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Abstract 

Colorimetric biosensors offer low-cost diagnostics but often suffer from subjective interpretation, environmental variability, 

and limited quantification. Artificial intelligence (AI) has emerged as a powerful solution, enabling automated analysis of 

chromogenic outputs captured via smartphones or imaging systems. This meta-analysis reviews 32 studies (2022–2025) 

applying AI to colorimetric biosensing, comparing performance across model types, sensor formats (e.g., paper, wearable, tube-

based), input modalities (e.g., RGB, absorbance), and analyte classes. Key metrics include classification accuracy, regression 

strength (R²), and limit of detection (LOD), benchmarked against non-AI and conventional methods.AI-enhanced platforms 

consistently improved accuracy, with context-specific gains in R² and LOD, especially for weak or overlapping signals. 

Smartphone-based RGB systems dominated but required calibration strategies such as CNN-GRU correction and illumination 

adjustment. Despite promising results, most studies lacked external validation and relied on supervised learning with small 

datasets. Semi-supervised approaches and standardized benchmarks are needed to ensure generalizability. Beyond analytical 

metrics, AI offered faster readouts, automated interpretation, and support for multiplexed sensing. Future directions include 

integrating augmented reality for enhanced usability and applying AI to sensor design and optimization. Collectively, these 

advances position AI-enhanced colorimetric biosensors as scalable, field-ready diagnostic tools with growing potential for 

clinical and environmental deployment 
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1. Introduction 

Lack of accurate, acessible, and rapid diagnostics remain a global 

issue for healthcare especially in remote, resource-constrained 

settings   where over 47% of the global population lacks access to 

essential diagnostic tools1. While conventional laboratory-based 

diagnostics  remian the gold standard, they require sophisticated 

equipment, trained personnel, and controlled environments. These 

limitations contribute significantly to delayed diagnoses and 

diagnostic errors, which are estimated to cause approximately 

371,000 deaths and 424,000 permanent disabilities annually in the 

United States alone2. To address these, portable colorimetric 

biosensors, which are analytical devices that detect presence of target 

analytes through visible color changes via enzymatic reactions, 

nanozyme catalysis, or pH-sensitive dyes, have gained prominence 

as low-cost, easy-to-use alternatives capable of delivering rapid 

results without the need for laboratory infrastructure3.  Google 

Trends data show that global interest in colorimetry more than 

doubled from late 2021 to early 2025, reflecting growing attention 

towards visual-based diagnostics4. By translating biochemical 

interactions into observable color changes, they have found 

applications in diverse settings from at-home glucose monitoring and 

pregnancy testing to field-based detection of pathogens and heavy 

metal ions that might be detrimental to health5. Moreover, their 

compatibility with paper-based substrates, lateral flow formats, and 

nanozyme-enhanced platforms makes them particularly attractive for 

decentralized healthcare and environmental monitoring6.  However, 

despite their significant improvements over traditional diagnostics, 

colorimetric biosensors face persistent limitations related to 

subjectivity in optical result interpretation, arising from variations in 

ambient lighting, camera resolution, user technique, and perceptual 

bias, which can significantly affect the accuracy and reproducibility 

of results7. This is a hindrance for their widespread adoption in 

critical clinical or environmental applications where precision and 

standardisation are essential. 

Table 1. Summary of recent reviews on AI-Enabled 

biosensors and the distinct scope of this work 
Year Focus Key Insights 

20247 AI in biochemical 

sensors (incl. 

colorimetric) 

Reviewed AI's role across sensing 

platforms, highlighting accuracy gains 

and implementation challenges. 

2024³ AI in electrochemical 

biosensors 

Showed AI improves sensor sensitivity 

and wearable adaptability. 

20249 AI-integrated wound 

dressings 

Reviewed AI-biosensor synergy for 

wound monitoring and healing 

prediction. 

202310 ML-based sensor arrays 

for bacterial detection 

Surveyed ML-enhanced 

colorimetric/fluorescent arrays for 

pathogen classification. 

2025 

(This 

review) 

AI-enhanced 

colorimetric biosensors 

(health & environment) 

Conducts first metadata analysis 

comparing R², accuracy, and sensitivity 

across 30+ studies. 

To overcome these challenges, artificial intelligence (AI) has 

emerged as a transformative solution. By analyzing colorimetric 

outputs captured via smartphones or imaging devices, AI algorithms 

provide automated, consistent, and quantitative interpretation of 

biosensor signals. While previous reviews highlight AI applications 

in biosensing, few assess its actual performance gains. This review 

fills that gap through a metadata analysis of recent AI-enhanced 

colorimetric studies, comparing improvements in sensitivity, 

accuracy, and regression strength (R²) over traditional and non-AI 

methods. Table 1 summarizes prior reviews to contextualize this 

study’s contribution.  

 

2. State-of-the-art of Current Research 

This work conducted a metadata analysis of 32 peer-reviewed studies 

from 2022 to 2025, sourced via Scopus and Google Scholar using 

combinations of search terms such as “colorimetric biosensor,” “AI,” 

“accuracy,” and “sensitivity.” Studies were included if they 

employed artificial intelligence (machine learning or deep learning) 

for the interpretation of colorimetric biosensor outputs and reported 

at least one quantitative performance metric (e.g., accuracy, 

sensitivity, or R²). Data were manually extracted on sensor type, 

sample source, analyte, AI model, and comparative improvement 

over non-AI or traditional methods.  A comprehensive table detailing 

these 32 studies is shown in Table S1 (supplementary). 

 

2.1. Sensor Architecture – Form Factor, Platform, and AI Data 

Utilization 

Figure 2.4.a shows sensor architectures across the 32 studies 

prioritized cost-effectiveness, portability, and user-friendliness, 

which are qualities best demonstrated by paper-based sensors (10 

studies), wearable microfluidic patches (6), and tube/well-based 

formats (11), collectively accounting for over 85% of sensor form 

factors.  In comparison to conventional laboratory-based diagnostics, 

these form factors drastically reduce overheads in terms of materials 

and logistics, enabling decentralized testing. Device-integrated 

sensors (5 studies), while offering superior performance via 

embedded optics or processors, still lack scalability due to their high 

cost and need for specialized maintenance. Smartphones were 

overwhelmingly used for signal collection (28 of 32 studies), 

outpacing other platforms like scanners (4), robotic sensors (1), and 

microscopes (1), due to their widespread accessibility, built-in 

cameras, and ability to process or upload images in real time.  This 

sensor architecture across these studies is visualized in Figure 2.1. 

 

Figure 2.1. Architecture of AI-enabled colorimetric sensors 

RGB was the main input for AI models (19 studies), followed by 

grayscale (2), absorbance (3), and multimodal setups like RGB with 

thermal, mechanoluminescence, or fluorescence (1 each). Its appeal 

lies in smartphone compatibility and suitability for CNNs that 

process spatial and color features. Absorbance-based methods are 

more robust but rely on non-portable, specialized tools. RGB’s 

sensitivity to lighting and device variability reduces reliability 

without normalization, used in only a few studies (some in Table 2.1). 
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These steps are key to improving consistency in real-world settings. 

