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Graphical Abstract

Abstract

The variability of renewable energy sources presents a major challenge for maintaining power
system stability and long-duration energy storage. Power-to-Hydrogen (PtH₂) systems provide a
viable solution by converting surplus renewable  into hydrogen, which can be stored and used
across different sectors. This review focuses on focuses on modelling strategies applied to three
core PtH₂ processes: hydrogen production via electrolysis, storage, and integration into smart grids.
Traditional modelling approaches including computational fluid dynamics (CFD), techno-
economic analysis (TEA), process simulation, and linear programming (LP) remain essential for
system design but are limited in handling dynamic, real-time operations. In contrast, emerging
methods including machine learning (ML), reinforcement learning (RL), surrogate modelling,
digital twins, and augmented/virtual reality (AR/VR) platforms offer improved adaptability,
predictive control, and operator interaction. However, these tools face limitations related to data
availability, computational cost, model interpretability, and integration with existing simulation
environments. The review identifies a growing shift toward hybrid modelling frameworks that
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combine physical accuracy with data-driven adaptability. Future research should focus on building
standardised datasets, developing interoperable modelling platforms, expanding the role of real-
time visualisation technologies, and must be supported not only by technical innovation but also
by evolving policy for scalable and resilient PtH₂-integrated smart grid.

Keywords: Power-to-X (P2X), Power-to-Hydrogen (PtH₂), renewable energy storage, smart-
grids, advanced modelling, computer simulations, artificial intelligence, machine learning,
AR/VR

1. Introduction

The global energy transition is accelerating the deployment
of renewable energy sources such as solar and wind1.
However, their inherent variability introduces operational
challenges to modern power systems, particularly in ensuring
consistent supply and grid stability.¹ Energy storage
technologies have become central to enabling reliable and
flexible renewable integration.2

Power-to-Hydrogen (PtH₂) has emerged as a promising
long-duration energy storage solution.3-5 By converting
renewable energy into hydrogen via electrolysis, PtH₂ enables
energy to be stored in chemical form and later utilised across
sectors, including electricity, transport, and industrial
applications5. Unlike conventional battery storage, hydrogen
offers higher storage capacity over longer timescales, making
it suitable for seasonal balancing and sector coupling.6

Recent research has increasingly focused on modelling
strategies that support the deployment of PtH₂ systems.
Advanced simulations and AI-augmented tools are now being
used to enable dynamic integration with smart grid, optimise
conversion efficiency and assess techno-economic viability,
and enable dynamic integration with smart grids.7-8 Despite

Table 1 | Traditional and emerging models used in electrolysis systems control and optimization

Type Approach Strengths Limitations Tools Ref.

Traditional Computational Fluid 
Dynamics (CFD)

High spatial detail; flow and heat 
analysis

Computationally expensive COMSOL, 
ANSYS

[12,18]

Process Simulation + 
Techno-economic 
assessment (TEA)

System-wide modelling; cost-
analysis

Rigid to variable input; 
limited real-time use

Aspen Plus [13,19]

Numerical optimization Effective for tuning and design 
refinement

Requires well-defined 
objectives

MATLAB [13,20]

Monte Carlo simulation Captures uncertainty Requires many runs; less 
mechanistic

Python, 
MATLAB

[14,20]

Emerging Machine Learning (ML) Fast and adaptive forecasting Needs large, quality 
datasets

TensorFlow [15,21]

Reinforcement Learning 
(RL)

Real-time adaptive control under 
fluctuating inputs

Complex training and 
policy validation

OpenAI Gym, 
Stable Baselines

[15,22]

Surrogate models Reduces simulation time; enables 
real-time control

Accuracy limited to trained 
domain

GPFlow, 
surrogateML

[12,15]

AR/VR + Digital twins Visual diagnostics and operator 
training

High development cost Unity [16,17]

increased attention, few reviews have synthesized the full
modelling stack from electrolyis to grid-scale integration.7

This review aims to synthesise emerging modelling
approaches applied to PtH₂ systems, with emphasis on
processes involving energy conversion, compression and
storage, and smart grid integration.

2. Modelling strategies across the PtH₂ system

PtH₂ systems core processes include hydrogen production,
storage, and electric grid integration, each requires specialised
modelling approaches to optimize performance, cost, and
control. This section reviews emerging modelling strategies
applied at each stage, with particular emphasis on process-
level simulations, safety and reliability, and system
coordination models. Comparative summaries and case
studies are provided to illustrate how these methods are
applied in practice and to highlight their respective advantages
and limitations.

