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Abstract 

Colorimetric biosensors offer low-cost diagnostics but often suffer from subjective interpretation, environmental variability, 

and limited quantification. Artificial intelligence (AI) has emerged as a powerful solution, enabling automated analysis of 

chromogenic outputs captured via smartphones or imaging systems. This meta-analysis reviews 32 studies (2022–2025) 

applying AI to colorimetric biosensing, comparing performance across model types, sensor formats (e.g., paper, wearable, tube-

based), input modalities (e.g., RGB, absorbance), and analyte classes. Key metrics include classification accuracy, regression 

strength (R²), and limit of detection (LOD), benchmarked against non-AI and conventional methods.AI-enhanced platforms 

consistently improved accuracy, with context-specific gains in R² and LOD, especially for weak or overlapping signals. 

Smartphone-based RGB systems dominated but required calibration strategies such as CNN-GRU correction and illumination 

adjustment. Despite promising results, most studies lacked external validation and relied on supervised learning with small 

datasets. Semi-supervised approaches and standardized benchmarks are needed to ensure generalizability. Beyond analytical 

metrics, AI offered faster readouts, automated interpretation, and support for multiplexed sensing. Future directions include 

integrating augmented reality for enhanced usability and applying AI to sensor design and optimization. Collectively, these 

advances position AI-enhanced colorimetric biosensors as scalable, field-ready diagnostic tools with growing potential for 

clinical and environmental deployment 
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1. Introduction 

Lack of accurate, acessible, and rapid diagnostics remain a global 

issue for healthcare especially in remote, resource-constrained 

settings   where over 47% of the global population lacks access to 

essential diagnostic tools1. While conventional laboratory-based 

diagnostics  remian the gold standard, they require sophisticated 

equipment, trained personnel, and controlled environments. These 

limitations contribute significantly to delayed diagnoses and 

diagnostic errors, which are estimated to cause approximately 

371,000 deaths and 424,000 permanent disabilities annually in the 

United States alone2. To address these, portable colorimetric 

biosensors, which are analytical devices that detect presence of target 

analytes through visible color changes via enzymatic reactions, 

nanozyme catalysis, or pH-sensitive dyes, have gained prominence 

as low-cost, easy-to-use alternatives capable of delivering rapid 

results without the need for laboratory infrastructure3.  Google 

Trends data show that global interest in colorimetry more than 

doubled from late 2021 to early 2025, reflecting growing attention 

towards visual-based diagnostics4. By translating biochemical 

interactions into observable color changes, they have found 

applications in diverse settings from at-home glucose monitoring and 

pregnancy testing to field-based detection of pathogens and heavy 

metal ions that might be detrimental to health5. Moreover, their 

compatibility with paper-based substrates, lateral flow formats, and 

nanozyme-enhanced platforms makes them particularly attractive for 

decentralized healthcare and environmental monitoring6.  However, 

despite their significant improvements over traditional diagnostics, 

colorimetric biosensors face persistent limitations related to 

subjectivity in optical result interpretation, arising from variations in 

ambient lighting, camera resolution, user technique, and perceptual 

bias, which can significantly affect the accuracy and reproducibility 

of results7. This is a hindrance for their widespread adoption in 

critical clinical or environmental applications where precision and 

standardisation are essential. 

Table 1. Summary of recent reviews on AI-Enabled 

biosensors and the distinct scope of this work 
Year Focus Key Insights 

20247 AI in biochemical 

sensors (incl. 

colorimetric) 

Reviewed AI's role across sensing 

platforms, highlighting accuracy gains 

and implementation challenges. 

2024³ AI in electrochemical 

biosensors 

Showed AI improves sensor sensitivity 

and wearable adaptability. 

20249 AI-integrated wound 

dressings 

Reviewed AI-biosensor synergy for 

wound monitoring and healing 

prediction. 

202310 ML-based sensor arrays 

for bacterial detection 

Surveyed ML-enhanced 

colorimetric/fluorescent arrays for 

pathogen classification. 

2025 

(This 

review) 

AI-enhanced 

colorimetric biosensors 

(health & environment) 

Conducts first metadata analysis 

comparing R², accuracy, and sensitivity 

across 30+ studies. 

To overcome these challenges, artificial intelligence (AI) has 

emerged as a transformative solution. By analyzing colorimetric 

outputs captured via smartphones or imaging devices, AI algorithms 

provide automated, consistent, and quantitative interpretation of 

biosensor signals. While previous reviews highlight AI applications 

in biosensing, few assess its actual performance gains. This review 

fills that gap through a metadata analysis of recent AI-enhanced 

colorimetric studies, comparing improvements in sensitivity, 

accuracy, and regression strength (R²) over traditional and non-AI 

methods. Table 1 summarizes prior reviews to contextualize this 

study’s contribution.  

 

2. State-of-the-art of Current Research 

This work conducted a metadata analysis of 32 peer-reviewed studies 

from 2022 to 2025, sourced via Scopus and Google Scholar using 

combinations of search terms such as “colorimetric biosensor,” “AI,” 

“accuracy,” and “sensitivity.” Studies were included if they 

employed artificial intelligence (machine learning or deep learning) 

for the interpretation of colorimetric biosensor outputs and reported 

at least one quantitative performance metric (e.g., accuracy, 

sensitivity, or R²). Data were manually extracted on sensor type, 

sample source, analyte, AI model, and comparative improvement 

over non-AI or traditional methods.  A comprehensive table detailing 

these 32 studies is shown in Table S1 (supplementary). 

 

2.1. Sensor Architecture – Form Factor, Platform, and AI Data 

Utilization 

Figure 2.4.a shows sensor architectures across the 32 studies 

prioritized cost-effectiveness, portability, and user-friendliness, 

which are qualities best demonstrated by paper-based sensors (10 

studies), wearable microfluidic patches (6), and tube/well-based 

formats (11), collectively accounting for over 85% of sensor form 

factors.  In comparison to conventional laboratory-based diagnostics, 

these form factors drastically reduce overheads in terms of materials 

and logistics, enabling decentralized testing. Device-integrated 

sensors (5 studies), while offering superior performance via 

embedded optics or processors, still lack scalability due to their high 

cost and need for specialized maintenance. Smartphones were 

overwhelmingly used for signal collection (28 of 32 studies), 

outpacing other platforms like scanners (4), robotic sensors (1), and 

microscopes (1), due to their widespread accessibility, built-in 

cameras, and ability to process or upload images in real time.  This 

sensor architecture across these studies is visualized in Figure 2.1. 

 

Figure 2.1. Architecture of AI-enabled colorimetric sensors 

RGB was the main input for AI models (19 studies), followed by 

grayscale (2), absorbance (3), and multimodal setups like RGB with 

thermal, mechanoluminescence, or fluorescence (1 each). Its appeal 

lies in smartphone compatibility and suitability for CNNs that 

process spatial and color features. Absorbance-based methods are 

more robust but rely on non-portable, specialized tools. RGB’s 

sensitivity to lighting and device variability reduces reliability 

without normalization, used in only a few studies (some in Table 2.1). 
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These steps are key to improving consistency in real-world settings. 

Overall, the move toward RGB-smartphone-AI systems supports 

scalable diagnostics, but stronger standardization is still needed to 

match lab-grade performance. 

Table 2.1 Color correction strategies applied across selected studies 

Study Color correction applied 

Wang et al.11 Trained a CNN-GRU model to adjust for ambient 

light and pH variation 

Ghateii and 

Jahanshashi 36 

Used flash/no-flash subtraction and lab color space 

conversion to stabilize lighting conditions 

Liu et al42 Applied pixel-wise color correction using a 24-color 

checker to calibrate camera-based inputs 

 

2.2 Purpose and Sample Type – Monitoring Targets, Matrices, 

and Analytes 

Figure 2.4.b reveals that sensors are mainly applied to clinical 

diagnostics (10/32 studies), metabolic monitoring (7), and food 

safety (6), with fewer targeting pathogens (4), cellular assays (2), or 

multiplex panels (1). This mirrors the prevalence of accessible 

samples like urine (4), sweat (3), saliva, and tears, ideal for wearable 

or point-of-care use. However, this also suggests an application bias, 

favoring well-characterized analytes in controlled settings. Food and 

environmental samples (9 studies combined), which present greater 

matrix complexity and signal noise, remain underrepresented despite 

being where AI’s disambiguation strengths are most needed. Current 

trends favor feasibility over impact, applying AI where outputs are 

already interpretable rather than where its value is most critical. 

Notably, many AI models have been applied to analytes that already 

produce vivid and monotonic color changes, such as glucose and pH, 

where human-readable output is already largely feasible. While this 

enables automation and precision, it may underutilize AI’s potential. 

As shown in Figure 2.2, analytes like HDL, LDL, and troponin 

exhibit weaker or grayscale transitions that are far less 

distinguishable visually. These cases present the strongest 

justification for AI integration yet remain underrepresented. Rather 

than reinforcing already discernible signals, AI's role should be 

expanded to support analytes with ambiguous visual responses, 

where its capacity for pattern recognition and subtle gradient 

differentiation can meaningfully extend the reach of colorimetric 

sensing. 

 

 
Figure 2.2. Colorimetric responses for selected analytes. 

2.3 AI Use Case and Model – Task Types and Algorithms 

Employed 

AI in colorimetric biosensing has mainly focused on regression (18 

of 32 studies) and classification (13), aligning with the direct 

relationship between color change and either concentration or 

categorical outcome. Regression typically maps RGB patterns to 

analyte levels, while classification supports test result interpretation. 

These applications suit sensors targeting analytes with clear, 

monotonic color shifts like glucose or pH. However, this also reflects 

a cautious approach where AI is often applied where signal-response 

relationships are already well defined. More advanced tasks like 

clustering, anomaly detection, or multimodal fusion remain rare, 

despite their potential for handling complex or noisy signals. 