Overall, the move toward RGB-smartphone-AI systems supports 

scalable diagnostics, but stronger standardization is still needed to 

match lab-grade performance. 

Table 2.1 Color correction strategies applied across selected studies 

Study Color correction applied 

Wang et al.11 Trained a CNN-GRU model to adjust for ambient 

light and pH variation 

Ghateii and 

Jahanshashi 36 

Used flash/no-flash subtraction and lab color space 

conversion to stabilize lighting conditions 

Liu et al42 Applied pixel-wise color correction using a 24-color 

checker to calibrate camera-based inputs 

 

2.2 Purpose and Sample Type – Monitoring Targets, Matrices, 

and Analytes 

Figure 2.4.b reveals that sensors are mainly applied to clinical 

diagnostics (10/32 studies), metabolic monitoring (7), and food 

safety (6), with fewer targeting pathogens (4), cellular assays (2), or 

multiplex panels (1). This mirrors the prevalence of accessible 

samples like urine (4), sweat (3), saliva, and tears, ideal for wearable 

or point-of-care use. However, this also suggests an application bias, 

favoring well-characterized analytes in controlled settings. Food and 

environmental samples (9 studies combined), which present greater 

matrix complexity and signal noise, remain underrepresented despite 

being where AI’s disambiguation strengths are most needed. Current 

trends favor feasibility over impact, applying AI where outputs are 

already interpretable rather than where its value is most critical. 

Notably, many AI models have been applied to analytes that already 

produce vivid and monotonic color changes, such as glucose and pH, 

where human-readable output is already largely feasible. While this 

enables automation and precision, it may underutilize AI’s potential. 

As shown in Figure 2.2, analytes like HDL, LDL, and troponin 

exhibit weaker or grayscale transitions that are far less 

distinguishable visually. These cases present the strongest 

justification for AI integration yet remain underrepresented. Rather 

than reinforcing already discernible signals, AI's role should be 

expanded to support analytes with ambiguous visual responses, 

where its capacity for pattern recognition and subtle gradient 

differentiation can meaningfully extend the reach of colorimetric 

sensing. 

 

 
Figure 2.2. Colorimetric responses for selected analytes. 

2.3 AI Use Case and Model – Task Types and Algorithms 

Employed 

AI in colorimetric biosensing has mainly focused on regression (18 

of 32 studies) and classification (13), aligning with the direct 

relationship between color change and either concentration or 

categorical outcome. Regression typically maps RGB patterns to 

analyte levels, while classification supports test result interpretation. 

These applications suit sensors targeting analytes with clear, 

monotonic color shifts like glucose or pH. However, this also reflects 

a cautious approach where AI is often applied where signal-response 

relationships are already well defined. More advanced tasks like 

clustering, anomaly detection, or multimodal fusion remain rare, 

despite their potential for handling complex or noisy signals. 

Figure 2.3 shows a mismatch between AI task complexity and the 

models used in reviewed studies. Simpler regression tasks were most 

common and often addressed with traditional ML models like 

random forests, even when signals were nonlinear or noisy. Deep 

learning was more common in classification tasks, particularly for 

spatial data, but rarely used for complex tasks like object detection or 

multimodal fusion. For example, Yu et al.27 used an ANN for RGB-

thermal fusion but didn’t apply advanced architectures like attention 

or transformers. Unsupervised methods like PCA or t-SNE were 

limited to visualization. This suggests model selection is often based 

on familiarity, not task fit. As a result, underspecified models may 

limit performance in complex or noisy settings and reduce 

generalizability outside the lab. Treating model architecture as a key 

design element, aligned with task demands and supported by 

benchmarking, will be essential for advancing AI in biosensing.  

 

Figure 2.3. AI model use by task type, showing ML dominates 

regression while DL is underused in complex tasks. 

2.4 Performance Improvement – Gains Attributed to AI and 

Benchmarks 

Across all 32 studies, AI integration was credited with enhancing 

sensor performance across multiple axes. The most reported gains 

were improved accuracy (~20 studies), enhanced sensitivity or lower 

limits of detection (~7 studies), faster or automated interpretation (~3 

studies), and improved pattern resolution for multiplexed or 

overlapping signals (~4 studies). AI enabled detection of subtle 

analyte differences, automated endpoint interpretation, and 

separation of overlapping outputs in multi-analyte sensors. While 

about 7 studies lacked a baseline comparison, those that did 

consistently showed AI outperforming visual reads, thresholds, or 

uncorrected data. Table 2.2 highlights four representative examples. 

Cui et al.12  used YOLOv5 to improve bacterial classification to 95%. 
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Yu et al.27 combined colorimetric and thermal signals via ANN to 

surpass LOD for cardiac troponin. In Zheng et al’s work16, CNNs 

reduced assay readout time withing minutes to seconds, while 

originally taking hours. Ranbir et al25. and Singh et al.30 used PCA-

LDA to fully separate volatile amines in meat, showing AI’s strength 

in multiplex detection. These examples illustrate both performance 

gains and how targeted AI use can expand the utility of colorimetric 

sensors in real-world settings. However, while showing these gains, 

a more quantitative approach is required to fully grasp the importance 

of AI in colorimetric biosensing, as explored in subsequent section. 

2.4 Meta-analysis of performance improvements 

2.4.1. Limit of detection (LOD) 

We compared LOD values across studies, as LOD reflects the lowest 

detectable concentration above background noise and is key to 

assessing sensor sensitivity. This helps determine whether AI 

meaningfully improves detection limits in real-world use.

 
Figure 2.4  Sankey diagram for AI-enhanced colorimetric biosensor studies sorted by (a) sensor architecture; (b) purpose and sample types, 

(c) AI use cases, model classes, and algorithms; and (d) performance improvements (comprehensive table in Table S1) 
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Figure 2.5. Log-scale distribution of LOD values across colorimetric detection methods, highlighting analyte-level spread and comparison 

to typical/optimal reference values   

LOD data from AI-enhanced studies were grouped into four 

categories: AI-based, colorimetry only, colorimetry plus smartphone 

(non-AI), and typical values in human or food samples. Each analyte 

within a study was treated as a separate data point. For baseline 

methods lacking internal controls, LODs were sourced from recent 

reviews or similar studies. Full data appear in Supplementary Table 

S1.  

