of syntactic reasoning. The second specimen is correct but the routine verification does not in 
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itself develop the student’s conceptual understanding. In cases like that it is the author’s view that 
it is better to apply The Plateau Principle and engage the student in higher level consequences and 
applications. 

 
The second case study introduces a Proof Template which is a useful stepping stone in 

developing facility in proof construction. It exploits the spectrum of possibilities between the 
compact syntax of a mathematical expression and broader underlying semantics. 
 
Case study: the Cayley-Hamilton Theorem 
The material described in this section is derived from the author’s teaching of linear algebra, for 
advanced second year students at The University of Sydney. The Cayley-Hamilton Theorem is a 
seminal, classical result about matrices. No advanced undergraduate course in linear algebra should 
be without it! It states that every square matrix of ordinary numbers satisfies its own characteristic 
equation, that is, 
 
Cayley-Hamilton Theorem: If M is a matrix and p(λ) = det(M - λI) is its characteristic polynomial, 

then p(M) is the zero matrix. 
 

The author has given the following well-known single line ‘proof’ to many different student 
audiences, in a traditional lecture setting, and has never fielded an objection. It may be that there 
are students who see the fallacy straight away and prefer to say nothing, but the overwhelming 
impression is one of universal, uncritical acceptance. The ‘proof’ is this: 

 
Specimen 1: p(M) = det(M – MI) = det(M – M) = det(0) = 0  

 
The brevity of Specimen 1 is appealing and the chain of equalities is convincing. Indeed the last 

three equalities are absolutely correct, and the first equality looks so plausible that it seems churlish 
to question it. But of course the proof cannot be correct, because p(M) is a matrix and 0 at the end 
is just a number. (The 0 inside det(0) is in fact a matrix, so there is the added abuse of notation, but 
that is harmless and not a fault in the argument.) 

 
The fallacy is in the substitution at the first step. The matrix p(M) is formed by taking the 

characteristic polynomial p(λ) and replacing λ by M throughout and the constant term p(0) by p(0)I 
and then evaluating to the zero matrix using matrix arithmetic. The expression det(M – MI) at the first 
step is trying to circumvent this process quickly by performing a matrix substitution before taking a 
determinant! 

 
In the language of algebra, the two operations, of matrix substitution and of taking determinants, 

do not commute. Operations A and B in mathematics often do commute, expressed by the simple 
formula AB = BA. This expresses a common pattern and following it superficially without regard to 
meaning is an example of syntactic reasoning, so-called because all that is important is the syntax 
of the formula. This mirrors ‘formulaic’ behaviour, which one tends to identify with 
‘mindlessness’. A famous example of this is The Freshman’s Dream, where the naive student 
conveniently, but unfortunately incorrectly, assumes operations of addition and taking powers 
commute:  

 
The Freshman’s Dream: (x + y)n = xn + yn  

 
By contrast, here is a correct but ‘opaque’ proof of the Cayley-Hamilton Theorem, just for 3 × 3 

matrices, which the author asks students to work through as an exercise or further reading, and 
adjust slightly for the general case of an n × n matrix:  
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Specimen 2: Write the characteristic polynomial of M as 
 

p(λ) = b0 + b1λ + b2λ2 + λ3 
 

and put B = adj(λI - M) = B0 + λB1 + λ2B2, the adjugate matrix, where B0, B1, B2 are matrices whose 
entries do not contain any expressions involving λ. By properties of the adjugate, we have 

 
(λI – M)(B0 + λB1 + λ2B2) = (b0 + b1λ + b2λ2 + λ3)I  

 
Equating coefficients yields 

 
– MB0 = b0I , B0 – MB1 = b1I , B1 – MB2 = b2I , B2 = I  

 
But p(M) = b0I + b1M + b2M2 + M3, so that, from the above equations, 
 

p(M) = -MB0 + M(B0 – MB1) + M2(B1 – MB2) + M3B2 = 0  
 
the zero matrix, and the proof of the Cayley-Hamilton Theorem is complete. 
 