Figure 2.3 shows a mismatch between AI task complexity and the 

models used in reviewed studies. Simpler regression tasks were most 

common and often addressed with traditional ML models like 

random forests, even when signals were nonlinear or noisy. Deep 

learning was more common in classification tasks, particularly for 

spatial data, but rarely used for complex tasks like object detection or 

multimodal fusion. For example, Yu et al.27 used an ANN for RGB-

thermal fusion but didn’t apply advanced architectures like attention 

or transformers. Unsupervised methods like PCA or t-SNE were 

limited to visualization. This suggests model selection is often based 

on familiarity, not task fit. As a result, underspecified models may 

limit performance in complex or noisy settings and reduce 

generalizability outside the lab. Treating model architecture as a key 

design element, aligned with task demands and supported by 

benchmarking, will be essential for advancing AI in biosensing.  

 

Figure 2.3. AI model use by task type, showing ML dominates 

regression while DL is underused in complex tasks. 

2.4 Performance Improvement – Gains Attributed to AI and 

Benchmarks 

Across all 32 studies, AI integration was credited with enhancing 

sensor performance across multiple axes. The most reported gains 

were improved accuracy (~20 studies), enhanced sensitivity or lower 

limits of detection (~7 studies), faster or automated interpretation (~3 

studies), and improved pattern resolution for multiplexed or 

overlapping signals (~4 studies). AI enabled detection of subtle 

analyte differences, automated endpoint interpretation, and 

separation of overlapping outputs in multi-analyte sensors. While 

about 7 studies lacked a baseline comparison, those that did 

consistently showed AI outperforming visual reads, thresholds, or 

uncorrected data. Table 2.2 highlights four representative examples. 

Cui et al.12  used YOLOv5 to improve bacterial classification to 95%. 
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Yu et al.27 combined colorimetric and thermal signals via ANN to 

surpass LOD for cardiac troponin. In Zheng et al’s work16, CNNs 

reduced assay readout time withing minutes to seconds, while 

originally taking hours. Ranbir et al25. and Singh et al.30 used PCA-

LDA to fully separate volatile amines in meat, showing AI’s strength 

in multiplex detection. These examples illustrate both performance 

gains and how targeted AI use can expand the utility of colorimetric 

sensors in real-world settings. However, while showing these gains, 

a more quantitative approach is required to fully grasp the importance 

of AI in colorimetric biosensing, as explored in subsequent section. 

2.4 Meta-analysis of performance improvements 

2.4.1. Limit of detection (LOD) 

We compared LOD values across studies, as LOD reflects the lowest 

detectable concentration above background noise and is key to 

assessing sensor sensitivity. This helps determine whether AI 

meaningfully improves detection limits in real-world use.

 
Figure 2.4  Sankey diagram for AI-enhanced colorimetric biosensor studies sorted by (a) sensor architecture; (b) purpose and sample types, 

(c) AI use cases, model classes, and algorithms; and (d) performance improvements (comprehensive table in Table S1) 
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Figure 2.5. Log-scale distribution of LOD values across colorimetric detection methods, highlighting analyte-level spread and comparison 

to typical/optimal reference values   

LOD data from AI-enhanced studies were grouped into four 

categories: AI-based, colorimetry only, colorimetry plus smartphone 

(non-AI), and typical values in human or food samples. Each analyte 

within a study was treated as a separate data point. For baseline 

methods lacking internal controls, LODs were sourced from recent 

reviews or similar studies. Full data appear in Supplementary Table 

S1.  

As shown in Figure 2.5.a, AI-based platforms had slightly lower 

median LODs than typical concentrations in human and health 

samples, highlighting significance in diagnostics, but variability was 

high across all groups, especially compared to non-AI smartphone-

assisted methods. Mann–Whitney U tests (Table S4) showed no 

statistically significant differences (all p > 0.15), indicating that AI 

alone doesn’t consistently improve sensitivity. Outliers like del Real 

Mata et al’s13 1 pM H₂O₂ detection with a plasmonic sensor and 

random forest model, or Yu et al’s27 10.8 pg/mL troponin detection 

using ANN fusion, highlight AI’s potential under optimized setups. 

However, factors like sensor materials, analyte properties, and 

sample matrices often have greater influence. AI was most impactful 

in cases with overlapping or faint color signals, e.g. Cui et al’s use of 

YOLOv5 for low-level bacterial HAase, and Ranbir et al’s25. and 

Singh et al’s.30  PCA-LDA models resolving mixed biogenic amines. 

In contrast, analytes with strong color change like glucose or pH 

showed minimal LOD gains, though AI improved consistency and 

automation. These results suggest AI should be applied selectively, 

especially for low-contrast or nonlinear signals. Broader adoption 

will require better benchmarking, task-specific AI design, real-world 

validation, and comparison to regulatory standards or reference 

methods.  

2.4.2. Model R2 values 

We included R² comparisons across studies as it reflects how well a 

sensor’s output follows analyte concentration trends making it an 

essential indicator of dose-response consistency, even if not a direct 

accuracy measure. R² data were grouped by method type (AI-based, 

colorimetry-only, and smartphone-assisted non-AI) and are 

summarized in Table S3 and visualized in Figure 2.5.b. AI-based 

platforms showed higher average R² values (0.952–0.9999) and 

wider spread than conventional methods, with several achieving 

near-perfect calibration under controlled conditions. However, 

Mann–Whitney U tests (Table S5) indicated these differences 

weren’t statistically significant (p = 0.075 vs. smartphone; p = 0.14 

vs. colorimetry-only), suggesting AI doesn’t consistently improve 

regression fit across all cases. The best R² values were seen in studies 

with controlled imaging, high signal-to-noise ratios, or carefully 

curated datasets. Study 18 reached R² = 0.9999 for cardiac troponin I 

using an ANN with thermal and color fusion, while Study 13 

achieved robust fits for glucose and cholesterol using ensemble 

models that corrected ambient lighting. By contrast, non-AI methods, 

especially smartphone-only approaches, showed greater performance 

drops under uncontrolled conditions, with R² values around 0.79–

0.80 for LDL and HDL, likely due to lighting variability. These 

findings suggest AI’s greatest strength lies in stabilizing regression 

under noisy or nonlinear signal conditions. However, high R² alone 

is not sufficient. Some colorimetry-only systems still performed well 

for monotonic, high-contrast analytes, highlighting the continued 

importance of sensor chemistry. To ensure robust performance, 

future work should combine R² with broader metrics like residual 

analysis, external validation, and real-world testing. Overreliance on 

R² may inflate confidence, particularly in the absence of clinical or 

field verification. 

2.4.2. Accuracy 

Unlike limit of detection (LOD) and regression metrics such as R², 

classification accuracy lacks a consistent universal baseline in 

biosensing literature. The diversity of decision thresholds, analyte 

classes, and labeling protocols across studies means that accuracy 

figures are highly context dependent. As such, we do not compare 

absolute values across platforms. Instead, we focus on within-dataset 

patterns observed across sensor architectures, analyte groups, and AI 

model classes, as summarized in Figure 2.6a and Supplementary 

Table S6. Overall, AI-enhanced biosensors consistently 

outperformed non-AI platforms, with the majority of AI-based 

systems achieving accuracies above 90%, and several reaching the 

100% benchmark across diverse sensing contexts. These included 

both deep learning and hybrid ensemble methods, suggesting the 

benefits of nonlinear pattern recognition, especially when signal 

variability or interference is present.  
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Figure 2.6. Bubble plot of classification/quantification accuracy of AI-enhanced colorimetric biosensors, mapped across sensor form factors 

(left) and analyte groups (right) by AI model class

At the architecture level, wearable patch sensors, when paired with 

CNN-based models, demonstrated high robustness and accuracy, 

often exceeding 95% for multi-biomarker sweat patches. Study 14 

achieved 100% classification for glucose, pH, and lactate, enabled by 

a VGG16 CNN that captured subtle differences in spatial signal 

distributions under ambient conditions. Similarly, paper/μPAD 

sensors paired with traditional ML models (e.g., Random Forest, 

SVM) also performed well, particularly for urinary and metabolic 

analytes, where structured chromogenic arrays  generated 

reproducible color fingerprints. Study 11, for example, achieved 97% 

accuracy in urinary tract infection classification using an SVM-RF 

ensemble.Among analyte categories, tumor and cardiac biomarkers 

benefited most from AI integration. The fusion of thermal and optical 

signals in Study 18, using an ANN, yielded accurate discrimination 

of cardiac troponin I (cTnI), reinforcing the strength of multimodal 

biosensing for critical clinical analytes . Additionally, for biogenic 

amines, LDA-based models maintained >95% accuracy, even under 

food matrix variability. 

In contrast, non-AI systems, especially those relying on smartphone 

cameras with simple thresholding or raw RGB interpretation, showed 

greater susceptibility to lighting inconsistencies, with accuracy often 

falling to the 85–90% range. These limitations were particularly 

evident in complex backgrounds like food spoilage detection or 

overlapping chromophores, where AI methods (e.g., PCA-LDA 

fusion) restored classification clarity. From the sensor form 

perspective, tube- or well-based formats showed generally stable 

accuracy due to controlled optics, though wearable and paper-based 

formats 6abelled them when enhanced by AI. Notably, the highest 

accuracies clustered in deep learning and object detection classes 

(Figure 2.6a left panel), reflecting their superior ability to extract 

spatial and contextual features from raw image data. Together, these 

trends suggest that while chemical design and sensor chemistry 

remain foundational, AI integration—especially through CNNs, 

hybrid models, and transformer-based architectures—can 

significantly amplify diagnostic reliability, especially under variable 

environmental or user-handling conditions. Future work should 

explore adaptive learning for personalized calibration and establish 

standardized accuracy benchmarks across sensor classes. 