2.1 Electrolysis process control and optimization

Hydrogen production via electrolysis is the foundational
process in PtH₂ systems. Electrolysis enables the conversion
of electrical energy typically from renewable energy sources
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into chemical energy by splitting water into hydrogen and
oxygen9.  The most common types of water electrolysis
technologies include Alkaline Water Electrolysis (AEL),
Proton Exchange Membrane Electrolysis (PEM), Solid Oxide
Electrolyser Cell (SOEC), Anion Exchange Membrane
Electrolysis (AEM).10 These technologies differ in terms of
operating temperature, response time, system complexity, and
integration potential with variable power inputs.10-11 These
factors influence the selection and design of appropriate
modelling strategies for control and optimization.

Table 1 outlines different modelling approaches applied to
electrolysis system control and optimisation. Traditional
methods such as CFD are used to analyze thermal gradients,
flow behaviour, and gas evolution in electrolyser cells12.
These models provide high physical accuracy but are
computationally intensive and limited to offline analysis. At
the system level, process simulation combined with TEA
supports performance evaluation and cost estimation under
different scenarios.13 However, these models assume fixed
input profiles and are not suited for dynamic control.
Numerical optimization is used to refine design and operating
parameters but requires well-defined objectives and may
converge to local minima.13 Monte Carlo simulations quantify
uncertainties in cost drivers or input variability, though they
do not capture time-dependent system dynamics.14

To address the limitations of static modelling approaches,
recent studies have adopted data-driven methods. ML
methods such as Artificial Neural Networks (ANN) was used
for predicting stack performance and hydrogen output using
operational or simulation data.15,21 These models improve
prediction speed but require large, well-labelled datasets.
Reinforcement learning (RL) has also been applied for
adaptive electrolyser control under fluctuating power inputs,
though it demands complex training environments.15

Surrogate models, derived from CFD or system simulations,
are employed for fast approximation in control applications12.
These are often integrated into digital twins, which combine
physical models with real-time data to support diagnostics and

Table 2 | Traditional and emerging models used in PtH₂ hydrogen storage safety and reliability

Type Approach Strengths Limitations Tools Ref.

Traditional Finite Element Modelling 
(FEM)

Structural stress, fatigue, and 
failure analysis

High setup time, not real-time ANSYS, 
Abaqus

[27]

CFD Thermal gradient and gas 
flow simulation

Computationally intensive COMSOL 
Multiphysics

[27,28]

Thermodynamic modelling Pressure–temperature 
relationships

Oversimplifies dynamic 
system behaviour

MATLAB [29]

Emerging ML (SVM, ANN) Fault and anomaly detection Data quality and availability MATLAB, 
Scikit-learn

[23,30]

Digital twins Integrated real-time 
monitoring and simulation

Complex integration, early-
stage adoption

Unity, 
TensorFlow

[31]

IoT-based monitoring and 
predictive analytics

Real-time condition tracking 
and decision support

Sensor dependency; 
integration complexity

IoT sensors, 
predictive 
algorithms

[32]

optimisation. Moreover, emerging AR and digital twin
platforms provide visual interfaces for system monitoring and
operator support. While still limited in deployment, these tools
have shown potential for training and real-time fault
identification.16

A recent study12 integrated CFD and AI and ML-based
modeling for enhanced alkaline water electrolysis cell
performance for hydrogen production. CFD was coupled with
an ANN surrogate model to predict current density in an
alkaline electrolyser, reducing simulation time by over 90%
while maintaining accuracy demonstrating the advantage of
combining physical and data-driven methodologies.

Traditional models remain essential for system design and
validation, while emerging approaches improve adaptability
and control. Integrating both supports more efficient and
robust electrolysis under variable operating conditions.

