LECTURES-NO-MORE: AN AID TO STUDENTS IN TRANSITION?

Theo Hughes

Presenting Author: Theo Hughes (<u>theo.hughes@monash.edu</u>) School of Physics, Monash University, Clayton VIC 3800, Australia

KEYWORDS: PACE, Studio Physics, large cohort, student-centred, collaborative learning, lectures, transition

ABSTRACT

A student's transition to university life is hampered by the quantum leap from small classes with individual help on-hand, to large impersonal lecture halls with minimal peer-peer or peer-instructor interaction. The School of Physics, at Monash University, is investing in purpose built facilities to enable a student-centred, collaborative learning approach to teaching large cohorts; with students being taught in "Studios" that resemble school classrooms. Every such effort should apparently have a good acronym; we have branded our new facilities, and approach 'PACE' (Physics and Astronomy Collaborative-learning Environment).

The first Australian 'Studio Physics' implementation was at Curtin University (Loss & Thornton, 1998; Yeo, 2002). This approach was based upon efforts at Rensselaer Polytechnic Institute (Wilson 1994). Rensselaer ran Studio Physics classes of up to 64 students; Curtin, 36. We will be catering for larger class sizes, as well as having less of a focus on technology, and a greater focus on aspects such as collaboration and the importance of the supporting spaces.

Our approach is modelled on SCALE-UP (Beichner, 2008); this brings a version of 'Studio Physics' to larger cohorts (over 100 students). It has been adopted by universities across the US and worldwide, and in disciplines other than Physics (Beichner, 2011); most notably, for Physics, TEAL at MIT (Dori, Hult, Breslow & Belcher, 2007).

REFERENCES

Beichner, R. (2008). The SCALE-UP Project: A student-centered, active learning environment for undergraduate programs. An invited white paper for the National Academy of Sciences, September 2008.

Beichner, R. (2011) SCALE-UP: student centred active learning environment with upside down pedagogies. Retrieved June 4, 2013, from http://scaleup.ncsu.edu.

Dori, Y.J. Hult, E. Breslow, L. & Belcher, J. (2007). How much have they retained? Making unseen concepts seen in a freshman electromagnetism course at MIT. *Journal of Science Education and Technology*, *16*(4), 299-323.

Loss, R. D. & Thornton, D. (1998). Curtin Physics Studio: A progress report. Paper presented at the 1998 Teaching Learning Forum, University of Western Australia.

Wilson, J. M. (1994). The CUPLE physics studio. The Physics Teacher, 32, 518-523.

Yeo, S. R. (2002). Evaluation of a University Physics Studio Learning Environment: The Interrelationships of Students' Perceptions, Epistemological Beliefs and Cognitive Outcomes. (Doctoral dissertation).

Proceedings of the Australian Conference on Science and Mathematics Education, Australian National University, Sept 19th to Sept 21st, 2013, page 34, ISBN Number 978-0-9871834-2-2.