3. Synthesis and outlook 

1. On the use of smartphones and calibration needs- The collected 

studies make clear that coupling AI with colorimetric biosensors can 

dramatically enhance their capabilities, turning simple color changes 

into rich quantitative and actionable data. A unifying theme is the 

leveraging of ubiquitous hardware, particularly smartphones , as both 

the data acquisition device and computation platform. This 

convergence, seen in roughly 90% of the articles, underscores a 

practical advantage: AI algorithms deployed on consumer 

smartphones can transform point-of-care diagnostics, allowing 

immediate analysis in the field. However, this shift toward RGB 

smartphone-based pipelines brings new challenges in data 

normalization. Different phone cameras and ambient lighting 

conditions can skew color readings, requiring robust calibration to 

ensure reproducibility67. Encouragingly, several teams have 

introduced clever calibration techniques to tackle this issue. For 

example, cloud-connected analysis frameworks now incorporate 

hybrid models (CNNs coupled with recurrent networks) to auto-

correct for illumination variances and sensor-specific biases. Such 

approaches (e.g. a multichannel CNN-GRU pipeline) have achieved 

R² values ~0.99 by learning to adjust for color temperature 

differences in images, effectively standardizing results across 

varying conditions. Moving forward, continued innovation in on-

device calibration (from one-time color card references to real-time 

algorithmic corrections) will be essential to fully capitalize on 

smartphone-enabled AI sensing.  

2. On generalizability and data-efficient modelling- Despite the 

impressive performance gains reported, most studies lack rigorous 

external validation, highlighting a critical gap between controlled 

experiments and real-world deployment. Typically, models are 

trained and tested on the same lab-generated dataset; few works 

verify that an AI model trained on one device or sample set holds up 

on others. This absence of external validation and cross-platform 

testing raises concerns about generalizability, an issue that future 

research must address by incorporating independent test sets, multi-

center trials, or reference sample exchanges.  Likewise, the underuse 

of semi-supervised learning and data augmentation is notable. Many 

AI models for colorimetric sensing rely on relatively small labeled 
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datasets, yet few studies leverage the abundance of unlabeled data or 

synthetic data generation to improve model robustness. Introducing 

semi-supervised algorithms (which can learn from unlabeled color 

images) or augmentation techniques (to simulate variations in hue, 

intensity, backgrounds, etc.) could significantly enhance model 

resilience to real-world variability at minimal cost. Another insight 

from our meta-analysis is that AI’s added value appears tied less to 

the analyte type and more to the ambiguity of the signal. In other 

words, when an assay produces straightforward, high-contrast color 

changes (e.g. a single intense color shift for a positive result), 

traditional analysis may suffice. But as the color outputs become 

more complex, such as subtle gradations, multi-analyte sensor arrays, 

or overlapping chromatic responses, advanced machine learning 

yields disproportionate benefits68. Indeed, deep learning models 

excel at deciphering high-dimensional color patterns that humans or 

simple algorithms struggle to interpret. This trend suggests that future 

developers should strategically deploy AI in scenarios of inherent 

signal complexity or uncertainty, where its pattern-recognition 

strengths are most impactful. It also implies that reporting 

performance as a function of assay complexity (rather than only by 

analyte category) could be a more meaningful way to evaluate new 

AI-enhanced biosensors. 

3. On practical gains: speed, multiplexing, and robustness- From a 

practical standpoint, AI-driven colorimetric analysis offers 

improvements that extend beyond raw analytical metrics, 

contributing to better usability and reliability of biosensors. One clear 

advantage is speed: once trained, an AI model can interpret a sensor’s 

color output in milliseconds, potentially enabling near real-time 

readouts and quicker decision-making in point-of-care settings. In 

some cases, algorithms can even detect partial color changes before 

a reaction is fully complete, shortening the time-to-result. Another 

benefit is the capacity for multiplexed detection, that is, analyzing 

multiple indicators simultaneously. Traditional colorimetric assays 

struggle when multiple test spots or mixed-color outputs must be 

interpreted at once, whereas machine learning can untangle such 

composite signals with high accuracy. For example, neural network 

models have distinguished multiple antibody responses in a single 

assay with ~89% accuracy, outperforming conventional methods by 

a significant margin68. In general, as more analytes are encoded into 

color-based tests, AI will be instrumental in accurately classifying 

outcomes across a multidimensional color space. Equally important 

is the robustness that AI brings: sophisticated models can 

accommodate variability in sample quality or environmental 

conditions (such as inconsistent lighting or user handling) better than 

rigid threshold-based interpretations. Notably, convolutional neural 

networks have maintained strong performance even when images are 

noisy or under suboptimal lighting, a resilience crucial for real-world 

applications. This robustness reduces the incidence of false negatives 

or false positives caused by minor perturbations, thus improving trust 

in home or field deployments.  

4. On the horizon: integration with AR/VR and digital design- 

Looking towards the horizon, there are exciting opportunities to 

integrate emerging technologies like augmented and virtual reality 

(AR/VR) with AI-based colorometric sensing. Early demonstrations 

have shown that AR smartphone apps can overlay interpretive 

guidance or even embed fiducial markers into the test to aid real-time 

result reading. In the future, a user might simply point a phone at a 

paper sensor and see a quantified result or risk assessment pop up 

instantly via AR, lowering the barrier to accurate self-testing. VR 

environments could also serve as training tools, simulating a wide 

range of colorimetric outcomes for clinicians or as a platform to 

virtually prototype sensor designs. Moreover, AI itself can be applied 

beyond analysis – for instance, using machine-learning optimization 

to design better colorimetric assays (selecting optimal reagent 

combinations or layout to maximize signal differentiation) or to 

create digital twins that predict how a sensor will behave under 

various scenarios. These exploratory directions, while in nascent 

stages, underscore the expansive potential at the interface of smart 

algorithms and biosensing. In summary, the future outlook for AI-

enhanced colorimetric biosensors is one of continued convergence by 

merging accessible hardware, powerful algorithms, and user-centric 

innovations to deliver faster, multiplexed, and more robust diagnostic 

solutions. The next few years will likely witness not only incremental 

performance improvements but also a maturing of the field through 

standardized evaluation protocols, open datasets for model training, 

and perhaps the advent of intelligent sensors that learn and adapt 

during use. 
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Table S1. Comprehensive table for the 32 reviewed studies on AI-enabled colorimetric biosensor 

Sensor Type   Analyte  Sample 

Source  

Detection 

Mechanism  

Signal collection 

platform for AI  

AI Model  Role of AI (with 

Subgroup Tags)  

Reported 

LOD   

Classificatio

n Accuracy  

Regression 

Accuracy 

(inverted 

MAE or 

similar)  

Fit Quality 

(R² or r)  

Wearable microfluidic 

colorimetric sensor 11  

Vitamin C, H⁺ 

(pH), Ca²⁺, 

protein  

Human tears  Analyte-induced 

color change in 

PDMS microfluidic 

patch captured as 

RGB signal for 

concentration 

mapping  

Smartphone (RGB 

image capture)  

CNN-GRU 

(1D for pH, 

3D for 

others)  

Image-to-

concentration 

regression using 

CNN-GRU 

(Regression for 

Quantification)  

Not 

reported  

Not reported  0.001 

(MAE)  

R² = 0.998  

Smartphone-based 

hydrogel colorimetric 

sensor 12  

Hyaluronidas

e (Haase) 

from bacteria  

Clinical swabs, 

food  

Hyaluronic acid (HA) 

degradation triggers 

CPRG release, reacts 

with β-galactidose 

and generates color 

changes  

Smartphone 

(camera)  

YOLOv5  Object detection and 

bacteria classification 

(Image 

Classification, Object 

Detection)  

10 

CFU/mL  

92% 

(between 

gram + and 

gram -)  

Not 

reported  

  

R² = 0.97  

Microfluidic plasmonic-

enhanced colorimetric 

sensor 13    

H₂O₂  Cancer cell 

culture 

medium  

Amplex Red reacts 

with H₂O₂ in presence 

of HRP, forming a 

pink dye; signal 

amplified by 

plasmonic 

nanostructures  

Microscope (image 

capture)  

Random 

Forest 

Classifier  

Binary classification 

of H₂O₂ levels from 

RGB image (Image 

Classification)  

1 

picoMolar  

91% 

(between high 

and low 

concentration 

classification)

  

Not 

reported  

  

R² = 0.98  

Lip-applied sensor 14    pH  Skin surface 

(via lip 

application)  

Anthocyaninl in lip 

pigment undergoes 

pH-triggered color 

shift captured via 

selfies  

Smartphone (selfie 

camera)  

CNN  Lip color 

classification into pH 

levels using CNN 

(Image 

Classification)  

Not 

reported  

92% (0.92   Not 

reported  

  

Not reported  

  

Multicolorimetric sensor 

array (AuNR-AgNP-

based) (Plasmonic, 

Paper-based) 15  

HVA, VMA 

(tumor 

markers)  

Human urine  Redox reaction 

between HVA/VMA 

and Ag⁺ causes silver 

shell formation on Au 

nanorods, altering 

LSPR and generating 

multicolor shifts  

Smartphone (RGB 

image)  

PCA + LDA 

+ PLSR  

Multivariate 

regression and 

classification of 

tumor markers 

(Regression, Dim. 

Reduction + 

Classification)  

0.22 μM 

(HVA) and 

0.29 μM 

(VMA)  

Not reported  100%  R² = 0.999 

(HVA)  

R² = 0.999 

(VMA)  
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Multiplexed Colorimetric 

Patch (PETAL) 16  

Temperature, 

pH, TMA, 

uric acid, 

moisture  

Wound 

exudate (rat 

models)  

Colorimetric sensors 

using liquid crystals, 

organic dyes, 

enzymes, and metal 

ions  

Smartphone (patch 

image)  

CNN  Image-based 

classification of 

wound biomarkers 

(Image 

Classification)  

Not 

reported  

  

94–96%  (blank)  (blank)  

PDA-based lateral flow 

immunoassay (LFIA) 

(Lateral Flow) 17  

COVID-19 

neutralizing 

antibody  

Clinical serum  PDA-NPs conjugated 

with RBD antigen 

bind to antibodies; 

reduced PDA binding 

causes lighter test 

line; image processed 

via T/(T+C) 

grayscale ratio  

Smartphone (test 

strip image)  

Vision 

Transformer 

(ViT) + 

ResNet50  

Band detection and 

antibody 

quantification using 

ViT (Regression, 

Object Detection)  

160 ng/mL  Not reported  Not 

reported  

Not reported  

Dual-dye colorimetric 

RT-LAMP assay (Lateral 

Flow) 18  

SARS-CoV-2 

RNA  

Nasopharynge

al swabs  

Isothermal 

amplification causes 

pH drop, triggering 

color change in 

Xylenol Orange and 

Lavender Green dyes; 

image analyzed post-

reaction  

Smartphone or 

camera (reaction 

tube image)  