2.2 Hydrogen storage safety and reliability

Hydrogen storage refers to the containment of hydrogen
following its production, through electrolysis, for later use in
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energy conversion, industrial processes, or transport.23

Hydrogen produced via electrolysis is commonly stored as
compressed gas in tanks or vessels.24,26 These systems operate
under conditions involving high pressure, temperature
gradients, and cyclic loading, which introduce risks related to
leakage, structural fatigue, and material degradation. While
modelling of electrolysis systems often prioritises process
optimisation, modelling of storage primarily addresses
structural integrity, safety, and system reliability.23 Predictive
modelling supports the identification of failure modes and
degradation trends, informing maintenance schedules and
system design. As such, current modelling approaches for
hydrogen storage focus on assessing thermomechanical 
behaviour and enabling condition-based monitoring under
variable operating conditions.25

Table 2 summarises traditional and emerging modelling
approaches applied to hydrogen storage, with a focus on
safety, structural reliability, and predictive maintenance.
Traditional techniques such as FEM, CFD, and
thermodynamic analysis are widely used to assess stress
distribution, fatigue, thermal behaviour, and
pressure–temperature relationships in storage systems.27-29

FEM provides detailed insight into structural integrity under
cyclic loading, while CFD enables thermal and flow field
simulation. Although physically robust, these models are
computationally intensive and are not well suited to dynamic
or real-time applications. Thermodynamic models offer
simplified assessments but may fail to capture transient
behaviour under variable conditions. On the other hand,
emerging approaches integrate data-driven and system-level
methods to improve adaptability and fault prediction. ML
algorithms, including support vector machines (SVM) and
ANN, have been used for anomaly detection, failure
classification, and degradation forecasting from operational
sensor data.23,30 Digital twins extend these capabilities by
linking virtual models with live input data to enable real-time
condition monitoring and diagnostics. Moreover, IoT-based
platforms further support storage reliability by enabling
continuous sensor-driven tracking and data-informed decision
support. While these methods offer greater responsiveness,
they depend on stable data infrastructure and integration with
physical systems.32

Figure 1 | Simplified schematic of electricity and hydrogen
flows in a renewable energy system. Renewable electricity is
directed to the grid, battery storage, or electrolysis. The hydrogen
produced is stored and later used in end-use applications or
reconverted to electricity via fuel cells, which are reintegrated
into the electric grid during peak demand periods. Figure by
author.

An example of integrating traditional and emerging
methods is presented by El-Amin et al.37, who combined
CFD-generated hydrogen dispersion data with machine
learning models, specifically Random Forest and SVM,
to predict concentration profiles in turbulent buoyant
jets. The framework reduced computational load while
maintaining prediction accuracy, enabling real-time
inference for leak detection and storage safety. The
system demonstrated predictive capabilities that
enhanced operational safety and informed timely
maintenance decisions. 
The integration of traditional modelling with AI-based

approaches enhances the safety and reliability of hydrogen
storage systems within PtH₂ operations, offering a pathway
toward more resilient and intelligent infrastructure.

2.3 Smart grid control and coordination

The integration of hydrogen storage into smart grids
important in accommodating the increasing penetration of
intermittent renewable energy sources.39 Hydrogen storage
systems such as PtH2 technologies which converts excess
renewable electricity into storable hydrogen are essential

Table 3 | Traditional and emerging models used for hydrogen storage control and integration with smart grids

Type Approach Strengths Limitations Tools Ref.

Traditional Rule-based dispatch
and scheduling

Easy setup for fixed hydrogen 
dispatch routines

Cannot adapt to real-time or 
dynamic events

Excel-based [41]

MILP and LP 
optimization

Generates optimal hydrogen operation
plans under static grid inputs

Rigid; not responsive to live 
grid or market shifts

Solver, 
Python

[42]

Deterministic grid 
simulation

Models grid impact of hydrogen 
reconversion accurately

Limited for fast, multi-energy
coordination

MATLAB [43]

Emerging Deep RL Adapts hydrogen control to real-time 
grid conditions

Needs large training data and 
careful tuning

Custom RL 
framework

[44,45]

Digital twins Aligns physical and virtual hydrogen 
systems for control monitoring

High setup cost; integration 
remains complex

MATLAB, 
LabView

[46]

