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Abstract

Colorimetric biosensors offer low-cost diagnostics but often suffer from subjective interpretation, environmental variability,
and limited quantification. Artificial intelligence (Al) has emerged as a powerful solution, enabling automated analysis of
chromogenic outputs captured via smartphones or imaging systems. This meta-analysis reviews 32 studies (2022-2025)
applying Al to colorimetric biosensing, comparing performance across model types, sensor formats (e.g., paper, wearable, tube-
based), input modalities (e.g., RGB, absorbance), and analyte classes. Key metrics include classification accuracy, regression
strength (R?), and limit of detection (LOD), benchmarked against non-Al and conventional methods.Al-enhanced platforms
consistently improved accuracy, with context-specific gains in R2 and LOD, especially for weak or overlapping signals.
Smartphone-based RGB systems dominated but required calibration strategies such as CNN-GRU correction and illumination
adjustment. Despite promising results, most studies lacked external validation and relied on supervised learning with small
datasets. Semi-supervised approaches and standardized benchmarks are needed to ensure generalizability. Beyond analytical
metrics, Al offered faster readouts, automated interpretation, and support for multiplexed sensing. Future directions include
integrating augmented reality for enhanced usability and applying Al to sensor design and optimization. Collectively, these
advances position Al-enhanced colorimetric biosensors as scalable, field-ready diagnostic tools with growing potential for
clinical and environmental deployment
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1. Introduction

Lack of accurate, acessible, and rapid diagnostics remain a global
issue for healthcare especially in remote, resource-constrained
settings where over 47% of the global population lacks access to
essential diagnostic tools!. While conventional laboratory-based
diagnostics remian the gold standard, they require sophisticated
equipment, trained personnel, and controlled environments. These
limitations contribute significantly to delayed diagnoses and
diagnostic errors, which are estimated to cause approximately
371,000 deaths and 424,000 permanent disabilities annually in the
United States alone?. To address these, portable colorimetric
biosensors, which are analytical devices that detect presence of target
analytes through visible color changes via enzymatic reactions,
nanozyme catalysis, or pH-sensitive dyes, have gained prominence
as low-cost, easy-to-use alternatives capable of delivering rapid
results without the need for laboratory infrastructure®. Google
Trends data show that global interest in colorimetry more than
doubled from late 2021 to early 2025, reflecting growing attention
towards visual-based diagnostics®. By translating biochemical
interactions into observable color changes, they have found
applications in diverse settings from at-home glucose monitoring and
pregnancy testing to field-based detection of pathogens and heavy
metal ions that might be detrimental to health®. Moreover, their
compatibility with paper-based substrates, lateral flow formats, and
nanozyme-enhanced platforms makes them particularly attractive for
decentralized healthcare and environmental monitoring®. However,
despite their significant improvements over traditional diagnostics,
colorimetric biosensors face persistent limitations related to
subjectivity in optical result interpretation, arising from variations in
ambient lighting, camera resolution, user technique, and perceptual
bias, which can significantly affect the accuracy and reproducibility
of results’. This is a hindrance for their widespread adoption in
critical clinical or environmental applications where precision and
standardisation are essential.

Table 1. Summary of recent reviews on Al-Enabled
biosensors and the distinct scope of this work

Year Focus Key Insights
20247 Al in  biochemical | Reviewed Al's role across sensing
sensors (incl. | platforms, highlighting accuracy gains
colorimetric) and implementation challenges.
20243 Al in electrochemical | Showed Al improves sensor sensitivity
biosensors and wearable adaptability.
2024° Al-integrated wound | Reviewed Al-biosensor synergy for
dressings wound  monitoring and  healing
prediction.
2023%° ML-based sensor arrays | Surveyed ML-enhanced
for bacterial detection colorimetric/fluorescent ~ arrays ~ for
pathogen classification.
2025 Al-enhanced Conducts ~ first metadata analysis
(This colorimetric  biosensors | comparing R, accuracy, and sensitivity
review) (health & environment) across 30+ studies.

To overcome these challenges, artificial intelligence (Al) has
emerged as a transformative solution. By analyzing colorimetric
outputs captured via smartphones or imaging devices, Al algorithms
provide automated, consistent, and quantitative interpretation of
biosensor signals. While previous reviews highlight Al applications
in biosensing, few assess its actual performance gains. This review
fills that gap through a metadata analysis of recent Al-enhanced
colorimetric studies, comparing improvements in sensitivity,
accuracy, and regression strength (R2) over traditional and non-Al

methods. Table 1 summarizes prior reviews to contextualize this
study’s contribution.

2. State-of-the-art of Current Research

This work conducted a metadata analysis of 32 peer-reviewed studies
from 2022 to 2025, sourced via Scopus and Google Scholar using
combinations of search terms such as “colorimetric biosensor,” “Al,”
“accuracy,” and “sensitivity.” Studies were included if they
employed artificial intelligence (machine learning or deep learning)
for the interpretation of colorimetric biosensor outputs and reported
at least one quantitative performance metric (e.g., accuracy,
sensitivity, or R?). Data were manually extracted on sensor type,
sample source, analyte, Al model, and comparative improvement
over non-Al or traditional methods. A comprehensive table detailing
these 32 studies is shown in Table S1 (supplementary).

2.1. Sensor Architecture — Form Factor, Platform, and Al Data
Utilization

Figure 2.4.a shows sensor architectures across the 32 studies
prioritized cost-effectiveness, portability, and user-friendliness,
which are qualities best demonstrated by paper-based sensors (10
studies), wearable microfluidic patches (6), and tube/well-based
formats (11), collectively accounting for over 85% of sensor form
factors. In comparison to conventional laboratory-based diagnostics,
these form factors drastically reduce overheads in terms of materials
and logistics, enabling decentralized testing. Device-integrated
sensors (5 studies), while offering superior performance via
embedded optics or processors, still lack scalability due to their high
cost and need for specialized maintenance. Smartphones were
overwhelmingly used for signal collection (28 of 32 studies),
outpacing other platforms like scanners (4), robotic sensors (1), and
microscopes (1), due to their widespread accessibility, built-in
cameras, and ability to process or upload images in real time. This
sensor architecture across these studies is visualized in Figure 2.1.
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Figure 2.1. Architecture of Al-enabled colorimetric sensors

RGB was the main input for Al models (19 studies), followed by
grayscale (2), absorbance (3), and multimodal setups like RGB with
thermal, mechanoluminescence, or fluorescence (1 each). Its appeal
lies in smartphone compatibility and suitability for CNNs that
process spatial and color features. Absorbance-based methods are
more robust but rely on non-portable, specialized tools. RGB’s
sensitivity to lighting and device variability reduces reliability
without normalization, used in only a few studies (some in Table 2.1).
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These steps are key to improving consistency in real-world settings.
Overall, the move toward RGB-smartphone-Al systems supports
scalable diagnostics, but stronger standardization is still needed to
match lab-grade performance.