Specimen 2 is straightforward for a diligent student to check, but immensely difficult to think of 
in the first place. Indeed, it relies on a property of the adjugate matrix, which in turn relies on a 
technical and nontrivial theory about matrix determinants. Yet it is quite inappropriate for a lecture 
or class presentation. The majority of the class will be none the wiser for having seen it, and have 
little more insight into why the Cayley-Hamilton Theorem is true than if they saw Specimen 1, 
which is not a proof at all (except for 1 × 1 matrices), but a joke! Practicing mathematicians use the 
Cayley-Hamilton Theorem extensively (at least implicitly), but do not think for a moment about 
why it is true. They are applying the following (introduced for the first time in Easdown (2007)): 

 
 

The Plateau Principle: Look for and be prepared to use a variety of plateaus as starting points for 
a mathematical investigation. 

 
 

The author finds it very inconvenient to have this principle as a reference point, as a reminder to 
students that, from a certain point of view, a proof may not be needed and may even become a 
hindrance to understanding and the particular task at hand. It is not necessary to carefully and 
painstakingly prove everything in a mathematics course. The greatest enemy of understanding is 
coverage (Gardner 1993, quoted in Biggs 2003).  

 
In this case study, it is more worthwhile to treat the Cayley-Hamilton Theorem as a plateau, and 

explore the consequences (leaving a proof like Specimen 2 as a reading exercise). For example, the 
Cayley Hamilton Theorem is one stepping stone towards developing the Jordan Canonical Form, 
which is another ‘higher’ plateau. Indeed, granted the Jordan Canonical Form, then one can climb 
down and provide a conceptual derivation of the Cayley-Hamilton Theorem, involving such diverse 
ideas as factorisation of polynomials and nilpotent matrices. Technically speaking, such a ‘proof’ 
then would be circular, because one plateau is derived from the other and vice versa. But it does 
not matter: the connections are important and lead to a robust and deep understanding of the theory. 
Rather than dwelling on unistructural or multistructural detail checking, such as is required to 
follow Specimen 2, the time and energy is better spent leading the student into the relational and 
extended abstract phases of the SOLO taxonomy (Biggs and Collis 1982). 
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There is often heated debate amongst university mathematics teachers of calculus about the 
efficacy or otherwise of ε-δ definitions and arguments. Students are often the meat in the sandwich. 
From their perspective at least, it might be helpful and avoid confusion if The Plateau Principle 
became part of the parlance of calculus teaching, and students were made aware of the plethora of 
instances when it is being invoked (for example when using limit theorems). Students can be given 
choices, depending on their level of skill, experience and needs, whether to become embroiled, for 
example, in the fascinating vagaries of the ε-δ theory, or plan their academic program (if suitable) to 
avoid it altogether. Students need to make choices, and choices are linked to awareness. The Plateau 
Principle is a useful tool that allows one to knowingly filter out complication or detail at will. 
Important results like the Chain Rule, the Intermediate Value Theorem and the Mean Value Theorem 
are best explained or illustrated heuristically. The formidable task of ploughing through rigorous 
justifications is pointless, and indeed counterproductive, for the bulk of students. A delicate balance 
needs to be struck between developing a student’s technical skill and seeing the mathematics in 
context and relation to underlying concepts or applications. The ability to recognise and use The 
Plateau Principle is a skill in itself and, at least implicitly, is the basis for almost all meaningful 
research in pure mathematics. 

 
Case Study: A Proof Template 
So, which kinds of proof are most appropriate for a lecture or class presentation? The short answer is 
those which lead as quickly as possible to deep or conceptual understanding. In this section, an 
example is given from the author’s recent teaching of linear algebra to first year university students, 
who have only a secondary school background and limited or no experience with proof construction. 
It utilises the following:  
 

 
Proof Template: expand – apply something – contract 

 
which in turn is a manifestation of the Conjugation Principle, explained later. We will prove the ‘if’ 
part of the following 
 

 
Proposition: A quadrilateral is a parallelogram if and only if the diagonals bisect each other. 