DETR-based 

model 

(ResNet50 + 

Transformer)

  

Tube segmentation 

and COVID result 

classification (Object 

Detection, Image 

Classification)  

100%  

(reduced to 

83% when 

diluted)  

(blank)  (blank)  R² = 0.998  

Paper-based multiplexed 

colorimetric biosensor 

(Paper-based) 19  

Cardiac and 

lipid 

biomarkers  

Human serum  Targets (e.g., cTnI, 

HDL, LDL) separated 

and detected via 

electrophoresis-

induced color change 

on paper  

Scanner or 

smartphone (paper 

strip image)  

CatBoost + 

PLS-DA, t-

SNE 

(ensemble)  

Color feature 

extraction and 

disease classification 

(Dim. Reduction + 

Clustering)  

CtnI 

(1.210x10^

-5 ug/mL)  

HDL  

(435.815 

ug/mL)  

LDL 

(383.127 

ug/mL)  

75.2% for 

classification 

of acute 

myocardial 

infarction  

  

Not 

reported  

0.999, 

0.9991, 

0.999 

respectively  

Urinary disease 

colorimetric test array 

(Paper-based) 20   

Urinary 

disease 

markers  

Human urine  Colorimetric reaction 

of multiple sensors 

(metal–organic 

complexes and 

chromogenic 

reagents) with urine 

Smartphone (sensor 

array image)  

Random 

Forest, 

SVM, kNN  

Pattern classification 

of urinary markers 

(Image 

Classification)  

Not 

reported  

  

97% 

classification 

for UTI  

(blank)  (blank)  
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constituents captured 

via smartphone  

Colorimetric sensor using 

AuNPs21    

Glucose  Urine samples  Glucose induces color 

change to AuNP  

Smartphone   Image 

processing 

and 

illumination 

correction 

for accurate 

color 

interpretatio

n across 

varying 

lighting 

conditions  

  Not 

reported  

  

87.6% 

accurate 

glucose 

concentration 

prediction  

Not 

reported  

  

Not reported  

  

Microfluidic sensor for 

artificial tears 

(Microfluidic) 22  

Glucose, 

cholesterol, 

pH  

Synthetic tears  Gox/ChOx-mediated 

oxidation produces 

H₂O₂, catalyzing 

TMB color change 

via HRP; universal 

pH indicator used; 

smartphone captures 

RGB data  

Smartphone (app-

integrated μPAD 

images)  

Deep Neural 

Network 

(DNN)  

Regression for 

pH/glucose/cholester

ol from artificial tear 

images (Regression 

for Quantification)  

Glucose = 

131 uM  

Cholestrol 

= 217 uM  

100%  RMS=0.386

  

0.996 

(glucose)  

0.997 

(cholesterol)  

Sweat-based biosensor 

(Wearable) 23  

Glucose, pH, 

lactate  

Human sweat  Chromogenic 

reactions triggered by 

sweat analytes across 

spatially arranged 

compartments; color 

changes recorded via 

smartphone  

Smartphone 

(microfluidic chip 

images)  

VGG16-

based CNN  

Color regression of 

sweat biomarker 

levels (Regression for 

Quantification)  

Not 

reported  

100% 

classification 

accuracy for 

all 

biomarkers in 

terms of 

quantity  

(blank)  R² = 0.9999 

for three 

biomarkers  

HeLa cell-based 

metabolic colorimetric 

sensor 24   

Live HeLa 

cell viability 

(metabolic 

activity)  

HeLa cell 

culture  

pH-sensitive 

achromatic dye 

transitions (black to 

orange) based on cell 

density; saturation 

analyzed via 

smartphone images  

Smartphone 

(achromatic 

saturation images)  

Mask-

RCNN  

Quantification of live 

cell images (Image 

Classification)  

51 × 104 

cells  

98%  (blank)  R² = 0.959  
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Colorimetric biogenic 

amine sensor for meat 25  

Biogenic 

amines  

Chicken meat 

samples  

Metal–azodye 

complex forming a 

fingerprint-based 

colorimetric 

response; analyzed 

via UV-vis 

absorbance and RGB 

imaging  

UV–Vis scanner 

and smartphone 

(portable strip)  

PCA, LDA, 

PLSR  

Colorimetric amine 

pattern classification 

(Image 

Classification)  

0.378 ppm 

(spermine)  

Not reported  

  

  

100% 

accuracy 

(cross 

validation), 

  

83% for 

interference 

testing  

  

Not reported  

  

  

Tea polyphenol sensor 

during fermentation26 

Tea 

polyphenols  

Fermented 

green tea (w/ 

ultrasound)  

RGB image 

extraction of CSA 

and multivariate 

calibration  

Smartphone (RGB 

image of sensor 

array)  

SVM  Regression and 

quality tracking for 

fermentation 

(Regression for 

Quantification)  

Not 

reported  

Not reported  

  

 Rc = 0.886, 

RMSEC = 

0.042 mg/g, 

Rp = 0.862, 

and 

RMSEP = 

0.043 mg/g  

Not reported  

  

Multiplexed troponin 

sensor (Nanozyme-

based) 27 

Cardiac 

troponin I 

(cTnI)  

Human serum  Cascade nanozyme-

based colorimetric 

and photothermal 

signals from h-

Prussian Blue in 

TMB-H₂O₂ system  

Smartphone + 

thermometer 

(absorbance + 

thermal)  

Artificial 

Neural 

Network 

(ANN, 3 

hidden 

layers, 64 

neurons)  

Feature fusion from 

color and temperature 

signals for cTnI 

(Multimodal Fusion)  

10.8 

pg/mL   

(blank)  (blank)  R² =0.9965  

Sweat ion and pH patch 

sensor 28 

Na⁺, K⁺, pH  Human sweat 

during 

exercise  

Printed chromogenic 

reagent zones and 

reference dye; color 

change recorded for 

in-situ analyte 

detection  

Smartphone (sweat 

patch image with 

reference dye)  

Explainable 

CNN (with 

ratiometric 

self-

calibration)  

Signal mapping for 

electrolyte and pH 

balance (Regression 

for Quantification)  

classified 

and 

quantified 

with 100% 

accuracy  

100% 

(≥50 nM)  

(blank)  (blank)  

Thiol-level cancer 

detection sensor 29  

Thiols (Cys, 

GSH, Hcy, 

DTT, MCH, 

TGA)  

Standard 

solutions  

Thiol-induced 

inhibition of metal 

ion–TPA@GQD 

nanozyme 

peroxidase-like 

catalysis of TMB-

H₂O₂ reaction, 

creating distinct color 

patterns 

UV–Vis reader or 

smartphone (RGB 

absorbance 

pattern)  

Linear 

Discriminant 

Analysis 

(LDA)  

Clustering of thiol-

level profiles for 

disease classification 

(Dim. Reduction + 

Clustering)  

50 nM 

thiol (not 

specified)  

100% 

accuracy to 

separate and 

discriminate 

from different 

thiols  

Not 

reported  

Not reported  

  

  

SJIE 1(4) X–X (2025)ÿÿ                                                                                                                                                 Ricacho et al. 



   

 15  
 

(“fingerprints”) for 

LDA discrimination  

Biogenic amine sensor 

array 30 

Biogenic 

amines (  

 tryptamine 

and 

spermine)  

Meat and 

cottage cheese  

Metal–azophenol 

complexes (C1–C11) 

respond to amines 

with colorimetric 

“fingerprint” patterns 

across 10 UV–Vis 

channels  

Smartphone or 

UV–Vis scanner 

(sensor array 

image)  

PCA, LDA  Color pattern 

recognition of food 

spoilage markers 

(Image 

Classification)  

Tryptamine 

0.40 ppm  

Histidine  

0.42 ppm  

Spermine  

0.45 ppm  

Spermidine

  

0.66 ppm  

100% (LDA)  Not 

reported  

  

R² = 0.96 

(Tryp), 0.97 

(Spermine)  

Bimodal Visual Sensors 

Based on 

Mechanoluminescence an

d Biosensing  31 

  

Cariogenic 

bacteria 

(through pH 

from lactic 

acid)  

Oral swabs, in 

vitro culture  

Bacterial acid 

production 

(colorimetric pH shift 

via anthocyanin) and 

tooth pressure via 

mechanoluminescenc

e  

Smartphone (dual-

mode 

mechanoluminesce

nt + color image)  

CNN-based 

model   

Segmentation and 

bacterial profile 

analysis (Object 

Detection, Image 

Classification)  

<1 mg/mL 

(estimated)

  

97.7% 

accuracy in 

the precise  

decoupling of 

visual signals  

Not 

reported  

  

Not reported  

Heavy metal colorimetric 

sensor  32 

Cr³⁺, Fe³⁺, 

Al³⁺, Ni²⁺, 

Cu²⁺, Zn²⁺  

Water and 

serum samples  

AchE inhibition by 

metal ions alters 

enzymatic reaction 

with chromogenic 

substrate, producing 

color shift patterns  

UV–Vis 

spectrophotometer 

(absorbance scan of 

arrays)  

PCA   Metal concentration 

regression using pixel 

intensity (Regression 

for Quantification)  

0.81 μM, 

0.75 μM, 

1.06 μM  

  

Cu2+, 

Cr3+, 

Al3+,  

98% accuracy 

in p  

  

(blank)  0.95,0.96,0.9

9 

respectively  

Tea authentication array 

sensor  33 

Tea 

polyphenols, 

adulterants  

Tea infusion 

samples  

TMB-H₂O₂ 

chromogenic system 

catalyzed by Bpy-Cu 

and Asp-Cu 

nanozymes; 

inhibition by 

polyphenols alters 

signal  

Smartphone or 

scanner (nanozyme 

array image)  

LDA, 

Decision 

Tree (DT), 

HCA  

Classification of 

authentic vs 

adulterated tea via 

color (Image 

Classification)  

Not 

reported  

Discriminatio

n accuracy  

was 100%.  