Table 2.1 Color correction strategies applied across selected studies

Study Color correction applied

Wang et al.* Trained a CNN-GRU model to adjust for ambient
light and pH variation

Ghateii and | Used flash/no-flash subtraction and lab color space

Jahanshashi % conversion to stabilize lighting conditions

Liu et al* Applied pixel-wise color correction using a 24-color
checker to calibrate camera-based inputs

2.2 Purpose and Sample Type — Monitoring Targets, Matrices,
and Analytes

Figure 2.4.b reveals that sensors are mainly applied to clinical
diagnostics (10/32 studies), metabolic monitoring (7), and food
safety (6), with fewer targeting pathogens (4), cellular assays (2), or
multiplex panels (1). This mirrors the prevalence of accessible
samples like urine (4), sweat (3), saliva, and tears, ideal for wearable
or point-of-care use. However, this also suggests an application bias,
favoring well-characterized analytes in controlled settings. Food and
environmental samples (9 studies combined), which present greater
matrix complexity and signal noise, remain underrepresented despite
being where Al’s disambiguation strengths are most needed. Current
trends favor feasibility over impact, applying Al where outputs are
already interpretable rather than where its value is most critical.

Notably, many Al models have been applied to analytes that already
produce vivid and monotonic color changes, such as glucose and pH,
where human-readable output is already largely feasible. While this
enables automation and precision, it may underutilize AI’s potential.
As shown in Figure 2.2, analytes like HDL, LDL, and troponin
exhibit weaker or grayscale transitions that are far less
distinguishable visually. These cases present the strongest
justification for Al integration yet remain underrepresented. Rather
than reinforcing already discernible signals, Al's role should be
expanded to support analytes with ambiguous visual responses,
where its capacity for pattern recognition and subtle gradient
differentiation can meaningfully extend the reach of colorimetric
sensing.

ANALYTE REPRESENTATIVE SENSOR COLOR RESPONSE # OF STUDIES
LOW CONC. _— HIGH CONC.
GLUCOSE 5
pH
LACTATE 1

cTnil
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4]
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Figure 2.2. Colorimetric responses for selected analytes.

2.3 Al Use Case and Model — Task Types and Algorithms
Employed

Al in colorimetric biosensing has mainly focused on regression (18
of 32 studies) and classification (13), aligning with the direct
relationship between color change and either concentration or
categorical outcome. Regression typically maps RGB patterns to
analyte levels, while classification supports test result interpretation.
These applications suit sensors targeting analytes with clear,
monotonic color shifts like glucose or pH. However, this also reflects
a cautious approach where Al is often applied where signal-response
relationships are already well defined. More advanced tasks like
clustering, anomaly detection, or multimodal fusion remain rare,
despite their potential for handling complex or noisy signals.

Figure 2.3 shows a mismatch between Al task complexity and the
models used in reviewed studies. Simpler regression tasks were most
common and often addressed with traditional ML models like
random forests, even when signals were nonlinear or noisy. Deep
learning was more common in classification tasks, particularly for
spatial data, but rarely used for complex tasks like object detection or
multimodal fusion. For example, Yu et al.?” used an ANN for RGB-
thermal fusion but didn’t apply advanced architectures like attention
or transformers. Unsupervised methods like PCA or t-SNE were
limited to visualization. This suggests model selection is often based
on familiarity, not task fit. As a result, underspecified models may
limit performance in complex or noisy settings and reduce
generalizability outside the lab. Treating model architecture as a key
design element, aligned with task demands and supported by
benchmarking, will be essential for advancing Al in biosensing.
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Figure 2.3. Al model use by task type, showing ML dominates
regression while DL is underused in complex tasks.

2.4 Performance Improvement — Gains Attributed to Al and
Benchmarks

Across all 32 studies, Al integration was credited with enhancing
sensor performance across multiple axes. The most reported gains
were improved accuracy (~20 studies), enhanced sensitivity or lower
limits of detection (~7 studies), faster or automated interpretation (~3
studies), and improved pattern resolution for multiplexed or
overlapping signals (~4 studies). Al enabled detection of subtle
analyte differences, automated endpoint interpretation, and
separation of overlapping outputs in multi-analyte sensors. While
about 7 studies lacked a baseline comparison, those that did
consistently showed Al outperforming visual reads, thresholds, or
uncorrected data. Table 2.2 highlights four representative examples.
Cui et al.? used YOLOVS5 to improve bacterial classification to 95%.
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Yu et al.?” combined colorimetric and thermal signals via ANN to
surpass LOD for cardiac troponin. In Zheng et al’s work'6, CNNs
reduced assay readout time withing minutes to seconds, while
originally taking hours. Ranbir et al?®. and Singh et al.>° used PCA-
LDA to fully separate volatile amines in meat, showing AI’s strength
in multiplex detection. These examples illustrate both performance
gains and how targeted Al use can expand the utility of colorimetric
sensors in real-world settings. However, while showing these gains,
a more quantitative approach is required to fully grasp the importance
of Al in colorimetric biosensing, as explored in subsequent section.

2.4 Meta-analysis of performance improvements
2.4.1. Limit of detection (LOD)

We compared LOD values across studies, as LOD reflects the lowest
detectable concentration above background noise and is key to
assessing sensor sensitivity. This helps determine whether Al
meaningfully improves detection limits in real-world use.
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Figure 2.4 Sankey diagram for Al-enhanced colorimetric biosensor studies sorted by (a) sensor architecture; (b) purpose and sample types,
(c) Al use cases, model classes, and algorithms; and (d) performance improvements (comprehensive table in Table S1)



SIIE 1(4) X=X (2025)§ Ricacho et al.