As shown in Figure 2.5.a, AI-based platforms had slightly lower 

median LODs than typical concentrations in human and health 

samples, highlighting significance in diagnostics, but variability was 

high across all groups, especially compared to non-AI smartphone-

assisted methods. Mann–Whitney U tests (Table S4) showed no 

statistically significant differences (all p > 0.15), indicating that AI 

alone doesn’t consistently improve sensitivity. Outliers like del Real 

Mata et al’s13 1 pM H₂O₂ detection with a plasmonic sensor and 

random forest model, or Yu et al’s27 10.8 pg/mL troponin detection 

using ANN fusion, highlight AI’s potential under optimized setups. 

However, factors like sensor materials, analyte properties, and 

sample matrices often have greater influence. AI was most impactful 

in cases with overlapping or faint color signals, e.g. Cui et al’s use of 

YOLOv5 for low-level bacterial HAase, and Ranbir et al’s25. and 

Singh et al’s.30  PCA-LDA models resolving mixed biogenic amines. 

In contrast, analytes with strong color change like glucose or pH 

showed minimal LOD gains, though AI improved consistency and 

automation. These results suggest AI should be applied selectively, 

especially for low-contrast or nonlinear signals. Broader adoption 

will require better benchmarking, task-specific AI design, real-world 

validation, and comparison to regulatory standards or reference 

methods.  

2.4.2. Model R2 values 

We included R² comparisons across studies as it reflects how well a 

sensor’s output follows analyte concentration trends making it an 

essential indicator of dose-response consistency, even if not a direct 

accuracy measure. R² data were grouped by method type (AI-based, 

colorimetry-only, and smartphone-assisted non-AI) and are 

summarized in Table S3 and visualized in Figure 2.5.b. AI-based 

platforms showed higher average R² values (0.952–0.9999) and 

wider spread than conventional methods, with several achieving 

near-perfect calibration under controlled conditions. However, 

Mann–Whitney U tests (Table S5) indicated these differences 

weren’t statistically significant (p = 0.075 vs. smartphone; p = 0.14 

vs. colorimetry-only), suggesting AI doesn’t consistently improve 

regression fit across all cases. The best R² values were seen in studies 

with controlled imaging, high signal-to-noise ratios, or carefully 

curated datasets. Study 18 reached R² = 0.9999 for cardiac troponin I 

using an ANN with thermal and color fusion, while Study 13 

achieved robust fits for glucose and cholesterol using ensemble 

models that corrected ambient lighting. By contrast, non-AI methods, 

especially smartphone-only approaches, showed greater performance 

drops under uncontrolled conditions, with R² values around 0.79–

0.80 for LDL and HDL, likely due to lighting variability. These 

findings suggest AI’s greatest strength lies in stabilizing regression 

under noisy or nonlinear signal conditions. However, high R² alone 

is not sufficient. Some colorimetry-only systems still performed well 

for monotonic, high-contrast analytes, highlighting the continued 

importance of sensor chemistry. To ensure robust performance, 

future work should combine R² with broader metrics like residual 

analysis, external validation, and real-world testing. Overreliance on 

R² may inflate confidence, particularly in the absence of clinical or 

field verification. 

2.4.2. Accuracy 

Unlike limit of detection (LOD) and regression metrics such as R², 

classification accuracy lacks a consistent universal baseline in 

biosensing literature. The diversity of decision thresholds, analyte 

classes, and labeling protocols across studies means that accuracy 

figures are highly context dependent. As such, we do not compare 

absolute values across platforms. Instead, we focus on within-dataset 

patterns observed across sensor architectures, analyte groups, and AI 

model classes, as summarized in Figure 2.6a and Supplementary 

Table S6. Overall, AI-enhanced biosensors consistently 

outperformed non-AI platforms, with the majority of AI-based 

systems achieving accuracies above 90%, and several reaching the 

100% benchmark across diverse sensing contexts. These included 

both deep learning and hybrid ensemble methods, suggesting the 

benefits of nonlinear pattern recognition, especially when signal 

variability or interference is present.  
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Figure 2.6. Bubble plot of classification/quantification accuracy of AI-enhanced colorimetric biosensors, mapped across sensor form factors 

(left) and analyte groups (right) by AI model class

At the architecture level, wearable patch sensors, when paired with 

CNN-based models, demonstrated high robustness and accuracy, 

often exceeding 95% for multi-biomarker sweat patches. Study 14 

achieved 100% classification for glucose, pH, and lactate, enabled by 

a VGG16 CNN that captured subtle differences in spatial signal 

distributions under ambient conditions. Similarly, paper/μPAD 

sensors paired with traditional ML models (e.g., Random Forest, 

SVM) also performed well, particularly for urinary and metabolic 

analytes, where structured chromogenic arrays  generated 

reproducible color fingerprints. Study 11, for example, achieved 97% 

accuracy in urinary tract infection classification using an SVM-RF 

ensemble.Among analyte categories, tumor and cardiac biomarkers 

benefited most from AI integration. The fusion of thermal and optical 

signals in Study 18, using an ANN, yielded accurate discrimination 

of cardiac troponin I (cTnI), reinforcing the strength of multimodal 

biosensing for critical clinical analytes . Additionally, for biogenic 

amines, LDA-based models maintained >95% accuracy, even under 

food matrix variability. 

In contrast, non-AI systems, especially those relying on smartphone 

cameras with simple thresholding or raw RGB interpretation, showed 

greater susceptibility to lighting inconsistencies, with accuracy often 

falling to the 85–90% range. These limitations were particularly 

evident in complex backgrounds like food spoilage detection or 

overlapping chromophores, where AI methods (e.g., PCA-LDA 

fusion) restored classification clarity. From the sensor form 

perspective, tube- or well-based formats showed generally stable 

accuracy due to controlled optics, though wearable and paper-based 

formats 6abelled them when enhanced by AI. Notably, the highest 

accuracies clustered in deep learning and object detection classes 

(Figure 2.6a left panel), reflecting their superior ability to extract 

spatial and contextual features from raw image data. Together, these 

trends suggest that while chemical design and sensor chemistry 

remain foundational, AI integration—especially through CNNs, 

hybrid models, and transformer-based architectures—can 

significantly amplify diagnostic reliability, especially under variable 

environmental or user-handling conditions. Future work should 

explore adaptive learning for personalized calibration and establish 

standardized accuracy benchmarks across sensor classes. 

3. Synthesis and outlook 

1. On the use of smartphones and calibration needs- The collected 

studies make clear that coupling AI with colorimetric biosensors can 

dramatically enhance their capabilities, turning simple color changes 

into rich quantitative and actionable data. A unifying theme is the 

leveraging of ubiquitous hardware, particularly smartphones , as both 

the data acquisition device and computation platform. This 

convergence, seen in roughly 90% of the articles, underscores a 

practical advantage: AI algorithms deployed on consumer 

smartphones can transform point-of-care diagnostics, allowing 

immediate analysis in the field. However, this shift toward RGB 

smartphone-based pipelines brings new challenges in data 

normalization. Different phone cameras and ambient lighting 

conditions can skew color readings, requiring robust calibration to 

ensure reproducibility67. Encouragingly, several teams have 

introduced clever calibration techniques to tackle this issue. For 

example, cloud-connected analysis frameworks now incorporate 

hybrid models (CNNs coupled with recurrent networks) to auto-

correct for illumination variances and sensor-specific biases. Such 

approaches (e.g. a multichannel CNN-GRU pipeline) have achieved 

R² values ~0.99 by learning to adjust for color temperature 

differences in images, effectively standardizing results across 

varying conditions. Moving forward, continued innovation in on-

device calibration (from one-time color card references to real-time 

algorithmic corrections) will be essential to fully capitalize on 

smartphone-enabled AI sensing.  