AR/VR for system 
visualisation and 
operator training

Enhances operator awareness for 
dispatch and fault scenarios

Not embedded in real-time 
control; interface dependent

Custom VR 
platforms

[47,48]

element for grid balancing and providing long-duration,
seasonal energy storage, offering capabilities for bulk storage
and practically infinite energy storage capacity.10 However,
these hydrogen systems, comprising components like
electrolyzers, storage tanks, and fuel cells, are inherently
complex to operate.39 Figure 1 provides a conceptual overview
of the typical energy flow in PtH₂-integrated smart grid
systems and rather than representing a linear process, the
diagram aims to foreground the complex, multi-pathway
nature of energy conversion, storage, and utilisation in a
hydrogen-augmented energy system.40
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The complexity of the process coupled with the challenges
of integrating variable renewable generation makes modelling
techniques indispensable6. Accurate and dynamic modelling
is essential to characterize efficiency, analyse dynamic
behaviour, perform complex optimizations, capture real-world
complexities, and manage real-time energy flows.7,13. This
necessitates advanced control and coordination strategies for
optimal operation.39 Modelling serves as a tool to support the
design and evaluation of these control and coordination
systems13 and addressing these challenges effectively requires
the application of both traditional and emerging methods.7,16

Table 3 summarizes representative traditional and
emerging modelling approaches applied in the coordination
and control of hydrogen storage systems within smart grid
environments. These models vary in computational
complexity, real-time adaptability, and integration capacity.

Conventional modelling approaches such as rule-based
scheduling, mixed-integer linear programming (MILP) and
linear programming (LP), and deterministic grid simulation
have historically formed the basis of hydrogen dispatch and
grid interaction modelling.41-43 These techniques are
deterministic in structure and generally assume perfect
foresight, static grid inputs, and isolated sub-system control.
For example, MILP has been used to compute optimal
hydrogen operation plans based on pre-defined load forecasts
and tariff structures, but lacks responsiveness under real-time
fluctuations or market variability.42 Similarly, deterministic
simulation models accurately compute hydrogen reconversion
impacts on power system stability and power flow (e.g.,
voltage deviations), yet are limited in resolving multi-energy
coordination or stochastic influences.43 Furthermore, rule-
based dispatch, often implemented in Excel-based methods
which provides operational simplicity but cannot adapt to
dynamic system feedback or uncertainty.41 These methods are
computationally efficient for system sizing and offline
planning but insufficient for online scheduling or integrated
sector coupling.

To address these constraints, data-driven and adaptive
control methods have been increasingly adopted. Deep RL
enable model-free learning of control strategies through
interaction with dynamic environments.44,45 These methods
have been shown to optimise hydrogen system dispatch under
variable renewable input, demand response signals, and
multi-layer objectives (e.g., thermal, electrical, storage).
However, effective deployment requires large-scale training
data, hyperparameter tuning, and convergence stability
management, as seen in the development of actor–critic
architectures and dual-network stabilisation.45 Digital twin
frameworks integrates physical system models with real-time
sensor data, predictive analytics, and control feedback
mechanisms.46 These systems simulate, monitor, and optimise
hydrogen production, storage, and fuel cell systems
simultaneously. Although promising, their implementation is

constrained by high setup costs, model–data synchronisation
issues, and computational overhead—especially in real-time
grid-connected applications.46 On the other hand, AR/VR
technologies offer additional operational value by supporting
operator situational awareness, particularly during dispatch
decision-making and fault management.47 Platforms such as
Verciti provide immersive visualisations of hydrogen
operations and enhance safety training for decentralised
system operators.48

Traditional methods provide guarantees in optimization
and deterministic planning, but fail to handle uncertainty,
dynamic control, or sector integration. In contrast, AI-driven
and hybrid frameworks support adaptable, real-time
scheduling but require extensive training, are less
interpretable, and lack standardisation for industrial
deployment.41-48 Hybrid models are gaining traction for
balancing computational efficiency with physical
consistency.6,44 Recent applications illustrate how traditional
modelling can be operationalised through interactive digital
environments. For example, Folgado et al.49 developed a
digital twin of a proton exchange membrane (PEM)
electrolyser embedded within a MATLAB-based graphical
user interface, deployed in a photovoltaic-powered smart grid.
The digital twin is based on a deterministic equivalent
electrical model and communicates with a  PLC via Modbus
TCP/IP in real time. This setup enables operators to monitor
hydrogen production metrics, assess deviations between
simulated and measured performance, and support control
decisions. The study highlights how traditional physics-based
models can be integrated into real-time, user-interactive
systems improving the coordination between hydrogen
systems and smart grid operation.

Modelling strategies are shifting from deterministic
formulations toward adaptive, interactive frameworks. Case
studies such as Folgado et al.49 demonstrate how equation-
based electrolyser models can be embedded in digital twin
systems for real-time monitoring within smart microgrids.
Future modelling platforms must integrate real-time control
logic, data feedback, and intuitive human interfaces to enable
scalable hydrogen storage coordination in complex energy
systems.