Analyte

Cardiac troponin (¢Tnl) in human serum
Cholesterol in tears

0.99

LOD (uM, log scale)

0.96

(a) os| (D)

COVID-19 antibody in human serum
Glucose in tears
* H202 in cells
* HDL in human serum
Histidine in meat
* HVAin urine
LDL in human serum
Spermine in meat
Tryptamine in meat
VMA in urine

Method

B3 Al-based

E3 Colorimetry + smartphone
E3 Colorimetry only

B3 Typical/Optimal

Figure 2.5. Log-scale distribution of LOD values across colorimetric detection methods, highlighting analyte-level spread and comparison

to typical/optimal reference values

LOD data from Al-enhanced studies were grouped into four
categories: Al-based, colorimetry only, colorimetry plus smartphone
(non-All), and typical values in human or food samples. Each analyte
within a study was treated as a separate data point. For baseline
methods lacking internal controls, LODs were sourced from recent
reviews or similar studies. Full data appear in Supplementary Table
S1.

As shown in Figure 2.5.a, Al-based platforms had slightly lower
median LODs than typical concentrations in human and health
samples, highlighting significance in diagnostics, but variability was
high across all groups, especially compared to non-Al smartphone-
assisted methods. Mann-Whitney U tests (Table S4) showed no
statistically significant differences (all p > 0.15), indicating that Al
alone doesn’t consistently improve sensitivity. Outliers like del Real
Mata et al’s'® 1 pM H.O: detection with a plasmonic sensor and
random forest model, or Yu et al’s?” 10.8 pg/mL troponin detection
using ANN fusion, highlight AI’s potential under optimized setups.
However, factors like sensor materials, analyte properties, and
sample matrices often have greater influence. Al was most impactful
in cases with overlapping or faint color signals, e.g. Cui et al’s use of
YOLOV5 for low-level bacterial HAase, and Ranbir et al’s?®: and
Singh et al’s.3® PCA-LDA models resolving mixed biogenic amines.
In contrast, analytes with strong color change like glucose or pH
showed minimal LOD gains, though Al improved consistency and
automation. These results suggest Al should be applied selectively,
especially for low-contrast or nonlinear signals. Broader adoption
will require better benchmarking, task-specific Al design, real-world
validation, and comparison to regulatory standards or reference
methods.

2.4.2. Model R?values

We included Rz comparisons across studies as it reflects how well a
sensor’s output follows analyte concentration trends making it an
essential indicator of dose-response consistency, even if not a direct
accuracy measure. R2 data were grouped by method type (Al-based,
colorimetry-only, and smartphone-assisted non-Al) and are
summarized in Table S3 and visualized in Figure 2.5.b. Al-based
platforms showed higher average R? values (0.952-0.9999) and
wider spread than conventional methods, with several achieving

near-perfect calibration under controlled conditions. However,
Mann-Whitney U tests (Table S5) indicated these differences
weren’t statistically significant (p = 0.075 vs. smartphone; p = 0.14
vs. colorimetry-only), suggesting Al doesn’t consistently improve
regression fit across all cases. The best R2 values were seen in studies
with controlled imaging, high signal-to-noise ratios, or carefully
curated datasets. Study 18 reached R? = 0.9999 for cardiac troponin |
using an ANN with thermal and color fusion, while Study 13
achieved robust fits for glucose and cholesterol using ensemble
models that corrected ambient lighting. By contrast, non-Al methods,
especially smartphone-only approaches, showed greater performance
drops under uncontrolled conditions, with R2 values around 0.79-
0.80 for LDL and HDL, likely due to lighting variability. These
findings suggest AI’s greatest strength lies in stabilizing regression
under noisy or nonlinear signal conditions. However, high R? alone
is not sufficient. Some colorimetry-only systems still performed well
for monotonic, high-contrast analytes, highlighting the continued
importance of sensor chemistry. To ensure robust performance,
future work should combine R2 with broader metrics like residual
analysis, external validation, and real-world testing. Overreliance on
R2 may inflate confidence, particularly in the absence of clinical or
field verification.

2.4.2. Accuracy

Unlike limit of detection (LOD) and regression metrics such as R?,
classification accuracy lacks a consistent universal baseline in
biosensing literature. The diversity of decision thresholds, analyte
classes, and labeling protocols across studies means that accuracy
figures are highly context dependent. As such, we do not compare
absolute values across platforms. Instead, we focus on within-dataset
patterns observed across sensor architectures, analyte groups, and Al
model classes, as summarized in Figure 2.6a and Supplementary
Table S6. Overall, Al-enhanced biosensors consistently
outperformed non-Al platforms, with the majority of Al-based
systems achieving accuracies above 90%, and several reaching the
100% benchmark across diverse sensing contexts. These included
both deep learning and hybrid ensemble methods, suggesting the
benefits of nonlinear pattern recognition, especially when signal
variability or interference is present.
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Figure 2.6. Bubble plot of classification/quantification accuracy of Al-enhanced colorimetric biosensors, mapped across sensor form factors

(left) and analyte groups (right) by Al model class

At the architecture level, wearable patch sensors, when paired with
CNN-based models, demonstrated high robustness and accuracy,
often exceeding 95% for multi-biomarker sweat patches. Study 14
achieved 100% classification for glucose, pH, and lactate, enabled by
a VGG16 CNN that captured subtle differences in spatial signal
distributions under ambient conditions. Similarly, paper/uPAD
sensors paired with traditional ML models (e.g., Random Forest,
SVM) also performed well, particularly for urinary and metabolic
analytes, where structured chromogenic arrays generated
reproducible color fingerprints. Study 11, for example, achieved 97%
accuracy in urinary tract infection classification using an SVM-RF
ensemble.Among analyte categories, tumor and cardiac biomarkers
benefited most from Al integration. The fusion of thermal and optical
signals in Study 18, using an ANN, yielded accurate discrimination
of cardiac troponin | (cTnl), reinforcing the strength of multimodal
biosensing for critical clinical analytes . Additionally, for biogenic
amines, LDA-based models maintained >95% accuracy, even under
food matrix variability.