Not 

reported  

Not reported  
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AFB1 detection in 

ground peanut 

samples 34  

Aflatoxin B1 

(AFB1)  

Peanut extract 

(ground 

sample)  

Aflatoxin B1 (AFB1) 

in food (e.g., 

peanuts)  

  

Smartphone 

(fluorescent + 

colorimetric 

microneedle patch 

image)  

ANN  

  

AFB1 concentration 

prediction from patch 

image (Regression 

for Quantification)  

0.6845 ng 

mL/1  

(blank)  (blank)  R² = 0.9974   

CO₂ strip colorimetric 

sensor  35 

CO₂  Ambient air 

(gas sample)  

Color change induced 

by CO₂-mediated pH 

shift, captured as 

RGB ΔE across a 6-

receptor array  

Robotic camera and 

RGB sensor 

(automated 

platform)  

Multi-target 

Bayesian 

Optimization 

(BO) 

integrated 

with robotic 

plcaatform  

CO₂ level regression 

from colorimetric 

signal (Regression 

for Quantification)  

400 ppm  (blank)  RMSE = 

0.27%  

(blank)  

Paper-based glucose 

sensor 36   

Glucose  Human 

plasma  

Enzyme-catalyzed 

colorimetric reaction 

using glucose oxidase 

(Gox) and 

horseradish 

peroxidase (HRP), 

with TMB for low 

and KI for high 

glucose concentration 

detection  

Smartphone 

(flash/no-flash 

image pair)  

Ensemble 

Bagging 

Classifier 

(EBC), 

Linear 

Regression  

Glucose intensity 

prediction using Lab 

image values 

(Regression for 

Quantification, 

Classification)  

Not 

reported  

95% (TMB 

color 

indicator), 

91% (KI 

color 

indicator)  

(blank)  R² = 0.97 

(high conc), 

R² = 0.95 

(low conc)  

Urine neurotransmitter 

sensor 37 

dopamine 

(DA), 

epinephrine 

(EP), 

norepinephrin

e (NEP),  

and levodopa 

(LD)  

Human urine  Aggregation-based 

LSPR shift from 

AuNP interactions at 

different pH 

conditions  

Smartphone (LSPR 

color shift image 

under pH 

variation)  

LDA, PLSR  Catecholamine level 

estimation using 

feature-based models 

(Regression for 

Quantification, 

Classification)  

0.3, 0.5, 

0.2, and 

1.9 mM for 

DA, EP, 

NEP, and 

LD,  

100% (LDA)  (blank)  R² = 0.99 for 

4 analytes  

Smart μPAD for pH and 

glucose  38 

pH, Glucose  Aqueous lab-

prepared 

solutions  

For pH: Pani-NP 

undergoes EB to ES 

state transition; For 

glucose: Gox 

generates H₂O₂, 

reducing Pani-NPs, 

causing color shift 

(blue→green)  

Smartphone 

(dipstick color 

image under 

ambient light)  

RFR (best), 

DTR, SVR  

RGB analysis for 

pH/glucose detection 

in μPADs 

(Regression for 

Quantification)  

None 

reported  

(blank)  (blank)  R² = 0.96 

(pH), 0.92 

(glucose)  
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Milk β-lactoglobulin strip 

(Lateral Flow)39 

β-

Lactoglobulin

  

Milk  Glucose-fueled EBFC 

for electrochemical + 

HRP/ABTS 

colorimetric detection 

using smartphone-

assisted image 

processing  

Smartphone 

(colorimetric + 

voltage strip 

readout)  

Decision 

Tree (DT), 

Random 

Forest (RF), 

k-NN, SVM  

Grayscale intensity 

detection for β-

Lactoglobulin 

(Regression for 

Quantification)  

0.0081 

ng/mL,  

93%   Not 

reported  

Not reported  

Albumin detection strip 

(Lateral Flow)40 

Albumin  Urine  Protein concentration 

triggers color change 

on dipstick; captured 

by smartphone under 

varied lighting  

Smartphone 

(dipstick image 

under varied 

lighting)  

KNN 

classifier (vs 

RF, SVM)  

Intensity ratio 

computation for 

albumin strip 

(Regression for 

Quantification)  

4 mg/L   96%  Not 

reported  

Not reported  

H₂O₂ sensor 

(Spectrophotometric) 41 

Hydrogen 

peroxide  

Exhaled 

breath  

RGB signal mapping 

via colorimetric dye 

response (Eosin blue, 

KmnO₄, Starch-

Iodine)  

Smartphone (RGB 

mapping of breath 

test strip)  

ANN 

Regression  

Colorimetric pixel-

based regression of 

H₂O₂ (Regression for 

Quantification)  

0.011 ppm  94% accuracy 

for 

quantification

  

  0.941  

Saliva uric acid μPAD 

(Microfluidic) 42 

Uric Acid  Saliva  Prussian blue 

generation reaction 

with salivary UA 

forming blue 

complex  

Smartphone (μPAD 

salivary test 

image)  

Decision 

Tree 

Regressor 

(ML); 

Multiple 

Polynomial 

Regressor   

Color space 

regression for uric 

acid quantification 

(Regression for 

Quantification)  

Not 

reported  

(blank)  MAE=4.2 

ppm  

Not reported  
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Table S2. Reported LOD values in AI-based studies, colorimetry only, colorimetry plus smartphone, and typical values in 

food, human, and environment samples 

*Values were converted using molar masses  

 

 

 

 

Analyte LOD AI-based ( μM )* LOD colorimetry only* LOD colorimetry plus 

smartphone (no AI)* 

Typical values* 

H2O2 in cells 0.000001  μM  10.24 μM43   0.24 μM44  

 

0.01  μM 45 

VMA  in urine 0.22  μM 0.340 μM 0.260  μM46 28.7  μM 

HVA in urine 0.29 μM 0.313 μM 0.397  μM46 41  μM 

COVID-19 antibody 

in human serum 

1.07 × 10⁻⁶ 

 

 

(160 ng/mL) 

6.00 × 10⁻⁵ µM47 

 

(9 ng/uL) 

2.11x10-10 uM None  

Cardiac troponin 

(cTnI) in human 

serum 

5.06×10 −10 

 

 

(1.210 x 10^-5 ug/mL) 

5.44 × 10⁻¹⁶ µM 

 

 

(0.013 pg mL−1) 

1.63×10-8  μM  48 
 

 

 3.9X10−4 μg/ml 

 

 

 

0.02 ng/L49 

LDL in human serum 1.277 × 10⁻⁴ µM 

 

(383.127 ug/mL) 

7.33 × 10⁻¹⁰ µM50 

 

(2.1999 µg/mL) 

1.77×10−8 51 

 

(5.31 mg/dl) 

0.5352 

 

(100 mg/dL) 

HDL in human serum 1.09 µM 

 

(435.815 ug/mL) 

2 mg/dL53 

 

5.00×10−8 μM 

2.03 × 10⁻⁷ µM 

(8.10 mg/dl)51 

 

 

40 mg/dL 

Glucose in tears 131 uM 

(23.61 mg/L) 

0.32 μM 54 

0.05765 mg/L 

13.49 uM55 0.2 mM56 

(360 mg/L) 

Cholesterol in tears 217 uM 

(83.87 mg/L) 

1.9 μM57 

0.7356 mg/L 

0.00085  M 1.9 μM 

Spermine in chicken 

meat 

1.87 µM 

 

0.378 ppm 

0.57 uM58 

 

0.115 mg/L 

0.4644 uM 

 

0.094 ug/mL59 

988.4 uM 

 

200 ppm60 

Cardiac troponin 

(cTnI) in human 

serum 

10.8 picogram/mL 

 

4.52×10−16 μM 

5.44 × 10⁻¹⁶ µM 

 

 

(0.013 pg mL−1) 

.63×10-8  uM48 
 

 

 

 3.9X10−4 μg/ml 

0.02 ng/L49 

Tryptamine in meat 2.50 μM 

 

0.40 ppm 

 

20 nM61 

 

0.0032 mg/L 

1.74 μg/L−62  

 

1.086 × 10⁻⁵  uM 

5 mg/kg meat63 

Histidine in meat 2.71 μM 

 

0.42 ppm 

 

0.1 μM64 8 μg/L65 9.0 μM66 

Spermine in meat 2.22 μM 

 

0.45 ppm 

 

0.57 uM58 

 

0.115 mg/L 

0.4644 uM 

 

0.094 ug/mL59 

988.4 uM 

 

200 ppm60 



Table S3. Reported R2 values in AI-based studies, colorimetry only, and colorimetry plus smartphone 

*values correspond to cited studies in Table S2 

 

Table S4. Statistical testing  (Mann-Whitney U test) for LOD 

Pair p-value 

AI-based vs Colorimetry + smartphone p = 0.1610359  

AI-based vs Colorimetry only p = 0.3011529 

AI-based vs Typical/Optimal p = 0.2747575  

 

*Statistical testing was conducted using R Studio’s Wilcoxon rank-sum tests 

 

 

 

Analyte LOD AI-based ( μM ) LOD colorimetry only LOD colorimetry plus smartphone (no 

AI) 

H2O2 in cells 0.998 0.9972 0.997 

VMA  in urine 0.999 0.996 0.997 

HVA in urine 0.999 0.995 0.998 

Cardiac troponin (cTnI) 

in human serum 

0.999 0.990 0.981 

LDL in human serum 0.999 0.9946 0.7917 

HDL in human serum 0.999 0.9918 0.8018 

Glucose in tears 0.996 0.994 0.995 

Cholesterol in tears 0.997 0.993 0.993 

Spermine in chicken 

meat 

0.959 0.977 0.99209 

Cardiac troponin (cTnI) 

in human serum 

0.9999 0.990 0.981 

Tryptamine in meat 0.9596 0.9969 0.987 

Histidine in meat 0.952 0.9852 0.982 

Spermine in meat 0.967 0.977 0.99209 
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Table S5. Statistical testing  (Mann-Whitney U test) for R2 

Pair p-value 

AI-based vs Colorimetry + smartphone p = 0.07539264  

AI-based vs Colorimetry only p = 0.1422894  

 

*Statistical testing was conducted using R Studio’s Wilcoxon rank-sum tests 

 