2. On generalizability and data-efficient modelling- Despite the 

impressive performance gains reported, most studies lack rigorous 

external validation, highlighting a critical gap between controlled 

experiments and real-world deployment. Typically, models are 

trained and tested on the same lab-generated dataset; few works 

verify that an AI model trained on one device or sample set holds up 

on others. This absence of external validation and cross-platform 

testing raises concerns about generalizability, an issue that future 

research must address by incorporating independent test sets, multi-

center trials, or reference sample exchanges.  Likewise, the underuse 

of semi-supervised learning and data augmentation is notable. Many 

AI models for colorimetric sensing rely on relatively small labeled 
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datasets, yet few studies leverage the abundance of unlabeled data or 

synthetic data generation to improve model robustness. Introducing 

semi-supervised algorithms (which can learn from unlabeled color 

images) or augmentation techniques (to simulate variations in hue, 

intensity, backgrounds, etc.) could significantly enhance model 

resilience to real-world variability at minimal cost. Another insight 

from our meta-analysis is that AI’s added value appears tied less to 

the analyte type and more to the ambiguity of the signal. In other 

words, when an assay produces straightforward, high-contrast color 

changes (e.g. a single intense color shift for a positive result), 

traditional analysis may suffice. But as the color outputs become 

more complex, such as subtle gradations, multi-analyte sensor arrays, 

or overlapping chromatic responses, advanced machine learning 

yields disproportionate benefits68. Indeed, deep learning models 

excel at deciphering high-dimensional color patterns that humans or 

simple algorithms struggle to interpret. This trend suggests that future 

developers should strategically deploy AI in scenarios of inherent 

signal complexity or uncertainty, where its pattern-recognition 

strengths are most impactful. It also implies that reporting 

performance as a function of assay complexity (rather than only by 

analyte category) could be a more meaningful way to evaluate new 

AI-enhanced biosensors. 

3. On practical gains: speed, multiplexing, and robustness- From a 

practical standpoint, AI-driven colorimetric analysis offers 

improvements that extend beyond raw analytical metrics, 

contributing to better usability and reliability of biosensors. One clear 

advantage is speed: once trained, an AI model can interpret a sensor’s 

color output in milliseconds, potentially enabling near real-time 

readouts and quicker decision-making in point-of-care settings. In 

some cases, algorithms can even detect partial color changes before 

a reaction is fully complete, shortening the time-to-result. Another 

benefit is the capacity for multiplexed detection, that is, analyzing 

multiple indicators simultaneously. Traditional colorimetric assays 

struggle when multiple test spots or mixed-color outputs must be 

interpreted at once, whereas machine learning can untangle such 

composite signals with high accuracy. For example, neural network 

models have distinguished multiple antibody responses in a single 

assay with ~89% accuracy, outperforming conventional methods by 

a significant margin68. In general, as more analytes are encoded into 

color-based tests, AI will be instrumental in accurately classifying 

outcomes across a multidimensional color space. Equally important 

is the robustness that AI brings: sophisticated models can 

accommodate variability in sample quality or environmental 

conditions (such as inconsistent lighting or user handling) better than 

rigid threshold-based interpretations. Notably, convolutional neural 

networks have maintained strong performance even when images are 

noisy or under suboptimal lighting, a resilience crucial for real-world 

applications. This robustness reduces the incidence of false negatives 

or false positives caused by minor perturbations, thus improving trust 

in home or field deployments.  

4. On the horizon: integration with AR/VR and digital design- 

Looking towards the horizon, there are exciting opportunities to 

integrate emerging technologies like augmented and virtual reality 

(AR/VR) with AI-based colorometric sensing. Early demonstrations 

have shown that AR smartphone apps can overlay interpretive 

guidance or even embed fiducial markers into the test to aid real-time 

result reading. In the future, a user might simply point a phone at a 

paper sensor and see a quantified result or risk assessment pop up 

instantly via AR, lowering the barrier to accurate self-testing. VR 

environments could also serve as training tools, simulating a wide 

range of colorimetric outcomes for clinicians or as a platform to 

virtually prototype sensor designs. Moreover, AI itself can be applied 

beyond analysis – for instance, using machine-learning optimization 

to design better colorimetric assays (selecting optimal reagent 

combinations or layout to maximize signal differentiation) or to 

create digital twins that predict how a sensor will behave under 

various scenarios. These exploratory directions, while in nascent 

stages, underscore the expansive potential at the interface of smart 

algorithms and biosensing. In summary, the future outlook for AI-

enhanced colorimetric biosensors is one of continued convergence by 

merging accessible hardware, powerful algorithms, and user-centric 

innovations to deliver faster, multiplexed, and more robust diagnostic 

solutions. The next few years will likely witness not only incremental 

performance improvements but also a maturing of the field through 

standardized evaluation protocols, open datasets for model training, 

and perhaps the advent of intelligent sensors that learn and adapt 

during use. 
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Table S1. Comprehensive table for the 32 reviewed studies on AI-enabled colorimetric biosensor 

Sensor Type   Analyte  Sample 

Source  

Detection 

Mechanism  

Signal collection 

platform for AI  

AI Model  Role of AI (with 

Subgroup Tags)  

Reported 

LOD   

Classificatio

n Accuracy  

Regression 

Accuracy 

(inverted 

MAE or 

similar)  

Fit Quality 

(R² or r)  

Wearable microfluidic 

colorimetric sensor 11  

Vitamin C, H⁺ 

(pH), Ca²⁺, 

protein  

Human tears  Analyte-induced 

color change in 

PDMS microfluidic 

patch captured as 

RGB signal for 

concentration 

mapping  

Smartphone (RGB 

image capture)  

CNN-GRU 

(1D for pH, 

3D for 

others)  

Image-to-

concentration 

regression using 

CNN-GRU 

(Regression for 

Quantification)  

Not 

reported  

Not reported  0.001 

(MAE)  

R² = 0.998  

Smartphone-based 

hydrogel colorimetric 

sensor 12  

Hyaluronidas

e (Haase) 

from bacteria  

Clinical swabs, 

food  

Hyaluronic acid (HA) 

degradation triggers 

CPRG release, reacts 

with β-galactidose 

and generates color 

changes  

Smartphone 

(camera)  