In contrast, non-Al systems, especially those relying on smartphone
cameras with simple thresholding or raw RGB interpretation, showed
greater susceptibility to lighting inconsistencies, with accuracy often
falling to the 85-90% range. These limitations were particularly
evident in complex backgrounds like food spoilage detection or
overlapping chromophores, where Al methods (e.g., PCA-LDA
fusion) restored classification clarity. From the sensor form
perspective, tube- or well-based formats showed generally stable
accuracy due to controlled optics, though wearable and paper-based
formats 6abelled them when enhanced by Al. Notably, the highest
accuracies clustered in deep learning and object detection classes
(Figure 2.6a left panel), reflecting their superior ability to extract
spatial and contextual features from raw image data. Together, these
trends suggest that while chemical design and sensor chemistry
remain foundational, Al integration—especially through CNNs,
hybrid models, and transformer-based architectures—can
significantly amplify diagnostic reliability, especially under variable
environmental or user-handling conditions. Future work should
explore adaptive learning for personalized calibration and establish

standardized accuracy benchmarks across sensor classes.

3. Synthesis and outlook

1. On the use of smartphones and calibration needs- The collected
studies make clear that coupling Al with colorimetric biosensors can
dramatically enhance their capabilities, turning simple color changes
into rich quantitative and actionable data. A unifying theme is the
leveraging of ubiquitous hardware, particularly smartphones , as both
the data acquisition device and computation platform. This
convergence, seen in roughly 90% of the articles, underscores a
practical advantage: Al algorithms deployed on consumer
smartphones can transform point-of-care diagnostics, allowing
immediate analysis in the field. However, this shift toward RGB
smartphone-based pipelines brings new challenges in data
normalization. Different phone cameras and ambient lighting
conditions can skew color readings, requiring robust calibration to
ensure reproducibility®”. Encouragingly, several teams have
introduced clever calibration techniques to tackle this issue. For
example, cloud-connected analysis frameworks now incorporate
hybrid models (CNNs coupled with recurrent networks) to auto-
correct for illumination variances and sensor-specific biases. Such
approaches (e.g. a multichannel CNN-GRU pipeline) have achieved
R2 values ~0.99 by learning to adjust for color temperature
differences in images, effectively standardizing results across
varying conditions. Moving forward, continued innovation in on-
device calibration (from one-time color card references to real-time
algorithmic corrections) will be essential to fully capitalize on
smartphone-enabled Al sensing.

2. On generalizability and data-efficient modelling- Despite the
impressive performance gains reported, most studies lack rigorous
external validation, highlighting a critical gap between controlled
experiments and real-world deployment. Typically, models are
trained and tested on the same lab-generated dataset; few works
verify that an Al model trained on one device or sample set holds up
on others. This absence of external validation and cross-platform
testing raises concerns about generalizability, an issue that future
research must address by incorporating independent test sets, multi-
center trials, or reference sample exchanges. Likewise, the underuse
of semi-supervised learning and data augmentation is notable. Many
Al models for colorimetric sensing rely on relatively small labeled
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datasets, yet few studies leverage the abundance of unlabeled data or
synthetic data generation to improve model robustness. Introducing
semi-supervised algorithms (which can learn from unlabeled color
images) or augmentation techniques (to simulate variations in hue,
intensity, backgrounds, etc.) could significantly enhance model
resilience to real-world variability at minimal cost. Another insight
from our meta-analysis is that AI’s added value appears tied less to
the analyte type and more to the ambiguity of the signal. In other
words, when an assay produces straightforward, high-contrast color
changes (e.g. a single intense color shift for a positive result),
traditional analysis may suffice. But as the color outputs become
more complex, such as subtle gradations, multi-analyte sensor arrays,
or overlapping chromatic responses, advanced machine learning
yields disproportionate benefits®®. Indeed, deep learning models
excel at deciphering high-dimensional color patterns that humans or
simple algorithms struggle to interpret. This trend suggests that future
developers should strategically deploy Al in scenarios of inherent
signal complexity or uncertainty, where its pattern-recognition
strengths are most impactful. It also implies that reporting
performance as a function of assay complexity (rather than only by
analyte category) could be a more meaningful way to evaluate new
Al-enhanced biosensors.

3. On practical gains: speed, multiplexing, and robustness- From a
practical standpoint, Al-driven colorimetric analysis offers
improvements that extend beyond raw analytical metrics,
contributing to better usability and reliability of biosensors. One clear
advantage is speed: once trained, an Al model can interpret a sensor’s
color output in milliseconds, potentially enabling near real-time
readouts and quicker decision-making in point-of-care settings. In
some cases, algorithms can even detect partial color changes before
a reaction is fully complete, shortening the time-to-result. Another
benefit is the capacity for multiplexed detection, that is, analyzing
multiple indicators simultaneously. Traditional colorimetric assays
struggle when multiple test spots or mixed-color outputs must be
interpreted at once, whereas machine learning can untangle such
composite signals with high accuracy. For example, neural network
models have distinguished multiple antibody responses in a single
assay with ~89% accuracy, outperforming conventional methods by
a significant margin®. In general, as more analytes are encoded into
color-based tests, Al will be instrumental in accurately classifying
outcomes across a multidimensional color space. Equally important
is the robustness that Al brings: sophisticated models can
accommodate variability in sample quality or environmental
conditions (such as inconsistent lighting or user handling) better than
rigid threshold-based interpretations. Notably, convolutional neural
networks have maintained strong performance even when images are
noisy or under suboptimal lighting, a resilience crucial for real-world
applications. This robustness reduces the incidence of false negatives
or false positives caused by minor perturbations, thus improving trust
in home or field deployments.

