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Abstract: This paper pays particular attention to the passive/active interface in mathematics, which has its own special 
dynamics and tension and can form an impenetrable learning barrier. Though psychological and invisible, this barrier is 
common but largely neglected in traditional methods of teaching mathematics. The purpose of this brief paper is to draw 
attention to this interface, and illustrate strategies for overcoming it, by means of a case study from recent teaching by 
the author. 
 
Introduction 
 
We often think, naively, of the learning environments we create for our students as being fluid and 
malleable, like water. But this can be an illusion and a question of scale. A tiny creature can become 
trapped and suffocate inside a droplet of water because of the relative strength of the surface tension. 
Even powerful public figures, like the president of the United States, can be enclosed in bubbles, with 
imaginary or perceived boundaries that isolate them from critics and the rest of the world (Thomas 
and Wolffe 2005). 
  

 
  

Carroll and Rosson (1987) identify ‘cognitive and motivational paradoxes’ which inhibit progress 
in learning (in the context of computer users) and a fact of mental life: that adults unconsciously 
resist addressing themselves to new learning. For the teacher, overcoming this resistance and the 
construction of an appropriate learning environment is far from being a trivial design problem 
(Thomas and Carroll 1979). In any typical mathematics classroom at the University of Sydney, with a 
huge diversity of interests and expectations (despite often narrow bands of very high UAI scores!), 
this becomes an ill-defined design problem in the sense of Reitman (1965): there are no clear starting 
or finishing points. Nor should there be, and the issue is further compounded by the allocation of 
final grades. Does the teacher allocate a grade based on some notion of competence or learning 
outcome, or on the basis of a ranking of students and an acceptable distribution, or some 
immeasurably complex (but intuitively derived) combination of the two? 

 
This paper pays particular attention to the passive/active interface in mathematics, which has its 

own special dynamics and tension and can form an impenetrable learning barrier. Unless one can 
release it, ‘pop the bubble’ so to speak, this barrier can make unhappy prisoners of students forced to 



Symposium Presentation 
 

UniServe Science Assessment Symposium Proceedings                38 

do mathematics against their will (such as science students forced to take 12 credit points of 
mathematics) or repel many who do have a choice. Though psychological and invisible, this barrier is 
exceedingly common, perhaps universal; but its existence is largely neglected in traditional methods 
of teaching mathematics. The purpose of this paper is to draw attention to this interface, and illustrate 
strategies for overcoming it, by means of a case study from recent teaching by the author. 
 

Sophisticated mathematics – as in driving a car – or playing a musical instrument – or performing 
feats of wizardry on the soccer field – depends on a facile technique. The drilling of basics is an 
essential feature which precedes (a) independent enquiry, and (b) the ability to express oneself freely. 
The driver of a car who does not understand the differences between the clutch, brake and accelerator 
has no chance of successfully exploring the countryside. The potential driver who thinks he or she 
knows the differences in theory, but has had no actual practice pushing the pedals, is bound to crash 
also. The driver’s licence – like the mastery of elementary calculus or linear algebra, or the 
fundamentals of discrete mathematics or statistics – is a ticket to freedom, to (a) experience the thrill 
of controlling a sophisticated apparatus; and (b) explore the countryside and discover new worlds 
beyond the horizon. The practice class technique, illustrated in the next section, reinforced by quiz 
and examination questions, is one aspect of an armoury of teaching devices geared towards making 
students confident and successful ‘drivers’, who are able to use mathematics to fulfil their potential in 
their chosen field. 
 
Case study: the theory of generating functions 
 
All of the materials and extracts described in this section come from the author’s teaching of the 
subject MATH2069/2969 Discrete Mathematics and Graph Theory, an Intermediate unit of study, 
offered by the School of Mathematics and Statistics in 2005 and 2006. 
 

Generating functions provide one of the most powerful techniques for counting, and come as 
something of a surprise to an inexperienced student. At first they appear ‘weird’ and unfamiliar, and 
it is not clear how they could be useful for anything! Gradually students realise that generating 
functions possess an arithmetic which has many properties in common with the familiar arithmetic of 
numbers which they study from early primary school. 
 

Figure 1 comprises two extracts from lecture notes, presented to students in their ‘passive’ role as 
listeners/readers. There is some bald information: (i) the definition of a generating function in terms 
of a formal power series; (ii) the seminal example of the geometric series; and (iii) a brief exposé of 
one case of the method of partial fractions. Even (i) is problematical and potentially offputting. There 
are several words with no obvious heuristic connection to the symbols: a generating function is not a 
function at all, and the words ‘formal’, ‘power’ and ‘series’ all have a role which needs to be 
explained. The compression of an infinite amount of information (the elements of the sequence 
extending indefinitely to the right) into one strange expression G(z), and the Sigma notation, have to 
be negotiated carefully. Preconceived ideas of convergence also have to be dispelled. The connection 
of (ii) with the ‘arithmetic’ of generating functions can be something of a ‘eureka’ moment, or 
revelation, especially when applied to (iii). The method in (iii) is expressed both in abstract generality 
and concretely in a special instance with actual numbers, and finishes with a question, more 
rhetorical in drawing attention to two particular constants A and B, than expecting students to 
immediately answer for themselves. 
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Figure 1. Extract from lecture notes 
 