YOLOv5  Object detection and 

bacteria classification 

(Image 

Classification, Object 

Detection)  

10 

CFU/mL  

92% 

(between 

gram + and 

gram -)  

Not 

reported  

  

R² = 0.97  

Microfluidic plasmonic-

enhanced colorimetric 

sensor 13    

H₂O₂  Cancer cell 

culture 

medium  

Amplex Red reacts 

with H₂O₂ in presence 

of HRP, forming a 

pink dye; signal 

amplified by 

plasmonic 

nanostructures  

Microscope (image 

capture)  

Random 

Forest 

Classifier  

Binary classification 

of H₂O₂ levels from 

RGB image (Image 

Classification)  

1 

picoMolar  

91% 

(between high 

and low 

concentration 

classification)

  

Not 

reported  

  

R² = 0.98  

Lip-applied sensor 14    pH  Skin surface 

(via lip 

application)  

Anthocyaninl in lip 

pigment undergoes 

pH-triggered color 

shift captured via 

selfies  

Smartphone (selfie 

camera)  

CNN  Lip color 

classification into pH 

levels using CNN 

(Image 

Classification)  

Not 

reported  

92% (0.92   Not 

reported  

  

Not reported  

  

Multicolorimetric sensor 

array (AuNR-AgNP-

based) (Plasmonic, 

Paper-based) 15  

HVA, VMA 

(tumor 

markers)  

Human urine  Redox reaction 

between HVA/VMA 

and Ag⁺ causes silver 

shell formation on Au 

nanorods, altering 

LSPR and generating 

multicolor shifts  

Smartphone (RGB 

image)  

PCA + LDA 

+ PLSR  

Multivariate 

regression and 

classification of 

tumor markers 

(Regression, Dim. 

Reduction + 

Classification)  

0.22 μM 

(HVA) and 

0.29 μM 

(VMA)  

Not reported  100%  R² = 0.999 

(HVA)  

R² = 0.999 

(VMA)  
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Multiplexed Colorimetric 

Patch (PETAL) 16  

Temperature, 

pH, TMA, 

uric acid, 

moisture  

Wound 

exudate (rat 

models)  

Colorimetric sensors 

using liquid crystals, 

organic dyes, 

enzymes, and metal 

ions  

Smartphone (patch 

image)  

CNN  Image-based 

classification of 

wound biomarkers 

(Image 

Classification)  

Not 

reported  

  

94–96%  (blank)  (blank)  

PDA-based lateral flow 

immunoassay (LFIA) 

(Lateral Flow) 17  

COVID-19 

neutralizing 

antibody  

Clinical serum  PDA-NPs conjugated 

with RBD antigen 

bind to antibodies; 

reduced PDA binding 

causes lighter test 

line; image processed 

via T/(T+C) 

grayscale ratio  

Smartphone (test 

strip image)  

Vision 

Transformer 

(ViT) + 

ResNet50  

Band detection and 

antibody 

quantification using 

ViT (Regression, 

Object Detection)  

160 ng/mL  Not reported  Not 

reported  

Not reported  

Dual-dye colorimetric 

RT-LAMP assay (Lateral 

Flow) 18  

SARS-CoV-2 

RNA  

Nasopharynge

al swabs  

Isothermal 

amplification causes 

pH drop, triggering 

color change in 

Xylenol Orange and 

Lavender Green dyes; 

image analyzed post-

reaction  

Smartphone or 

camera (reaction 

tube image)  

DETR-based 

model 

(ResNet50 + 

Transformer)

  

Tube segmentation 

and COVID result 

classification (Object 

Detection, Image 

Classification)  

100%  

(reduced to 

83% when 

diluted)  

(blank)  (blank)  R² = 0.998  

Paper-based multiplexed 

colorimetric biosensor 

(Paper-based) 19  

Cardiac and 

lipid 

biomarkers  

Human serum  Targets (e.g., cTnI, 

HDL, LDL) separated 

and detected via 

electrophoresis-

induced color change 

on paper  

Scanner or 

smartphone (paper 

strip image)  

CatBoost + 

PLS-DA, t-

SNE 

(ensemble)  

Color feature 

extraction and 

disease classification 

(Dim. Reduction + 

Clustering)  

CtnI 

(1.210x10^

-5 ug/mL)  

HDL  

(435.815 

ug/mL)  

LDL 

(383.127 

ug/mL)  

75.2% for 

classification 

of acute 

myocardial 

infarction  

  

Not 

reported  

0.999, 

0.9991, 

0.999 

respectively  

Urinary disease 

colorimetric test array 

(Paper-based) 20   

Urinary 

disease 

markers  

Human urine  Colorimetric reaction 

of multiple sensors 

(metal–organic 

complexes and 

chromogenic 

reagents) with urine 

Smartphone (sensor 

array image)  

Random 

Forest, 

SVM, kNN  

Pattern classification 

of urinary markers 

(Image 

Classification)  

Not 

reported  

  

97% 

classification 

for UTI  

(blank)  (blank)  
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constituents captured 

via smartphone  

Colorimetric sensor using 

AuNPs21    

Glucose  Urine samples  Glucose induces color 

change to AuNP  

Smartphone   Image 

processing 

and 

illumination 

correction 

for accurate 

color 

interpretatio

n across 

varying 

lighting 

conditions  

  Not 

reported  

  

87.6% 

accurate 

glucose 

concentration 

prediction  

Not 

reported  

  

Not reported  

  

Microfluidic sensor for 

artificial tears 

(Microfluidic) 22  

Glucose, 

cholesterol, 

pH  

Synthetic tears  Gox/ChOx-mediated 

oxidation produces 

H₂O₂, catalyzing 

TMB color change 

via HRP; universal 

pH indicator used; 

smartphone captures 

RGB data  

Smartphone (app-

integrated μPAD 

images)  

Deep Neural 

Network 

(DNN)  

Regression for 

pH/glucose/cholester

ol from artificial tear 

images (Regression 

for Quantification)  

Glucose = 

131 uM  

Cholestrol 

= 217 uM  

100%  RMS=0.386

  

0.996 

(glucose)  

0.997 

(cholesterol)  

Sweat-based biosensor 

(Wearable) 23  

Glucose, pH, 

lactate  

Human sweat  Chromogenic 

reactions triggered by 

sweat analytes across 

spatially arranged 

compartments; color 

changes recorded via 

smartphone  

Smartphone 

(microfluidic chip 

images)  

VGG16-

based CNN  

Color regression of 

sweat biomarker 

levels (Regression for 

Quantification)  

Not 

reported  

100% 

classification 

accuracy for 

all 

biomarkers in 

terms of 

quantity  

(blank)  R² = 0.9999 

for three 

biomarkers  

HeLa cell-based 

metabolic colorimetric 

sensor 24   

Live HeLa 

cell viability 

(metabolic 

activity)  