4. On the horizon: integration with AR/VR and digital design-
Looking towards the horizon, there are exciting opportunities to
integrate emerging technologies like augmented and virtual reality
(AR/VR) with Al-based colorometric sensing. Early demonstrations
have shown that AR smartphone apps can overlay interpretive
guidance or even embed fiducial markers into the test to aid real-time
result reading. In the future, a user might simply point a phone at a
paper sensor and see a quantified result or risk assessment pop up
instantly via AR, lowering the barrier to accurate self-testing. VR
environments could also serve as training tools, simulating a wide
range of colorimetric outcomes for clinicians or as a platform to

virtually prototype sensor designs. Moreover, Al itself can be applied
beyond analysis — for instance, using machine-learning optimization
to design better colorimetric assays (selecting optimal reagent
combinations or layout to maximize signal differentiation) or to
create digital twins that predict how a sensor will behave under
various scenarios. These exploratory directions, while in nascent
stages, underscore the expansive potential at the interface of smart
algorithms and biosensing. In summary, the future outlook for Al-
enhanced colorimetric biosensors is one of continued convergence by
merging accessible hardware, powerful algorithms, and user-centric
innovations to deliver faster, multiplexed, and more robust diagnostic
solutions. The next few years will likely witness not only incremental
performance improvements but also a maturing of the field through
standardized evaluation protocols, open datasets for model training,
and perhaps the advent of intelligent sensors that learn and adapt
during use.
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Table S1. Comprehensive table for the 32 reviewed studies on Al-enabled colorimetric biosensor

Sensor Type Analyte Sample Detection Signal collection AI Model Role of AI (with Reported Classificatio Regression Fit Quality
Source Mechanism platform for Al Subgroup Tags) LOD n Accuracy Accuracy (R?orr)
(inverted
MAE or
similar)
Wearable microfluidic ~ Vitamin C, H'Human tears  Analyte-induced Smartphone (RGB CNN-GRU Image-to- Not Not reported 0.001 R2=10.998
colorimetric sensor !! (pH), Ca*, color change in image capture) (1D for pH, concentration reported (MAE)
protein PDMS microfluidic 3D for regression using
patch captured as others) CNN-GRU
RGB signal for (Regression for
concentration Quantification)
mapping
Smartphone-based Hyaluronidas Clinical swabs, Hyaluronic acid (HA) Smartphone YOLOv5  Object detection and 10 92% Not R>=0.97
hydrogel colorimetric e (Haase) food degradation triggers (camera) bacteria classification CFU/mL  (between reported
sensor 2 from bacteria CPRG release, reacts (Image gram + and
with B-galactidose Classification, Object gram -)
and generates color Detection)
changes
Microfluidic plasmonic- H-O: Cancer cell ~ Amplex Red reacts Microscope (image Random Binary classification 1 91% Not Rz=0.98
enhanced colorimetric culture with H202 in presencecapture) Forest of H20: levels from picoMolar (between highreported
sensor 13 medium of HRP, forming a Classifier ~RGB image (Image and low
pink dye; signal Classification) concentration
amplified by classification)
plasmonic
nanostructures
Lip-applied sensor 4 pH Skin surface  Anthocyaninl in lip  Smartphone (selfie CNN Lip color Not 92% (0.92  Not Not reported
(via lip pigment undergoes camera) classification into pH reported reported
application)  pH-triggered color levels using CNN
shift captured via (Image
selfies Classification)
Multicolorimetric sensor HVA, VMA Human urine Redox reaction Smartphone (RGB PCA + LDA Multivariate 0.22 uM  Not reported 100% R2=0.999
array (AuNR-AgNP- (tumor between HVA/VMA image) + PLSR regression and (HVA) and (HVA)
based) (Plasmonic, markers) and Ag" causes silver classification of 0.29 uM
Paper-based) ¥ shell formation on Au tumor markers (VMA) R*=0.999
(VMA)

nanorods, altering
LSPR and generating
multicolor shifts

(Regression, Dim.
Reduction +
Classification)
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Multiplexed Colorimetric Temperature, Wound Colorimetric sensors Smartphone (patch CNN Image-based Not 94-96% (blank) (blank)
Patch (PETAL) !¢ pH, TMA, exudate (rat using liquid crystals, image) classification of reported
uric acid, models) organic dyes, wound biomarkers
moisture enzymes, and metal (Image
ions Classification)
PDA-based lateral flow COVID-19  Clinical serum PDA-NPs conjugated Smartphone (test ~ Vision Band detection and 160 ng/mL Not reported Not Not reported
immunoassay (LFIA)  neutralizing with RBD antigen  strip image) Transformer antibody reported
(Lateral Flow) 7 antibody bind to antibodies; (ViT) + quantification using
reduced PDA binding ResNet50  ViT (Regression,
causes lighter test Object Detection)
line; image processed
via T/(T+C)
grayscale ratio
Dual-dye colorimetric =~ SARS-CoV-2 Nasopharynge Isothermal Smartphone or DETR-based Tube segmentation  100% (blank) (blank) R2=0.998
RT-LAMP assay (Lateral RNA al swabs amplification causes camera (reaction model and COVID result  (reduced to
Flow) '8 pH drop, triggering  tube image) (ResNet50 + classification (Object 83% when
color change in Transformer)Detection, Image diluted)
Xylenol Orange and Classification)
Lavender Green dyes;
image analyzed post-
reaction
Paper-based multiplexed Cardiac and Human serum Targets (e.g., cTnl, Scanner or CatBoost + Color feature Ctnl 75.2% for Not 0.999,
colorimetric biosensor  lipid HDL, LDL) separatedsmartphone (paper PLS-DA, t- extraction and (1.210x10"classification reported 0.9991,
(Paper-based) ' biomarkers and detected via strip image) SNE disease classification -5 ug/mL) of acute 0.999
electrophoresis- (ensemble) (Dim. Reduction + myocardial respectively
induced color change Clustering) HDL infarction
on paper (435.815
ug/mL)
LDL
(383.127
ug/mL)
Urinary disease Urinary Human urine  Colorimetric reaction Smartphone (sensor Random Pattern classification Not 97% (blank) (blank)
colorimetric test array ~ disease of multiple sensors  array image) Forest, of urinary markers  reported classification
(Paper-based) 2° markers (metal—organic SVM, kNN (Image for UTI
complexes and Classification)

chromogenic
reagents) with urine
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constituents captured
via smartphone