Table S6.Data for bubble plot analysis with information obtained from Table S5  

AI Subgroup Analyte Classification 

Accuracy 

Analyte Group Sensor Type 

Object Detection Hyaluronidase (HAase) 92 Enzymes / Enzyme Activity Tube- or Well-Based 

Sensors 

Traditional Machine 

Learning 

Hâ‚‚Oâ‚‚ 91 Small Molecule Metabolites Tube- or Well-Based 

Sensors 

Deep Learning pH 92 Electrolytes / Ions Wearable Patch Sensors 

Ensemble / Hybrid 

Models 

HVA 100 Tumor / Disease Biomarkers Paper/Î¼PAD Sensors 

Ensemble / Hybrid 

Models 

VMA 100 Tumor / Disease Biomarkers Paper/Î¼PAD Sensors 

Transformer-based 

Models 

SARS-CoV-2 RNA 100 Pathogen/Bacteria Detection Tube- or Well-Based 

Sensors 

Unspecified or Black-

box 

Cardiac and lipid 

biomarkers 

75.2 Tumor / Disease Biomarkers Paper/Î¼PAD Sensors 

Traditional Machine 

Learning 

Urinary disease markers 97 Tumor / Disease Biomarkers Paper/Î¼PAD Sensors 

Unspecified or Black-

box 

Glucose 87.6 Small Molecule Metabolites Tube- or Well-Based 

Sensors 

Deep Learning Glucose 100 Small Molecule Metabolites Tube- or Well-Based 

Sensors 

Deep Learning cholesterol 100 Small Molecule Metabolites Tube- or Well-Based 

Sensors 

Deep Learning pH 100 Electrolytes / Ions Tube- or Well-Based 

Sensors 

Deep Learning Glucose 100 Small Molecule Metabolites Wearable Patch Sensors 

Deep Learning pH 100 Electrolytes / Ions Wearable Patch Sensors 

Deep Learning lactate 100 Small Molecule Metabolites Wearable Patch Sensors 

Object Detection Live HeLa cell viability 98 Tumor / Disease Biomarkers Tube- or Well-Based 

Sensors 

Dim. Reduction Biogenic amines 100 Biogenic Amines / Spoilage 

Markers 

Paper/Î¼PAD Sensors 

Deep Learning Naâ•º 100 Electrolytes / Ions Wearable Patch Sensors 

Deep Learning Kâ•º 100 Electrolytes / Ions Wearable Patch Sensors 

Deep Learning pH 100 Electrolytes / Ions Wearable Patch Sensors 

Dim. Reduction Thiols 100 Composite / Multiplexed 

Panels 

Tube- or Well-Based 

Sensors 

Dim. Reduction Biogenic amines 100 Biogenic Amines / Spoilage 

Markers 

Tube- or Well-Based 

Sensors 

Object Detection Cariogenic bacteria 97.7 Pathogen/Bacteria Detection Paper/Î¼PAD Sensors 

Dim. Reduction Heavy metals 98 Heavy Metals / Inorganics Tube- or Well-Based 

Sensors 

Dim. Reduction Tea polyphenols 100 Polyphenols / Adulterants Tube- or Well-Based 

Sensors 
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Ensemble / Hybrid 

Models 

Glucose 95 Small Molecule Metabolites Paper/Î¼PAD Sensors 

Dim. Reduction Catecholamines 100 Hormones / Neurotransmitters Tube- or Well-Based 

Sensors 

Traditional Machine 

Learning 

Î²-Lactoglobulin 93 Macromolecules / Proteins Tube- or Well-Based 

Sensors 

Traditional Machine 

Learning 

Albumin 96 Macromolecules / Proteins Tube- or Well-Based 

Sensors 

Deep Learning Hâ‚‚Oâ‚‚ 94 Small Molecule Metabolites Tube- or Well-Based 

Sensors 
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Graphical Abstract

Abstract

The variability of renewable energy sources presents a major challenge for maintaining power
system stability and long-duration energy storage. Power-to-Hydrogen (PtH₂) systems provide a
viable solution by converting surplus renewable  into hydrogen, which can be stored and used
across different sectors. This review focuses on focuses on modelling strategies applied to three
core PtH₂ processes: hydrogen production via electrolysis, storage, and integration into smart grids.
Traditional modelling approaches including computational fluid dynamics (CFD), techno-
economic analysis (TEA), process simulation, and linear programming (LP) remain essential for
system design but are limited in handling dynamic, real-time operations. In contrast, emerging
methods including machine learning (ML), reinforcement learning (RL), surrogate modelling,
digital twins, and augmented/virtual reality (AR/VR) platforms offer improved adaptability,
predictive control, and operator interaction. However, these tools face limitations related to data
availability, computational cost, model interpretability, and integration with existing simulation
environments. The review identifies a growing shift toward hybrid modelling frameworks that
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combine physical accuracy with data-driven adaptability. Future research should focus on building
standardised datasets, developing interoperable modelling platforms, expanding the role of real-
time visualisation technologies, and must be supported not only by technical innovation but also
by evolving policy for scalable and resilient PtH₂-integrated smart grid.

Keywords: Power-to-X (P2X), Power-to-Hydrogen (PtH₂), renewable energy storage, smart-
grids, advanced modelling, computer simulations, artificial intelligence, machine learning,
AR/VR

1. Introduction

The global energy transition is accelerating the deployment
of renewable energy sources such as solar and wind1.
However, their inherent variability introduces operational
challenges to modern power systems, particularly in ensuring
consistent supply and grid stability.¹ Energy storage
technologies have become central to enabling reliable and
flexible renewable integration.2

Power-to-Hydrogen (PtH₂) has emerged as a promising
long-duration energy storage solution.3-5 By converting
renewable energy into hydrogen via electrolysis, PtH₂ enables
energy to be stored in chemical form and later utilised across
sectors, including electricity, transport, and industrial
applications5. Unlike conventional battery storage, hydrogen
offers higher storage capacity over longer timescales, making
it suitable for seasonal balancing and sector coupling.6

Recent research has increasingly focused on modelling
strategies that support the deployment of PtH₂ systems.
Advanced simulations and AI-augmented tools are now being
used to enable dynamic integration with smart grid, optimise
conversion efficiency and assess techno-economic viability,
and enable dynamic integration with smart grids.7-8 Despite

Table 1 | Traditional and emerging models used in electrolysis systems control and optimization

Type Approach Strengths Limitations Tools Ref.

Traditional Computational Fluid 
Dynamics (CFD)

High spatial detail; flow and heat 
analysis

Computationally expensive COMSOL, 
ANSYS

[12,18]

Process Simulation + 
Techno-economic 
assessment (TEA)

System-wide modelling; cost-
analysis

Rigid to variable input; 
limited real-time use

Aspen Plus [13,19]

Numerical optimization Effective for tuning and design 
refinement

Requires well-defined 
objectives

MATLAB [13,20]

Monte Carlo simulation Captures uncertainty Requires many runs; less 
mechanistic

Python, 
MATLAB

[14,20]

Emerging Machine Learning (ML) Fast and adaptive forecasting Needs large, quality 
datasets

TensorFlow [15,21]

Reinforcement Learning 
(RL)

Real-time adaptive control under 
fluctuating inputs

Complex training and 
policy validation

OpenAI Gym, 
Stable Baselines

[15,22]

Surrogate models Reduces simulation time; enables 
real-time control

Accuracy limited to trained 
domain

GPFlow, 
surrogateML

[12,15]

AR/VR + Digital twins Visual diagnostics and operator 
training

High development cost Unity [16,17]

increased attention, few reviews have synthesized the full
modelling stack from electrolyis to grid-scale integration.7

This review aims to synthesise emerging modelling
approaches applied to PtH₂ systems, with emphasis on
processes involving energy conversion, compression and
storage, and smart grid integration.

2. Modelling strategies across the PtH₂ system

PtH₂ systems core processes include hydrogen production,
storage, and electric grid integration, each requires specialised
modelling approaches to optimize performance, cost, and
control. This section reviews emerging modelling strategies
applied at each stage, with particular emphasis on process-
level simulations, safety and reliability, and system
coordination models. Comparative summaries and case
studies are provided to illustrate how these methods are
applied in practice and to highlight their respective advantages
and limitations.

2.1 Electrolysis process control and optimization

Hydrogen production via electrolysis is the foundational
process in PtH₂ systems. Electrolysis enables the conversion
of electrical energy typically from renewable energy sources
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into chemical energy by splitting water into hydrogen and
oxygen9.  The most common types of water electrolysis
technologies include Alkaline Water Electrolysis (AEL),
Proton Exchange Membrane Electrolysis (PEM), Solid Oxide
Electrolyser Cell (SOEC), Anion Exchange Membrane
Electrolysis (AEM).10 These technologies differ in terms of
operating temperature, response time, system complexity, and
integration potential with variable power inputs.10-11 These
factors influence the selection and design of appropriate
modelling strategies for control and optimization.

Table 1 outlines different modelling approaches applied to
electrolysis system control and optimisation. Traditional
methods such as CFD are used to analyze thermal gradients,
flow behaviour, and gas evolution in electrolyser cells12.
These models provide high physical accuracy but are
computationally intensive and limited to offline analysis. At
the system level, process simulation combined with TEA
supports performance evaluation and cost estimation under
different scenarios.13 However, these models assume fixed
input profiles and are not suited for dynamic control.
Numerical optimization is used to refine design and operating
parameters but requires well-defined objectives and may
converge to local minima.13 Monte Carlo simulations quantify
uncertainties in cost drivers or input variability, though they
do not capture time-dependent system dynamics.14

To address the limitations of static modelling approaches,
recent studies have adopted data-driven methods. ML
methods such as Artificial Neural Networks (ANN) was used
for predicting stack performance and hydrogen output using
operational or simulation data.15,21 These models improve
prediction speed but require large, well-labelled datasets.
Reinforcement learning (RL) has also been applied for
adaptive electrolyser control under fluctuating power inputs,
though it demands complex training environments.15

Surrogate models, derived from CFD or system simulations,
are employed for fast approximation in control applications12.
These are often integrated into digital twins, which combine
physical models with real-time data to support diagnostics and

Table 2 | Traditional and emerging models used in PtH₂ hydrogen storage safety and reliability

Type Approach Strengths Limitations Tools Ref.