 
 

Consider a quadrilateral PQRS and diagonals PR and QS which intersect in a point T . We will suppose 
that the diagonals bisect each other so that T is the midpoint of both. 

 
We will prove that PQRS is a parallelogram. Our supposition is just a thought experiment, but 

already something interesting is going on. Evidently our drawing in the page is not a parallelogram, 
but one can very easily imagine that it is! For example if the quadrilateral represented an envelope in 
space, then it could well be a parallelogram, whose image had been projected onto the page. Students 
have no difficulty with this. The paradoxical ability to flip backwards and forwards between 
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depictions of a quadrilateral which both is and is not a parallelogram is a manifestation of semantic 
reasoning (Easdown 2006). We are already touching on a subject called projective geometry, and the 
proof has not yet begun! Here is the proof that the hypothesis about T forces PQRS to be a 
parallelogram: 
 
Specimen 3: 

PQ   = PT  + TQ  

  = TR  +  ST  
  = ST  + TR   = .SR  
 
 

To follow Specimen 3, the student needs only rudimentary knowledge of vector arithmetic. The 
technical demands do not obscure the underlying structure of the proof. Specimen 3 is symmetric and 
an application of the Proof Template, beginning with a vector expansion and concluding with a 
contraction. The step in the middle requires the hypothesis that T is the midpoint of both diagonals. 
(The equality of vectors can also be interpreted as a manipulation involving congruent triangles, the 
usual method of proof of the above proposition.) When students understand the underlying pattern of 
Specimen 3, they are able to develop with ease their own proofs, using vectors, of sophisticated and 
technically difficult results in geometry (Easdown 2007). The above Proof Template is one of the 
most common basic ideas in mathematical proof construction and itself is an instance of something 
more general: 

The Conjugation Principle: To do something difficult, change position so that things 
get easier, and then return. 

In Specimen 3, finding the route of equalities from PQ  to SR  is ‘difficult’. The expansion 
‘changes position’ and the final contraction ‘returns’. The step in the middle is ‘easy’ given the 
hypothesis about T . In other words, the Conjugation Principle is obstacle avoidance: 
 
 
 
 
 
 
 
 

 
 

 

 

 
Getting from point A to point B in Specimen 4 is difficult if one tries to move in a straight line. By 

detouring (by first applying the process P), and then moving directly ahead (doing D) where the coast 
is clear, and then by undoing the detour (undoing P , that is, doing P-1), one returns to the straight 
unencumbered path to B. In symbols the Conjugation Principle becomes the famous equation:  
 

 
Specimen 5: M = P DP –1 
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where M is the entire ‘difficult’ process of getting from A to B. This equation is, for example, just the 
diagonalisation process in matrix theory, where M is a matrix, D is a diagonal matrix of eigenvalues and 
P is a change of basis matrix consisting of corresponding eigenvectors. If everything is invertible 
then all of these elements lie in a group and M is a conjugate of D (which accounts for the 
terminology Conjugation Principle). 

 
Now, each of Specimens 3, 4 and 5 essentially captures the same idea or ‘structure’. However, 

Specimen 5 is a compressed sequence of symbols. Probably only a mathematician would know how to 
‘unpack’ the syntax of PDP-1 and recognise its universality. Specimen 3 also uses symbols, in a 
completely different way, but is already starting to take shape and moving towards some kind of 
‘semantic’ representation. Specimen 4 is almost purely pictorial and is instantly meaningful, even to 
nonmathematicians. Developing the nexus, between syntax of symbolic representation and the 
underlying semantics, is perhaps the most important feature of successful mathematics teaching and 
learning. Resolution of the interplay between syntax and semantics is very interesting and leads to 
novel teaching principles, such as the Principle of Reflected Blindness and the Principle of Trivial 
Complexity, which inhibit learning, and the Halmos Principle, which enhances learning (Easdown 
2006). 
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