Colorimetric sensor usingGlucose Urine samples Glucose induces colorSmartphone Image Not 87.6% Not Not reported
AuNPs?! change to AuNP processing reported  accurate reported
and glucose
illumination concentration
correction prediction
for accurate
color
interpretatio
n across
varying
lighting
conditions
Microfluidic sensor for  Glucose, Synthetic tears Gox/ChOx-mediated Smartphone (app- Deep Neural Regression for Glucose = 100% RMS=0.386  0.996
artificial tears cholesterol, oxidation produces integrated fPAD  Network  pH/glucose/cholester 131 uM (glucose)
(Microfluidic) 2? pH H:0., catalyzing images) (DNN) ol from artificial tear
TMB color change images (Regression Cholestrol 0.997
via HRP; universal for Quantification) 217 uM (cholesterol)
pH indicator used,
smartphone captures
RGB data
Sweat-based biosensor  Glucose, pH, Human sweat Chromogenic Smartphone VGG16- Color regression of Not 100% (blank) R2=10.9999
(Wearable) 2 lactate reactions triggered by (microfluidic chip based CNN sweat biomarker reported  classification for three
sweat analytes across images) levels (Regression for accuracy for biomarkers
spatially arranged Quantification) all
compartments; color biomarkers in
changes recorded via terms of
smartphone quantity
HeLa cell-based Live HeLa  HeLa cell pH-sensitive Smartphone Mask- Quantification of live 51 x 10*  98% (blank) R2=10.959
metabolic colorimetric  cell viability culture achromatic dye (achromatic RCNN cell images (Image cells
sensor 2 (metabolic transitions (black to saturation images) Classification)
activity) orange) based on cell

density; saturation
analyzed via
smartphone images
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Colorimetric biogenic ~ Biogenic Chicken meat Metal-azodye UV-Vis scanner PCA, LDA, Colorimetric amine 0.378 ppm Not reported 100% Not reported
amine sensor for meat >° amines samples complex forminga and smartphone =~ PLSR pattern classification (spermine) accuracy
fingerprint-based (portable strip) (Image (cross
colorimetric Classification) validation),
response; analyzed
via UV-vis
absorbance and RGB §3% for
imaging 1nte.rference
testing
Tea polyphenol sensor  Tea Fermented RGB image Smartphone (RGB SVM Regression and Not Not reported Rc = 0.886,Not reported
during fermentation?®  polyphenols green tea (w/ extraction of CSA  image of sensor quality tracking for reported RMSEC =
ultrasound)  and multivariate array) fermentation 0.042 mg/g,
calibration (Regression for Rp =0.862,
Quantification) and
RMSEP =
0.043 mg/g
Multiplexed troponin Cardiac Human serum Cascade nanozyme- Smartphone + Artificial Feature fusion from 10.8 (blank) (blank) R2=0.9965
sensor (Nanozyme- troponin | based colorimetric ~ thermometer Neural color and temperaturepg/mL
based) ¥’ (cTnl) and photothermal (absorbance + Network signals for cTnl
signals from h- thermal) (ANN, 3 (Multimodal Fusion)
Prussian Blue in hidden
TMB-H-0: system layers, 64
neurons)
Sweat ion and pH patch Na', K*, pH Human sweat Printed chromogenic Smartphone (sweat Explainable Signal mapping for classified 100% (blank) (blank)
sensor 28 during reagent zones and patch image with CNN (with electrolyte and pH  and (>50 nM)
exercise reference dye; color reference dye) ratiometric balance (Regression quantified
change recorded for self- for Quantification)  with 100%
in-situ analyte calibration) accuracy
detection
Thiol-level cancer Thiols (Cys, Standard Thiol-induced UV-Vis reader or Linear Clustering of thiol- 50 nM 100% Not Not reported
detection sensor % GSH, Hey, solutions inhibition of metal ~ smartphone (RGB Discriminantlevel profiles for thiol (not accuracy to reported
DTT, MCH, ion-TPA@GQD absorbance Analysis disease classification specified) separate and
TGA) nanozyme pattern) (LDA) (Dim. Reduction + discriminate
peroxidase-like Clustering) from different
catalysis of TMB- thiols