HeLa cell 

culture  

pH-sensitive 

achromatic dye 

transitions (black to 

orange) based on cell 

density; saturation 

analyzed via 

smartphone images  

Smartphone 

(achromatic 

saturation images)  

Mask-

RCNN  

Quantification of live 

cell images (Image 

Classification)  

51 × 104 

cells  

98%  (blank)  R² = 0.959  
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Colorimetric biogenic 

amine sensor for meat 25  

Biogenic 

amines  

Chicken meat 

samples  

Metal–azodye 

complex forming a 

fingerprint-based 

colorimetric 

response; analyzed 

via UV-vis 

absorbance and RGB 

imaging  

UV–Vis scanner 

and smartphone 

(portable strip)  

PCA, LDA, 

PLSR  

Colorimetric amine 

pattern classification 

(Image 

Classification)  

0.378 ppm 

(spermine)  

Not reported  

  

  

100% 

accuracy 

(cross 

validation), 

  

83% for 

interference 

testing  

  

Not reported  

  

  

Tea polyphenol sensor 

during fermentation26 

Tea 

polyphenols  

Fermented 

green tea (w/ 

ultrasound)  

RGB image 

extraction of CSA 

and multivariate 

calibration  

Smartphone (RGB 

image of sensor 

array)  

SVM  Regression and 

quality tracking for 

fermentation 

(Regression for 

Quantification)  

Not 

reported  

Not reported  

  

 Rc = 0.886, 

RMSEC = 

0.042 mg/g, 

Rp = 0.862, 

and 

RMSEP = 

0.043 mg/g  

Not reported  

  

Multiplexed troponin 

sensor (Nanozyme-

based) 27 

Cardiac 

troponin I 

(cTnI)  

Human serum  Cascade nanozyme-

based colorimetric 

and photothermal 

signals from h-

Prussian Blue in 

TMB-H₂O₂ system  

Smartphone + 

thermometer 

(absorbance + 

thermal)  

Artificial 

Neural 

Network 

(ANN, 3 

hidden 

layers, 64 

neurons)  

Feature fusion from 

color and temperature 

signals for cTnI 

(Multimodal Fusion)  

10.8 

pg/mL   

(blank)  (blank)  R² =0.9965  

Sweat ion and pH patch 

sensor 28 

Na⁺, K⁺, pH  Human sweat 

during 

exercise  

Printed chromogenic 

reagent zones and 

reference dye; color 

change recorded for 

in-situ analyte 

detection  

Smartphone (sweat 

patch image with 

reference dye)  

Explainable 

CNN (with 

ratiometric 

self-

calibration)  

Signal mapping for 

electrolyte and pH 

balance (Regression 

for Quantification)  

classified 

and 

quantified 

with 100% 

accuracy  

100% 

(≥50 nM)  

(blank)  (blank)  

Thiol-level cancer 

detection sensor 29  

Thiols (Cys, 

GSH, Hcy, 

DTT, MCH, 

TGA)  

Standard 

solutions  

Thiol-induced 

inhibition of metal 

ion–TPA@GQD 

nanozyme 

peroxidase-like 

catalysis of TMB-

H₂O₂ reaction, 

creating distinct color 

patterns 

UV–Vis reader or 

smartphone (RGB 

absorbance 

pattern)  

Linear 

Discriminant 

Analysis 

(LDA)  

Clustering of thiol-

level profiles for 

disease classification 

(Dim. Reduction + 

Clustering)  

50 nM 

thiol (not 

specified)  

100% 

accuracy to 

separate and 

discriminate 

from different 

thiols  

Not 

reported  

Not reported  
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(“fingerprints”) for 

LDA discrimination  

Biogenic amine sensor 

array 30 

Biogenic 

amines (  

 tryptamine 

and 

spermine)  

Meat and 

cottage cheese  

Metal–azophenol 

complexes (C1–C11) 

respond to amines 

with colorimetric 

“fingerprint” patterns 

across 10 UV–Vis 

channels  

Smartphone or 

UV–Vis scanner 

(sensor array 

image)  

PCA, LDA  Color pattern 

recognition of food 

spoilage markers 

(Image 

Classification)  

Tryptamine 

0.40 ppm  

Histidine  

0.42 ppm  

Spermine  

0.45 ppm  

Spermidine

  

0.66 ppm  

100% (LDA)  Not 

reported  

  

R² = 0.96 

(Tryp), 0.97 

(Spermine)  

Bimodal Visual Sensors 

Based on 

Mechanoluminescence an

d Biosensing  31 

  

Cariogenic 

bacteria 

(through pH 

from lactic 

acid)  

Oral swabs, in 

vitro culture  

Bacterial acid 

production 

(colorimetric pH shift 

via anthocyanin) and 

tooth pressure via 

mechanoluminescenc

e  

Smartphone (dual-

mode 

mechanoluminesce

nt + color image)  

CNN-based 

model   

Segmentation and 

bacterial profile 

analysis (Object 

Detection, Image 

Classification)  

<1 mg/mL 

(estimated)

  

97.7% 

accuracy in 

the precise  

decoupling of 

visual signals  

Not 

reported  

  

Not reported  

Heavy metal colorimetric 

sensor  32 

Cr³⁺, Fe³⁺, 

Al³⁺, Ni²⁺, 

Cu²⁺, Zn²⁺  

Water and 

serum samples  

AchE inhibition by 

metal ions alters 

enzymatic reaction 

with chromogenic 

substrate, producing 

color shift patterns  

UV–Vis 

spectrophotometer 

(absorbance scan of 

arrays)  

PCA   Metal concentration 

regression using pixel 

intensity (Regression 

for Quantification)  

0.81 μM, 

0.75 μM, 

1.06 μM  

  

Cu2+, 

Cr3+, 

Al3+,  

98% accuracy 

in p  

  

(blank)  0.95,0.96,0.9

9 

respectively  

Tea authentication array 

sensor  33 

Tea 

polyphenols, 

adulterants  

Tea infusion 

samples  

TMB-H₂O₂ 

chromogenic system 

catalyzed by Bpy-Cu 

and Asp-Cu 

nanozymes; 

inhibition by 

polyphenols alters 

signal  

Smartphone or 

scanner (nanozyme 

array image)  

LDA, 

Decision 

Tree (DT), 

HCA  

Classification of 

authentic vs 

adulterated tea via 

color (Image 

Classification)  

Not 

reported  

Discriminatio

n accuracy  

was 100%.  