Figure 2 is an extract from a worksheet given to students in a practice class, which is designed to 
help them move from their passive phase – receiving and absorbing lecture or reading material (as in 
Figure 1) – to an active phase, where they will be able to solve problems using generating functions. 
The ultimate aim of Figure 2 is (3), which gets a student to ‘unpack’ the description of G(z) as a 
rational function to find the original sequence and a formula for an. Parts (1) and (2) are stepping 
stones which would be absent in a real problem. In (1) the student is asked to find a partial fraction 
decomposition, and an intermediate step is given (like the instructor putting a car into gear for 
someone learning to drive for the first time). It is relatively easy to find the constants A and B (like 
the learner slowly taking his or her foot off the clutch as the car starts to move). Part (2) is completely 
different: an example of long division of power series, which starts at the constant term (by contrast 
with usual long division of polynomials, which normally starts at the highest power of the 
indeterminate). The first two steps are given (like an instructor helping the learner put the car into 
first and then second gears), and the student is asked to mimic these to produce two further steps (like 
the learner by analogy now putting the car into third and fourth gears). Part (3) asks for five answers, 
the first four of which can be read off from the answers to (2), and the last, which now requires the 
answer to (1) and knowledge about geometric series. Filling out the sheet is relatively painless, yet 
takes the student, increasing in confidence, along a path of sophisticated ideas. Other practice class 
problems on generating functions repeat these processes, gradually removing any preparatory or 
intermediate steps. There is repetition (with some similarity to but far less volume than Kumon 
exercises (Russell 1996)) balanced by reflective thought. In the end the student can answer questions 
about generating functions with ease and fluency. 
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Figure 2. Extract from practice class worksheet 
 

Practice classes are conducted with all students together in a single room, working at their own 
pace, interacting with and helping each other, and seeking advice or feedback as needed from the 
lecturer. At intervals the lecturer writes answers in the spaces on an overhead projector copy of the 
worksheet and adds any words of explanation or additional tips for calculation or reasoning. Very 
able students can complete the worksheet quickly and move on to other topics, or leave early. The 
teaching method is robust: students who are absent from the practice class can still catch up by 
completing the worksheets in their own time and seeking help from the lecturer at office 
consultations. Inexperienced students can take multiple copies of the worksheets and redo the 
problems as many time as they like until they have gained enough fluency to feel confident in a quiz 
or examination. 
 

From the lecturer’s point of view, practice classes are pleasurable, far less demanding in terms of 
stress or energy than the delivery of a lecture or presentation, and provide almost instant two-way 
feedback. At the end of a practice class, the lecturer has a very clear idea of strengths and weaknesses 
in the class and how students are dynamically reacting to the material. Practice classes break through 
the ‘active/passive’ interface and have become an indispensable tool in the author’s armoury of 
teaching methods. 
 

A series of practice classes lead up to a quiz, an extract of which is shown in Figure 3. The 
problem highlighted is very similar, but not identical, to the problem attacked in Figure 2. It is posed 
as a true/false question. The student has to actively make a decision about which technique is 
appropriate. It turns out that both the methods practised, of partial fractions and of long division of 
power series, lead to solutions, though in this instance the latter is faster. Students can use both 
methods, if they have time, which mimics the robustness of mathematicians who habitually look for 
ways of checking their answers. The quizzes used by the author are sophisticated diagnostic tools and 
use a variety of testing mechanisms, of which true/false only is illustrated here. Students are advised 
to circle T (for true) or F (for false) if they are sure of their answer, otherwise to leave it unanswered. 
By doing so, if the student gets it wrong, then he or she knows that a conceptual or computational 
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error has occurred and needs fixing. If the student afterwards sees that the question was unanswered 
then he or she is alerted to a gap in knowledge or technique that requires attention. What happens if a 
student guesses? Then of course the diagnostic benefit disappears. To discourage guessing true/false 
questions, incorrect answers are penalised by negative marking. On the whole, in this author’s 
experience, most students follow the instructions and reap the benefit of diagnostic feedback. 
Students that ignore the instructions and guess anyway, learn quickly that it is not in their interest 
(from the point of view of gaining marks) and follow the instructions in subsequent quizzes. 
 

 
 

Figure 3. Extract from 2005 class quiz (true/false) 
 

This chain of events, from the passive phase in lectures, through the passive/active interface in 
practice classes, to the active phase in solving problems and attempting a quiz, culminates in the end 
of semester examination. The circled question in Figure 4 was one of the hardest of 20 true/false 
questions in Section A of both examinations for MATH2069 (normal) and MATH2969 (advanced) in 
2005 and resembles part (3) of Figure 2. Of the 29 advanced students who sat the examination, 21 
answered correctly, 3 answered incorrectly and 5 did not attempt the question. Of the 98 normal 
students who sat the examination, 43 answered correctly, 3 incorrectly and 52 did not attempt the 
question. It is especially gratifying to see such a large number of normal students attempt what would 
be perceived as an advanced question, with a very small error rate. This is only one example, but 
success across a range of similarly difficult questions demonstrates that even less able or 
inexperienced students at the beginning of the semester can have sufficient confidence by the end of 
the semester to choose and apply appropriate techniques with fluency. 
  

 
 

Figure 4. Extract from 2005 first semester examination (true/false) 
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Results of a class survey 
 
In June 2006, 32 students (out of a combined enrolment of 110 in MATH2069/2969) responded to a 
voluntary survey to assess several aspects of teaching. The findings are summarised in the table 
below. 
 
Table 1. Percentage response for how students found each aspect of teaching 
 

 
The figures suggest that in this particular course, practice classes (the active/passive interface) 

were the most effective aspect of teaching and learning. Traditional methods such as lectures (the 
passive phase) and tutorials (the active phase) were also helpful, but the perceived benefit by students 
seemed to be greater when special effort was expended at the active/passive interface. It would be 
worthwhile trialling and experimenting with the methodology of this paper in a range of other 
mathematics courses, obtaining more comprehensive data and analyses of effects based on abilities 
and backgrounds. 
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Activity Very helpful Helpful Neutral Unhelpful Very unhelpful 
 

Lectures 31% 50% 13% 6% 0% 
Practice classes 56% 28% 16% 0% 0% 

Tutorials 25% 53% 16% 3% 3% 