H:O: reaction,
creating distinct color
patterns
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(“fingerprints”) for
LDA discrimination
Biogenic amine sensor  Biogenic Meat and Metal-azophenol Smartphone or PCA, LDA Color pattern Tryptamine100% (LDA) Not R*=0.96
array 3¢ amines ( cottage cheese complexes (C1-C11) UV—Vis scanner recognition of food 0.40 ppm reported (Tryp), 0.97
) respond to amines  (sensor array spoilage markers o (Spermine)
tryptamine with colorimetric ~ image) (Image Histidine
and “ﬁn LT . .
) gerprint” patterns Classification) 042
spermine) across 10 UV—Vis o ppm
channels Spermine
0.45 ppm
Spermidine
0.66 ppm
Bimodal Visual Sensors Cariogenic ~ Oral swabs, in Bacterial acid Smartphone (dual- CNN-based Segmentation and <1 mg/mL 97.7% Not Not reported
Based on bacteria vitro culture  production mode model bacterial profile (estimated) accuracy in  reported
Mechanoluminescence an(through pH (colorimetric pH shift mechanoluminesce analysis (Object the precise
d Biosensing 3! from lactic via anthocyanin) and nt + color image) Detection, Image )
acid) tooth pressure via Classification) d.ecoupl.mg of
mechanoluminescenc visual signals
e
Heavy metal colorimetric Cr®*, Fe*, Water and AchE inhibition by UV-Vis PCA Metal concentration 0.81 pM, 98% accuracy (blank) 0.95,0.96,0.9
sensor 32 AP, Ni*, serum samples metal ions alters spectrophotometer regression using pixel0.75 uM, inp 9
Cu?t, Zn** enzymatic reaction  (absorbance scan of intensity (Regression 1.06 uM respectively
with chromogenic  arrays) for Quantification)
substrate, producing
color shift patterns cu2+,
Cr3+,
Al3+,
Tea authentication array Tea Tea infusion TMB-H:0: Smartphone or LDA, Classification of Not Discriminatio Not Not reported
sensor 33 polyphenols, samples chromogenic system scanner (nanozyme Decision  authentic vs reported naccuracy reported
adulterants catalyzed by Bpy-Cu array image) Tree (DT), adulterated tea via .
and Asp-Cu HCA color (Image was 100%.
nanozymes; Classification)
inhibition by
polyphenols alters
signal
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AFBI detection in Aflatoxin B1 Peanut extract Aflatoxin B1 (AFB1) Smartphone ANN AFBI concentration 0.6845 ng (blank) (blank) R2=10.9974
ground peanut (AFB1) (ground in food (e.g., (fluorescent + prediction from patchmL/1
samples ** sample) peanuts) colorimetric image (Regression
microneedle patch for Quantification)
image)
CO: strip colorimetric ~ CO: Ambient air  Color change induced Robotic camera andMulti-target CO: level regression 400 ppm  (blank) RMSE = (blank)
sensor 3 (gas sample) by CO--mediated pH RGB sensor Bayesian  from colorimetric 0.27%
shift, captured as (automated Optimizationsignal (Regression
RGB AE across a 6- platform) (BO) for Quantification)
receptor array integrated
with robotic
plcaatform
Paper-based glucose Glucose Human Enzyme-catalyzed = Smartphone Ensemble  Glucose intensity Not 95% (TMB  (blank) R2=0.97
sensor 3¢ plasma colorimetric reaction (flash/no-flash Bagging prediction using Lab reported  color (high conc),
using glucose oxidaseimage pair) Classifier  image values indicator), Rz=10.95
(Gox) and (EBC), (Regression for 91% (KI (low conc)
horseradish Linear Quantification, color
peroxidase (HRP), Regression Classification) indicator)
with TMB for low
and KI for high
glucose concentration
detection
Urine neurotransmitter ~ dopamine Human urine Aggregation-based  Smartphone (LSPR LDA, PLSR Catecholamine level 0.3, 0.5, 100% (LDA) (blank) R2=0.99 for
sensor 37 (DA), LSPR shift from color shift image estimation using 0.2, and 4 analytes
epinephrine AuNP interactions at under pH feature-based models 1.9 mM for
(EP), different pH variation) (Regression for DA, EP,
norepinephrin conditions Quantification, NEP, and
e (NEP), Classification) LD,
and levodopa
(LD)
Smart pPAD for pH and pH, Glucose Aqueous lab- For pH: Pani-NP Smartphone RFR (best), RGB analysis for =~ None (blank) (blank) R2=0.96
glucose 38 prepared undergoes EB to ES  (dipstick color DTR, SVR pH/glucose detection reported (pH), 0.92
solutions state transition; For image under in uPADs (glucose)
glucose: Gox ambient light) (Regression for
generates H20, Quantification)

reducing Pani-NPs,
causing color shift
(blue—green)
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Milk B-lactoglobulin stripf- Milk Glucose-fueled EBFCSmartphone Decision  Grayscale intensity  0.0081 93% Not Not reported
(Lateral Flow)* Lactoglobulin for electrochemical + (colorimetric + Tree (DT), detection for f3- ng/mL, reported

HRP/ABTS voltage strip Random Lactoglobulin

colorimetric detectionreadout) Forest (RF), (Regression for

using smartphone- k-NN, SVM Quantification)

assisted image

processing
Albumin detection strip Albumin Urine Protein concentration Smartphone KNN Intensity ratio 4 mg/L 96% Not Not reported
(Lateral Flow)* triggers color change (dipstick image classifier (vs computation for reported

on dipstick; captured under varied RF, SVM) albumin strip

by smartphone under lighting) (Regression for

varied lighting Quantification)
H20: sensor Hydrogen  Exhaled RGB signal mapping Smartphone (RGB ANN Colorimetric pixel- 0.011 ppm 94% accuracy 0.941
(Spectrophotometric) ' peroxide breath via colorimetric dye mapping of breath Regression based regression of for

response (Eosin blue, test strip) H20: (Regression for quantification

KmnQOs., Starch- Quantification)

Iodine)
Saliva uric acid tPAD  Uric Acid Saliva Prussian blue Smartphone (WPAD Decision ~ Color space Not (blank) MAE=4.2 Not reported
(Microfluidic) # generation reaction  salivary test Tree regression for uric  reported ppm

with salivary UA image) Regressor  acid quantification

forming blue (ML), (Regression for

complex Multiple Quantification)

Polynomial

Regressor
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Table S2. Reported LOD values in Al-based studies, colorimetry only, colorimetry plus smartphone, and typical values in

food, human, and environment samples

(cTnl) in human
serum

4.52x10-16 uM

(0.013 pgmL—1)

3.9X107* pg/ml

Analyte LOD Al-based (pM )* LOD colorimetry only* LOD colorimetry plus Typical values*
smartphone (no Al)*
H202 in cells 0.000001 pM 10.24 pM*3 0.24 pM* 0.01 pM%
VMA in urine 0.22 uM 0.340 uM 0.260 uM*® 28.7 uM
HVA in urine 0.29 yM 0.313 uM 0.397 pM* 41 uM
COVID-19 antibody 1.07 x 10°¢ 6.00 x 1075 uM*’ 2.11x10° uM None
in human serum
(9 ng/uL)

(160 ng/mL)
Cardiac troponin 5.06x10 10 5.44 x 107 uM 1.63x108 uM 48
(cTnl) in human
serum

(1.210 x 107-5 ug/mL) (0.013 pg mL—1) 3.9X107* pg/ml 0.02 ng/L*
LDL in human serum | 1.277 x 10~ uM 7.33 x 10710 uM>0 1.77x107°85¢ 0.53%

(383.127 ug/mL) (2.1999 pg/mL) (5.31 mg/dI) (100 mg/dL)
HDL in human serum | 1.09 uM 2 mg/dL>3 2.03 x 107 uM

(8.10 mg/dI)5!