Not 

reported  

Not reported  
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AFB1 detection in 

ground peanut 

samples 34  

Aflatoxin B1 

(AFB1)  

Peanut extract 

(ground 

sample)  

Aflatoxin B1 (AFB1) 

in food (e.g., 

peanuts)  

  

Smartphone 

(fluorescent + 

colorimetric 

microneedle patch 

image)  

ANN  

  

AFB1 concentration 

prediction from patch 

image (Regression 

for Quantification)  

0.6845 ng 

mL/1  

(blank)  (blank)  R² = 0.9974   

CO₂ strip colorimetric 

sensor  35 

CO₂  Ambient air 

(gas sample)  

Color change induced 

by CO₂-mediated pH 

shift, captured as 

RGB ΔE across a 6-

receptor array  

Robotic camera and 

RGB sensor 

(automated 

platform)  

Multi-target 

Bayesian 

Optimization 

(BO) 

integrated 

with robotic 

plcaatform  

CO₂ level regression 

from colorimetric 

signal (Regression 

for Quantification)  

400 ppm  (blank)  RMSE = 

0.27%  

(blank)  

Paper-based glucose 

sensor 36   

Glucose  Human 

plasma  

Enzyme-catalyzed 

colorimetric reaction 

using glucose oxidase 

(Gox) and 

horseradish 

peroxidase (HRP), 

with TMB for low 

and KI for high 

glucose concentration 

detection  

Smartphone 

(flash/no-flash 

image pair)  

Ensemble 

Bagging 

Classifier 

(EBC), 

Linear 

Regression  

Glucose intensity 

prediction using Lab 

image values 

(Regression for 

Quantification, 

Classification)  

Not 

reported  

95% (TMB 

color 

indicator), 

91% (KI 

color 

indicator)  

(blank)  R² = 0.97 

(high conc), 

R² = 0.95 

(low conc)  

Urine neurotransmitter 

sensor 37 

dopamine 

(DA), 

epinephrine 

(EP), 

norepinephrin

e (NEP),  

and levodopa 

(LD)  

Human urine  Aggregation-based 

LSPR shift from 

AuNP interactions at 

different pH 

conditions  

Smartphone (LSPR 

color shift image 

under pH 

variation)  

LDA, PLSR  Catecholamine level 

estimation using 

feature-based models 

(Regression for 

Quantification, 

Classification)  

0.3, 0.5, 

0.2, and 

1.9 mM for 

DA, EP, 

NEP, and 

LD,  

100% (LDA)  (blank)  R² = 0.99 for 

4 analytes  

Smart μPAD for pH and 

glucose  38 

pH, Glucose  Aqueous lab-

prepared 

solutions  

For pH: Pani-NP 

undergoes EB to ES 

state transition; For 

glucose: Gox 

generates H₂O₂, 

reducing Pani-NPs, 

causing color shift 

(blue→green)  

Smartphone 

(dipstick color 

image under 

ambient light)  

RFR (best), 

DTR, SVR  

RGB analysis for 

pH/glucose detection 

in μPADs 

(Regression for 

Quantification)  

None 

reported  

(blank)  (blank)  R² = 0.96 

(pH), 0.92 

(glucose)  
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Milk β-lactoglobulin strip 

(Lateral Flow)39 

β-

Lactoglobulin

  

Milk  Glucose-fueled EBFC 

for electrochemical + 

HRP/ABTS 

colorimetric detection 

using smartphone-

assisted image 

processing  

Smartphone 

(colorimetric + 

voltage strip 

readout)  

Decision 

Tree (DT), 

Random 

Forest (RF), 

k-NN, SVM  

Grayscale intensity 

detection for β-

Lactoglobulin 

(Regression for 

Quantification)  

0.0081 

ng/mL,  

93%   Not 

reported  

Not reported  

Albumin detection strip 

(Lateral Flow)40 

Albumin  Urine  Protein concentration 

triggers color change 

on dipstick; captured 

by smartphone under 

varied lighting  

Smartphone 

(dipstick image 

under varied 

lighting)  

KNN 

classifier (vs 

RF, SVM)  

Intensity ratio 

computation for 

albumin strip 

(Regression for 

Quantification)  

4 mg/L   96%  Not 

reported  

Not reported  

H₂O₂ sensor 

(Spectrophotometric) 41 

Hydrogen 

peroxide  

Exhaled 

breath  

RGB signal mapping 

via colorimetric dye 

response (Eosin blue, 

KmnO₄, Starch-

Iodine)  

Smartphone (RGB 

mapping of breath 

test strip)  

ANN 

Regression  

Colorimetric pixel-

based regression of 

H₂O₂ (Regression for 

Quantification)  

0.011 ppm  94% accuracy 

for 

quantification

  

  0.941  

Saliva uric acid μPAD 

(Microfluidic) 42 

Uric Acid  Saliva  Prussian blue 

generation reaction 

with salivary UA 

forming blue 

complex  

Smartphone (μPAD 

salivary test 

image)  

Decision 

Tree 

Regressor 

(ML); 

Multiple 

Polynomial 

Regressor   

Color space 

regression for uric 

acid quantification 

(Regression for 

Quantification)  

Not 

reported  

(blank)  MAE=4.2 

ppm  

Not reported  
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Table S2. Reported LOD values in AI-based studies, colorimetry only, colorimetry plus smartphone, and typical values in 

food, human, and environment samples 

*Values were converted using molar masses  

 

 

 

 

Analyte LOD AI-based ( μM )* LOD colorimetry only* LOD colorimetry plus 

smartphone (no AI)* 

Typical values* 

H2O2 in cells 0.000001  μM  10.24 μM43   0.24 μM44  

 

0.01  μM 45 

VMA  in urine 0.22  μM 0.340 μM 0.260  μM46 28.7  μM 

HVA in urine 0.29 μM 0.313 μM 0.397  μM46 41  μM 

COVID-19 antibody 

in human serum 

1.07 × 10⁻⁶ 

 

 

(160 ng/mL) 

6.00 × 10⁻⁵ µM47 

 

(9 ng/uL) 

2.11x10-10 uM None  

Cardiac troponin 

(cTnI) in human 

serum 

5.06×10 −10 

 

 

(1.210 x 10^-5 ug/mL) 

5.44 × 10⁻¹⁶ µM 

 

 

(0.013 pg mL−1) 

1.63×10-8  μM  48 
 

 

 3.9X10−4 μg/ml 

 

 

 

0.02 ng/L49 

LDL in human serum 1.277 × 10⁻⁴ µM 

 

(383.127 ug/mL) 

7.33 × 10⁻¹⁰ µM50 

 

(2.1999 µg/mL) 

1.77×10−8 51 

 

(5.31 mg/dl) 

0.5352 

 

(100 mg/dL) 

HDL in human serum 1.09 µM 

 

(435.815 ug/mL) 

2 mg/dL53 

 

5.00×10−8 μM 

2.03 × 10⁻⁷ µM 

(8.10 mg/dl)51 

 

 

40 mg/dL 

Glucose in tears 131 uM 

(23.61 mg/L) 

0.32 μM 54 

0.05765 mg/L 

13.49 uM55 0.2 mM56 

(360 mg/L) 

Cholesterol in tears 217 uM 

(83.87 mg/L) 