Traditional Finite Element Modelling 
(FEM)

Structural stress, fatigue, and 
failure analysis

High setup time, not real-time ANSYS, 
Abaqus

[27]

CFD Thermal gradient and gas 
flow simulation

Computationally intensive COMSOL 
Multiphysics

[27,28]

Thermodynamic modelling Pressure–temperature 
relationships

Oversimplifies dynamic 
system behaviour

MATLAB [29]

Emerging ML (SVM, ANN) Fault and anomaly detection Data quality and availability MATLAB, 
Scikit-learn

[23,30]

Digital twins Integrated real-time 
monitoring and simulation

Complex integration, early-
stage adoption

Unity, 
TensorFlow

[31]

IoT-based monitoring and 
predictive analytics

Real-time condition tracking 
and decision support

Sensor dependency; 
integration complexity

IoT sensors, 
predictive 
algorithms

[32]

optimisation. Moreover, emerging AR and digital twin
platforms provide visual interfaces for system monitoring and
operator support. While still limited in deployment, these tools
have shown potential for training and real-time fault
identification.16

A recent study12 integrated CFD and AI and ML-based
modeling for enhanced alkaline water electrolysis cell
performance for hydrogen production. CFD was coupled with
an ANN surrogate model to predict current density in an
alkaline electrolyser, reducing simulation time by over 90%
while maintaining accuracy demonstrating the advantage of
combining physical and data-driven methodologies.

Traditional models remain essential for system design and
validation, while emerging approaches improve adaptability
and control. Integrating both supports more efficient and
robust electrolysis under variable operating conditions.

2.2 Hydrogen storage safety and reliability

Hydrogen storage refers to the containment of hydrogen
following its production, through electrolysis, for later use in
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energy conversion, industrial processes, or transport.23

Hydrogen produced via electrolysis is commonly stored as
compressed gas in tanks or vessels.24,26 These systems operate
under conditions involving high pressure, temperature
gradients, and cyclic loading, which introduce risks related to
leakage, structural fatigue, and material degradation. While
modelling of electrolysis systems often prioritises process
optimisation, modelling of storage primarily addresses
structural integrity, safety, and system reliability.23 Predictive
modelling supports the identification of failure modes and
degradation trends, informing maintenance schedules and
system design. As such, current modelling approaches for
hydrogen storage focus on assessing thermomechanical 
behaviour and enabling condition-based monitoring under
variable operating conditions.25

Table 2 summarises traditional and emerging modelling
approaches applied to hydrogen storage, with a focus on
safety, structural reliability, and predictive maintenance.
Traditional techniques such as FEM, CFD, and
thermodynamic analysis are widely used to assess stress
distribution, fatigue, thermal behaviour, and
pressure–temperature relationships in storage systems.27-29

FEM provides detailed insight into structural integrity under
cyclic loading, while CFD enables thermal and flow field
simulation. Although physically robust, these models are
computationally intensive and are not well suited to dynamic
or real-time applications. Thermodynamic models offer
simplified assessments but may fail to capture transient
behaviour under variable conditions. On the other hand,
emerging approaches integrate data-driven and system-level
methods to improve adaptability and fault prediction. ML
algorithms, including support vector machines (SVM) and
ANN, have been used for anomaly detection, failure
classification, and degradation forecasting from operational
sensor data.23,30 Digital twins extend these capabilities by
linking virtual models with live input data to enable real-time
condition monitoring and diagnostics. Moreover, IoT-based
platforms further support storage reliability by enabling
continuous sensor-driven tracking and data-informed decision
support. While these methods offer greater responsiveness,
they depend on stable data infrastructure and integration with
physical systems.32

Figure 1 | Simplified schematic of electricity and hydrogen
flows in a renewable energy system. Renewable electricity is
directed to the grid, battery storage, or electrolysis. The hydrogen
produced is stored and later used in end-use applications or
reconverted to electricity via fuel cells, which are reintegrated
into the electric grid during peak demand periods. Figure by
author.

An example of integrating traditional and emerging
methods is presented by El-Amin et al.37, who combined
CFD-generated hydrogen dispersion data with machine
learning models, specifically Random Forest and SVM,
to predict concentration profiles in turbulent buoyant
jets. The framework reduced computational load while
maintaining prediction accuracy, enabling real-time
inference for leak detection and storage safety. The
system demonstrated predictive capabilities that
enhanced operational safety and informed timely
maintenance decisions. 
The integration of traditional modelling with AI-based

approaches enhances the safety and reliability of hydrogen
storage systems within PtH₂ operations, offering a pathway
toward more resilient and intelligent infrastructure.

2.3 Smart grid control and coordination

The integration of hydrogen storage into smart grids
important in accommodating the increasing penetration of
intermittent renewable energy sources.39 Hydrogen storage
systems such as PtH2 technologies which converts excess
renewable electricity into storable hydrogen are essential

Table 3 | Traditional and emerging models used for hydrogen storage control and integration with smart grids

Type Approach Strengths Limitations Tools Ref.

Traditional Rule-based dispatch
and scheduling

Easy setup for fixed hydrogen 
dispatch routines

Cannot adapt to real-time or 
dynamic events

Excel-based [41]

MILP and LP 
optimization

Generates optimal hydrogen operation
plans under static grid inputs

Rigid; not responsive to live 
grid or market shifts

Solver, 
Python

[42]

Deterministic grid 
simulation

Models grid impact of hydrogen 
reconversion accurately

Limited for fast, multi-energy
coordination

MATLAB [43]

Emerging Deep RL Adapts hydrogen control to real-time 
grid conditions

Needs large training data and 
careful tuning

Custom RL 
framework

[44,45]

Digital twins Aligns physical and virtual hydrogen 
systems for control monitoring

High setup cost; integration 
remains complex

MATLAB, 
LabView

[46]

AR/VR for system 
visualisation and 
operator training

Enhances operator awareness for 
dispatch and fault scenarios

Not embedded in real-time 
control; interface dependent

Custom VR 
platforms

[47,48]

element for grid balancing and providing long-duration,
seasonal energy storage, offering capabilities for bulk storage
and practically infinite energy storage capacity.10 However,
these hydrogen systems, comprising components like
electrolyzers, storage tanks, and fuel cells, are inherently
complex to operate.39 Figure 1 provides a conceptual overview
of the typical energy flow in PtH₂-integrated smart grid
systems and rather than representing a linear process, the
diagram aims to foreground the complex, multi-pathway
nature of energy conversion, storage, and utilisation in a
hydrogen-augmented energy system.40
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The complexity of the process coupled with the challenges
of integrating variable renewable generation makes modelling
techniques indispensable6. Accurate and dynamic modelling
is essential to characterize efficiency, analyse dynamic
behaviour, perform complex optimizations, capture real-world
complexities, and manage real-time energy flows.7,13. This
necessitates advanced control and coordination strategies for
optimal operation.39 Modelling serves as a tool to support the
design and evaluation of these control and coordination
systems13 and addressing these challenges effectively requires
the application of both traditional and emerging methods.7,16

Table 3 summarizes representative traditional and
emerging modelling approaches applied in the coordination
and control of hydrogen storage systems within smart grid
environments. These models vary in computational
complexity, real-time adaptability, and integration capacity.

Conventional modelling approaches such as rule-based
scheduling, mixed-integer linear programming (MILP) and
linear programming (LP), and deterministic grid simulation
have historically formed the basis of hydrogen dispatch and
grid interaction modelling.41-43 These techniques are
deterministic in structure and generally assume perfect
foresight, static grid inputs, and isolated sub-system control.
For example, MILP has been used to compute optimal
hydrogen operation plans based on pre-defined load forecasts
and tariff structures, but lacks responsiveness under real-time
fluctuations or market variability.42 Similarly, deterministic
simulation models accurately compute hydrogen reconversion
impacts on power system stability and power flow (e.g.,
voltage deviations), yet are limited in resolving multi-energy
coordination or stochastic influences.43 Furthermore, rule-
based dispatch, often implemented in Excel-based methods
which provides operational simplicity but cannot adapt to
dynamic system feedback or uncertainty.41 These methods are
computationally efficient for system sizing and offline
planning but insufficient for online scheduling or integrated
sector coupling.

To address these constraints, data-driven and adaptive
control methods have been increasingly adopted. Deep RL
enable model-free learning of control strategies through
interaction with dynamic environments.44,45 These methods
have been shown to optimise hydrogen system dispatch under
variable renewable input, demand response signals, and
multi-layer objectives (e.g., thermal, electrical, storage).
However, effective deployment requires large-scale training
data, hyperparameter tuning, and convergence stability
management, as seen in the development of actor–critic
architectures and dual-network stabilisation.45 Digital twin
frameworks integrates physical system models with real-time
sensor data, predictive analytics, and control feedback
mechanisms.46 These systems simulate, monitor, and optimise
hydrogen production, storage, and fuel cell systems
simultaneously. Although promising, their implementation is

constrained by high setup costs, model–data synchronisation
issues, and computational overhead—especially in real-time
grid-connected applications.46 On the other hand, AR/VR
technologies offer additional operational value by supporting
operator situational awareness, particularly during dispatch
decision-making and fault management.47 Platforms such as
Verciti provide immersive visualisations of hydrogen
operations and enhance safety training for decentralised
system operators.48

Traditional methods provide guarantees in optimization
and deterministic planning, but fail to handle uncertainty,
dynamic control, or sector integration. In contrast, AI-driven
and hybrid frameworks support adaptable, real-time
scheduling but require extensive training, are less
interpretable, and lack standardisation for industrial
deployment.41-48 Hybrid models are gaining traction for
balancing computational efficiency with physical
consistency.6,44 Recent applications illustrate how traditional
modelling can be operationalised through interactive digital
environments. For example, Folgado et al.49 developed a
digital twin of a proton exchange membrane (PEM)
electrolyser embedded within a MATLAB-based graphical
user interface, deployed in a photovoltaic-powered smart grid.
The digital twin is based on a deterministic equivalent
electrical model and communicates with a  PLC via Modbus
TCP/IP in real time. This setup enables operators to monitor
hydrogen production metrics, assess deviations between
simulated and measured performance, and support control
decisions. The study highlights how traditional physics-based
models can be integrated into real-time, user-interactive
systems improving the coordination between hydrogen
systems and smart grid operation.