(435.815 ug/mL) 5.00x10—8 uM 40 mg/dL
Glucose in tears 131uM 0.32 uM > 13.49 uM> 0.2 mM%6

(23.61 mg/L) 0.05765 mg/L (360 mg/L)
Cholesterol in tears 217 uM 1.9 uM®” 0.00085 M 1.9 uM

(83.87 mg/L) 0.7356 mg/L
Spermine in chicken 1.87 uM 0.57 um>® 0.4644 uM 988.4 uM
meat

0.378 ppm 0.115 mg/L 0.094 ug/mL5° 200 ppm®°
Cardiac troponin 10.8 picogram/mL 5.44 x 1076 uM .63x10°8 um* 0.02 ng/L*

Tryptamine in meat 2.50 uM 20 nMs? 1.74 pg/L 82 5 mg/kg meat5?
0.40 ppm 0.0032 mg/L 1.086 x 10 uM

Histidine in meat 2.71 uM 0.1 pM® 8 ug/L% 9.0 uM*®®
0.42 ppm

Spermine in meat 2.22 M 0.57 uMm>8 0.4644 uM 988.4 uM
0.45 ppm 0.115 mg/L 0.094 ug/mL>° 200 ppm*®°

*Values were converted using molar masses




Table S3. Reported R? values in Al-based studies, colorimetry only, and colorimetry plus smartphone

Analyte LOD Al-based (pM ) LOD colorimetry only LOD colorimetry plus smartphone (no
Al)
H202 in cells 0.998 0.9972 0.997
VMA in urine 0.999 0.996 0.997
HVA in urine 0.999 0.995 0.998
Cardiac troponin (cTnl) 0.999 0.990 0.981
in human serum
LDL in human serum 0.999 0.9946 0.7917
HDL in human serum 0.999 0.9918 0.8018
Glucose in tears 0.996 0.994 0.995
Cholesterol in tears 0.997 0.993 0.993
Spermine in chicken 0.959 0.977 0.99209
meat
Cardiac troponin (cTnl) 0.9999 0.990 0.981
in human serum
Tryptamine in meat 0.9596 0.9969 0.987
Histidine in meat 0.952 0.9852 0.982
Spermine in meat 0.967 0.977 0.99209
*values correspond to cited studies in Table S2
Table S4. Statistical testing (Mann-Whitney U test) for LOD
Pair p-value
Al-based vs Colorimetry + smartphone p =0.1610359
Al-based vs Colorimetry only p =0.3011529
Al-based vs Typical/Optimal p =0.2747575

*Statistical testing was conducted using R Studio’s Wilcoxon rank-sum tests
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Table S5. Statistical testing (Mann-Whitney U test) for R?

Pair p-value
Al-based vs Colorimetry + smartphone p =0.07539264
Al-based vs Colorimetry only p =0.1422894

*Statistical testing was conducted using R Studio’s Wilcoxon rank-sum tests

Table S6.Data for bubble plot analysis with information obtained from Table S5

Al Subgroup Analyte Classification | Analyte Group Sensor Type
Accuracy
Object Detection Hyaluronidase (HAase) 92 | Enzymes / Enzyme Activity Tube- or Well-Based
Sensors
Traditional Machine Ha,,04,, 91 | Small Molecule Metabolites Tube- or Well-Based
Learning Sensors
Deep Learning pH 92 | Electrolytes/ lons Wearable Patch Sensors
Ensemble / Hybrid HVA 100 | Tumor / Disease Biomarkers Paper/1%4PAD Sensors
Models
Ensemble / Hybrid VMA 100 | Tumor / Disease Biomarkers Paper/T¥sPAD Sensors
Models
Transformer-based SARS-CoV-2 RNA 100 | Pathogen/Bacteria Detection Tube- or Well-Based
Models Sensors
Unspecified or Black- Cardiac and lipid 75.2 | Tumor / Disease Biomarkers Paper/T%sPAD Sensors
box biomarkers
Traditional Machine Urinary disease markers 97 | Tumor / Disease Biomarkers Paper/T¥sPAD Sensors
Learning
Unspecified or Black- Glucose 87.6 | Small Molecule Metabolites Tube- or Well-Based
box Sensors
Deep Learning Glucose 100 | Small Molecule Metabolites Tube- or Well-Based
Sensors
Deep Learning cholesterol 100 | Small Molecule Metabolites Tube- or Well-Based
Sensors
Deep Learning pH 100 | Electrolytes / lons Tube- or Well-Based
Sensors
Deep Learning Glucose 100 | Small Molecule Metabolites Wearable Patch Sensors
Deep Learning pH 100 | Electrolytes/ lons Wearable Patch Sensors
Deep Learning lactate 100 | Small Molecule Metabolites Wearable Patch Sensors
Object Detection Live HeLa cell viability 98 | Tumor / Disease Biomarkers Tube- or Well-Based
Sensors
Dim. Reduction Biogenic amines 100 | Biogenic Amines / Spoilage Paper/l¥4PAD Sensors
Markers
Deep Learning Naa=? 100 | Electrolytes / lons Wearable Patch Sensors
Deep Learning Kae° 100 | Electrolytes/ lons Wearable Patch Sensors
Deep Learning pH 100 | Electrolytes / lons Wearable Patch Sensors
Dim. Reduction Thiols 100 | Composite / Multiplexed Tube- or Well-Based
Panels Sensors
Dim. Reduction Biogenic amines 100 | Biogenic Amines / Spoilage Tube- or Well-Based
Markers Sensors
Object Detection Cariogenic bacteria 97.7 | Pathogen/Bacteria Detection Paper/TsPAD Sensors
Dim. Reduction Heavy metals 98 | Heavy Metals / Inorganics Tube- or Well-Based
Sensors
Dim. Reduction Tea polyphenols 100 | Polyphenols / Adulterants Tube- or Well-Based

Sensors
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Ensemble / Hybrid Glucose 95 | Small Molecule Metabolites Paper/T¥sPAD Sensors
Models
Dim. Reduction Catecholamines 100 | Hormones / Neurotransmitters | Tube- or Well-Based
Sensors
Traditional Machine I2-Lactoglobulin 93 | Macromolecules / Proteins Tube- or Well-Based
Learning Sensors
Traditional Machine Albumin 96 | Macromolecules / Proteins Tube- or Well-Based
Learning Sensors
Deep Learning Ha,,04,, 94 | Small Molecule Metabolites Tube- or Well-Based

Sensors
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