1.9 μM57 

0.7356 mg/L 

0.00085  M 1.9 μM 

Spermine in chicken 

meat 

1.87 µM 

 

0.378 ppm 

0.57 uM58 

 

0.115 mg/L 

0.4644 uM 

 

0.094 ug/mL59 

988.4 uM 

 

200 ppm60 

Cardiac troponin 

(cTnI) in human 

serum 

10.8 picogram/mL 

 

4.52×10−16 μM 

5.44 × 10⁻¹⁶ µM 

 

 

(0.013 pg mL−1) 

.63×10-8  uM48 
 

 

 

 3.9X10−4 μg/ml 

0.02 ng/L49 

Tryptamine in meat 2.50 μM 

 

0.40 ppm 

 

20 nM61 

 

0.0032 mg/L 

1.74 μg/L−62  

 

1.086 × 10⁻⁵  uM 

5 mg/kg meat63 

Histidine in meat 2.71 μM 

 

0.42 ppm 

 

0.1 μM64 8 μg/L65 9.0 μM66 

Spermine in meat 2.22 μM 

 

0.45 ppm 

 

0.57 uM58 

 

0.115 mg/L 

0.4644 uM 

 

0.094 ug/mL59 

988.4 uM 

 

200 ppm60 



Table S3. Reported R2 values in AI-based studies, colorimetry only, and colorimetry plus smartphone 

*values correspond to cited studies in Table S2 

 

Table S4. Statistical testing  (Mann-Whitney U test) for LOD 

Pair p-value 

AI-based vs Colorimetry + smartphone p = 0.1610359  

AI-based vs Colorimetry only p = 0.3011529 

AI-based vs Typical/Optimal p = 0.2747575  

 

*Statistical testing was conducted using R Studio’s Wilcoxon rank-sum tests 

 

 

 

Analyte LOD AI-based ( μM ) LOD colorimetry only LOD colorimetry plus smartphone (no 

AI) 

H2O2 in cells 0.998 0.9972 0.997 

VMA  in urine 0.999 0.996 0.997 

HVA in urine 0.999 0.995 0.998 

Cardiac troponin (cTnI) 

in human serum 

0.999 0.990 0.981 

LDL in human serum 0.999 0.9946 0.7917 

HDL in human serum 0.999 0.9918 0.8018 

Glucose in tears 0.996 0.994 0.995 

Cholesterol in tears 0.997 0.993 0.993 

Spermine in chicken 

meat 

0.959 0.977 0.99209 

Cardiac troponin (cTnI) 

in human serum 

0.9999 0.990 0.981 

Tryptamine in meat 0.9596 0.9969 0.987 

Histidine in meat 0.952 0.9852 0.982 

Spermine in meat 0.967 0.977 0.99209 
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Table S5. Statistical testing  (Mann-Whitney U test) for R2 

Pair p-value 

AI-based vs Colorimetry + smartphone p = 0.07539264  

AI-based vs Colorimetry only p = 0.1422894  

 

*Statistical testing was conducted using R Studio’s Wilcoxon rank-sum tests 

 

Table S6.Data for bubble plot analysis with information obtained from Table S5  

AI Subgroup Analyte Classification 

Accuracy 

Analyte Group Sensor Type 

Object Detection Hyaluronidase (HAase) 92 Enzymes / Enzyme Activity Tube- or Well-Based 

Sensors 

Traditional Machine 

Learning 

Hâ‚‚Oâ‚‚ 91 Small Molecule Metabolites Tube- or Well-Based 

Sensors 

Deep Learning pH 92 Electrolytes / Ions Wearable Patch Sensors 

Ensemble / Hybrid 

Models 

HVA 100 Tumor / Disease Biomarkers Paper/Î¼PAD Sensors 

Ensemble / Hybrid 

Models 

VMA 100 Tumor / Disease Biomarkers Paper/Î¼PAD Sensors 

Transformer-based 

Models 

SARS-CoV-2 RNA 100 Pathogen/Bacteria Detection Tube- or Well-Based 

Sensors 

Unspecified or Black-

box 

Cardiac and lipid 

biomarkers 

75.2 Tumor / Disease Biomarkers Paper/Î¼PAD Sensors 

Traditional Machine 

Learning 

Urinary disease markers 97 Tumor / Disease Biomarkers Paper/Î¼PAD Sensors 

Unspecified or Black-

box 

Glucose 87.6 Small Molecule Metabolites Tube- or Well-Based 

Sensors 

Deep Learning Glucose 100 Small Molecule Metabolites Tube- or Well-Based 

Sensors 

Deep Learning cholesterol 100 Small Molecule Metabolites Tube- or Well-Based 

Sensors 

Deep Learning pH 100 Electrolytes / Ions Tube- or Well-Based 

Sensors 

Deep Learning Glucose 100 Small Molecule Metabolites Wearable Patch Sensors 

Deep Learning pH 100 Electrolytes / Ions Wearable Patch Sensors 

Deep Learning lactate 100 Small Molecule Metabolites Wearable Patch Sensors 

Object Detection Live HeLa cell viability 98 Tumor / Disease Biomarkers Tube- or Well-Based 

Sensors 

Dim. Reduction Biogenic amines 100 Biogenic Amines / Spoilage 

Markers 

Paper/Î¼PAD Sensors 

Deep Learning Naâ•º 100 Electrolytes / Ions Wearable Patch Sensors 

Deep Learning Kâ•º 100 Electrolytes / Ions Wearable Patch Sensors 

Deep Learning pH 100 Electrolytes / Ions Wearable Patch Sensors 

Dim. Reduction Thiols 100 Composite / Multiplexed 

Panels 

Tube- or Well-Based 

Sensors 

Dim. Reduction Biogenic amines 100 Biogenic Amines / Spoilage 

Markers 

Tube- or Well-Based 

Sensors 

Object Detection Cariogenic bacteria 97.7 Pathogen/Bacteria Detection Paper/Î¼PAD Sensors 

Dim. Reduction Heavy metals 98 Heavy Metals / Inorganics Tube- or Well-Based 

Sensors 

Dim. Reduction Tea polyphenols 100 Polyphenols / Adulterants Tube- or Well-Based 

Sensors 
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Ensemble / Hybrid 

Models 

Glucose 95 Small Molecule Metabolites Paper/Î¼PAD Sensors 

Dim. Reduction Catecholamines 100 Hormones / Neurotransmitters Tube- or Well-Based 

Sensors 

Traditional Machine 

Learning 

Î²-Lactoglobulin 93 Macromolecules / Proteins Tube- or Well-Based 

Sensors 

Traditional Machine 

Learning 

Albumin 96 Macromolecules / Proteins Tube- or Well-Based 

Sensors 

Deep Learning Hâ‚‚Oâ‚‚ 94 Small Molecule Metabolites Tube- or Well-Based 

Sensors 
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