3. Challenges and Future Perspective

Emerging modelling and AI-based approaches offer
significant advantages over traditional methods in PtH₂

systems but remains constrained by several technical and
operational challenges. These limitations currently hinder the
scalability, real-time deployment, and integration of advanced
tools within smart grid environments.

The strong dependence on high-quality data is a primary
limitation. ML and RL models require large volumes of well-
labelled, high-frequency datasets to train predictive or control
agents. In PtH₂ applications, this type of data is often
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unavailable due to limited sensor coverage, proprietary system
architectures, or inconsistencies in temporal resolution. As a
result, data-driven models risk overfitting or underperforming
in real-world settings, particularly when transferred between
systems with differing configurations.44,45

Another challenge lies in the computational complexity
and training overhead of these models. RL, surrogate model
development, and real-time digital twins require significant
computing resources for convergence and deployment. For
example, actor–critic RL algorithms and physics-informed
neural networks (PINNs) demand extended training cycles
and often rely on specialised hardware. These resource
demands limit the feasibility of deploying such models in
real-time, safety-critical environments like hydrogen storage
and dispatch control.45,46

Model transparency and interpretability also present a
barrier to adoption. While AI-based models are effective at
pattern recognition and dynamic optimisation, their internal
decision logic is often non-transparent. This “black-box”

nature makes it difficult for operators and engineers to
understand, validate, or troubleshoot behaviour during
abnormal conditions. In PtH₂ systems, which involve high
pressures, thermal gradients, and interdependent components,
lack of interpretability can reduce stakeholder trust and pose
regulatory challenges.44

The integration of AI with traditional physics-based
models is another challenge. Hybrid systems that couple
data-driven modules with deterministic simulations promise
the best of both domains, but remain difficult to implement.
Challenges include synchronising time scales, reconciling
different data formats, and managing error propagation
between subsystems. Few frameworks exist to seamlessly
integrate CFD, process simulation, and RL agents within a
unified control or optimisation environment.12,49

Additionally, operator readiness and system maturity limit
the deployment of immersive technologies such as AR/VR
and digital twins. These platforms are increasingly used for
simulation and training, but rarely serve in active control
environments. Visualisation tools and human-in-the-loop
interfaces hold promise for enhancing fault awareness and
decision support, yet their development is fragmented and
lacks standardisation for PtH₂-specific applications.47,48

Future research must focus on bridging these limitations.
First, hybrid models that embed physical laws into learning
architectures could improve adaptability without sacrificing
interpretability.6 Second, developing open-source,
interoperable frameworks for co-simulation would facilitate
integration between AI and physics-based tools. Third,
investment in high-resolution, standardised datasets from
operational PtH₂ systems will be essential to unlock the full
potential of machine learning. Fourth, AR/VR platforms and
digital twins should be developed with greater emphasis on
system interoperability and real-time responsiveness, making

them viable for not just training but also active supervision.
Lastly, regulatory frameworks must evolve in parallel with
modelling innovations. For example, Australia’s National
Hydrogen Strategy and Guarantee of Origin Scheme are
advancing hydrogen certification, dedicated AI governance
remains underdeveloped.53-55 Future modelling research
should align with emerging standards for transparency,
auditability, and validation.

Emerging modelling technologies can evolve from
experimental tools into operational enablers for real-time,
adaptive, and resilient PtH₂ smart grid coordination by
addressing these challenges.

3. Conclusion

This review examined modelling strategies for PtH₂

systems, focusing on three core processes: production,
storage, and grid integration, as a response to renewable
energy intermittency. While traditional methods remain
essential for system design and optimisation, they lack the
adaptability required for real-time coordination and multi-
vector control. Emerging strategies offer greater
responsiveness but are constrained by data requirements,
computational demands, limited interpretability, and
challenges in integration with existing physical models.

Future researches should prioritise hybrid frameworks that
combine physical accuracy with data-driven adaptability by
combining traditional with emerging modelling and AI-based
strategies across the PtH2-integrated smart grid system.
Moreover, future researches should focus on building
standardised datasets, developing interoperable modelling
platforms and expanding the role of real-time visualisation
technologies. Lastly, modelling must be supported not only by
technical innovation but also by regulatory frameworks to
promote transparency, auditability, and certification for
enabling safe, scalable PtH₂ deployment within smart grid.
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