Modelling strategies are shifting from deterministic
formulations toward adaptive, interactive frameworks. Case
studies such as Folgado et al.49 demonstrate how equation-
based electrolyser models can be embedded in digital twin
systems for real-time monitoring within smart microgrids.
Future modelling platforms must integrate real-time control
logic, data feedback, and intuitive human interfaces to enable
scalable hydrogen storage coordination in complex energy
systems.

3. Challenges and Future Perspective

Emerging modelling and AI-based approaches offer
significant advantages over traditional methods in PtH₂

systems but remains constrained by several technical and
operational challenges. These limitations currently hinder the
scalability, real-time deployment, and integration of advanced
tools within smart grid environments.

The strong dependence on high-quality data is a primary
limitation. ML and RL models require large volumes of well-
labelled, high-frequency datasets to train predictive or control
agents. In PtH₂ applications, this type of data is often
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unavailable due to limited sensor coverage, proprietary system
architectures, or inconsistencies in temporal resolution. As a
result, data-driven models risk overfitting or underperforming
in real-world settings, particularly when transferred between
systems with differing configurations.44,45

Another challenge lies in the computational complexity
and training overhead of these models. RL, surrogate model
development, and real-time digital twins require significant
computing resources for convergence and deployment. For
example, actor–critic RL algorithms and physics-informed
neural networks (PINNs) demand extended training cycles
and often rely on specialised hardware. These resource
demands limit the feasibility of deploying such models in
real-time, safety-critical environments like hydrogen storage
and dispatch control.45,46

Model transparency and interpretability also present a
barrier to adoption. While AI-based models are effective at
pattern recognition and dynamic optimisation, their internal
decision logic is often non-transparent. This “black-box”

nature makes it difficult for operators and engineers to
understand, validate, or troubleshoot behaviour during
abnormal conditions. In PtH₂ systems, which involve high
pressures, thermal gradients, and interdependent components,
lack of interpretability can reduce stakeholder trust and pose
regulatory challenges.44

The integration of AI with traditional physics-based
models is another challenge. Hybrid systems that couple
data-driven modules with deterministic simulations promise
the best of both domains, but remain difficult to implement.
Challenges include synchronising time scales, reconciling
different data formats, and managing error propagation
between subsystems. Few frameworks exist to seamlessly
integrate CFD, process simulation, and RL agents within a
unified control or optimisation environment.12,49

Additionally, operator readiness and system maturity limit
the deployment of immersive technologies such as AR/VR
and digital twins. These platforms are increasingly used for
simulation and training, but rarely serve in active control
environments. Visualisation tools and human-in-the-loop
interfaces hold promise for enhancing fault awareness and
decision support, yet their development is fragmented and
lacks standardisation for PtH₂-specific applications.47,48

Future research must focus on bridging these limitations.
First, hybrid models that embed physical laws into learning
architectures could improve adaptability without sacrificing
interpretability.6 Second, developing open-source,
interoperable frameworks for co-simulation would facilitate
integration between AI and physics-based tools. Third,
investment in high-resolution, standardised datasets from
operational PtH₂ systems will be essential to unlock the full
potential of machine learning. Fourth, AR/VR platforms and
digital twins should be developed with greater emphasis on
system interoperability and real-time responsiveness, making

them viable for not just training but also active supervision.
Lastly, regulatory frameworks must evolve in parallel with
modelling innovations. For example, Australia’s National
Hydrogen Strategy and Guarantee of Origin Scheme are
advancing hydrogen certification, dedicated AI governance
remains underdeveloped.53-55 Future modelling research
should align with emerging standards for transparency,
auditability, and validation.

Emerging modelling technologies can evolve from
experimental tools into operational enablers for real-time,
adaptive, and resilient PtH₂ smart grid coordination by
addressing these challenges.

3. Conclusion

This review examined modelling strategies for PtH₂

systems, focusing on three core processes: production,
storage, and grid integration, as a response to renewable
energy intermittency. While traditional methods remain
essential for system design and optimisation, they lack the
adaptability required for real-time coordination and multi-
vector control. Emerging strategies offer greater
responsiveness but are constrained by data requirements,
computational demands, limited interpretability, and
challenges in integration with existing physical models.

Future researches should prioritise hybrid frameworks that
combine physical accuracy with data-driven adaptability by
combining traditional with emerging modelling and AI-based
strategies across the PtH2-integrated smart grid system.
Moreover, future researches should focus on building
standardised datasets, developing interoperable modelling
platforms and expanding the role of real-time visualisation
technologies. Lastly, modelling must be supported not only by
technical innovation but also by regulatory frameworks to
promote transparency, auditability, and certification for
enabling safe, scalable PtH₂ deployment within smart grid.
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Abstract

Organ-on-a-Chip (OoC) technology offers a promising alternative to traditional in vitro and animal models by
replicating key physiological features of human organs within microfluidic platforms. These systems are
increasingly used in drug development, toxicity testing, and disease modelling. However, widespread adoption is
limited by challenges such as complex design requirements, scalability issues, data interpretation difficulties, and
the integration of diverse technologies. This review explores the role of advanced modelling approaches, such as
computational fluid dynamics (CFD), finite element analysis (FEA), pharmacokinetic/pharmacodynamic (PK/PD)
models, and artificial intelligence (AI), in addressing these barriers. These tools enable precise simulation,
optimization, and data analysis of OoC systems, supporting their design and predictive capabilities. Key challenges
identified include limited data quality, computational complexity, organ scaling, and system integration. Modelling
solutions, including explainable AI and multiscale simulation, offer pathways to overcome these issues. The
integration of emerging technologies like 3D printing, real-time sensing, and automation is also discussed. The
review concludes with recommendations for refining existing modelling techniques, improving transparency in
AI applications, and supporting interdisciplinary collaboration to drive standardization and regulatory acceptance.
These efforts are essential for realizing the full potential of OoCs in biomedical research and preclinical drug
development.

Keywords: organ-on-a-chip, OoC, microfluidic, artificial intelligence, AI, machine learning, 3D printing, simulation, 
computational fluid dynamics, CFD.
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1. Introduction

The development of sophisticated in vitro models has
become increasingly important in life science and industry,
particularly for applications in medicine, biology, and
chemistry.1 Traditional two-dimensional (2D) cell cultures
and animal models struggle to replicate human physiology,
hindering data translation and contributing to high drug failure
rates.2-5 This has spurred the evolution of new technologies
aimed at creating more biologically relevant systems.5,6

Notably selected as one of the "Top Ten Emerging
Technologies" by the World Economic Forum7, The
development of organ-on-a-chip (OoC) technology is driven
by these limitations of traditional preclinical models.4,8 OoCs
address these limitations by combining advances in
microfabrication, tissue engineering, biomaterials, and stem
cell engineering to reconstruct key structural, functional, and
physiological aspects of human tissues and organs on a chip.
7,9-11 Miniature tissues, cells, or organoids are cultured within
the channels and compartments of a microfluidic device.3,7,11-

13 This device, often made of materials like
polydimethylsiloxane (PDMS), is engineered with structures
such as tiny channels, chambers, and sometimes porous
membranes to recreate the organ's microarchitecture.3,4,7,11,14

The cells may also be embedded within an extracellular matrix
analogue or hydrogel inside these compartments. OoC
platforms hold promise for various applications, including
enhancing our understanding of tissue and organ physiology,
modelling diseases (such as cancer), developing and screening
drugs, evaluating drug toxicity and efficacy, and facilitating
personalized medicine by using patient-derived cells.3,4,8-

11,15,16

Building upon the foundation of microfluidics, the OoC
system has emerged as a biomimetic system.17 Microfluidics,
refers to technologies that manipulate small fluid volumes
(mL, nL, pL) within fabricated channels.1,18 Microfluidic
approaches allow for constant miniaturization, automation,
and parallelization of processes1, offering advantages such as
low dose requirements, improved sensitivity, efficient
processing, great spatial accuracy, good integration, and
straightforward control for biological studies.19 These
microfluidic systems can perform several functions, including
sample pretreatment, separation, dilution, mixing, chemical
reaction, detection, and product extraction, all potentially on a
single chip.18 The precise control offered by microfluidics
allows for the emulation of dynamic conditions, such as blood
flow, mechanical forces, and concentration gradients, which
are crucial for maintaining tissue-specific functions and
mimicking the cellular microenvironment.8,10,11,16

OoCs are essentially microfluidic cell culture systems
designed to precisely replicate the structure and function of a
living organ or functional unit in vitro.5,20,21 They can
stimulate the tissue or cell microenvironment and regulate
crucial parameters like concentration gradients, shear stress,

Figure 1. A lung-on-a-chip. Image by 허동은교수, licensed 

under CC BY -SA 4.0. Source: Link

 fluid flow. 5,17 These platforms integrate microfluidic
networks with three-dimensional (3D) tissue-engineered
models to recapitulate physiological conditions.5

The applications of organ-on-a-chip platforms are diverse
and rapidly expanding. They are used as models for studying
development and diseases, such as Alzheimer's and
schizophrenia, particularly through brain-on-chip models.
OoCs play a significant role in drug development, including
drug screening and assessing drug release.2,5,6,18,22,23 They are
particularly valuable for toxicity testing, such as evaluating
hepatotoxicity, and nephrotoxicity.5,18 Furthermore, OoCs
contribute to personalized medicine by offering functional
testing for precision medicine and personalized drug
development. They are also explored in the context of
nanomedicine for validating the performance and biotoxicity
of nanomaterials.5 Beyond these, OoCs are used to study
vascularization of organoids, drug delivery systems, host-
microbial interactions, inflammatory processes, and cancer
growth and metastasis.6,23 The technology is even being
applied to create point-of-care (POC) diagnostic systems.18

The significance of organ-on-a-chip platforms lies in their
potential to serve as robust alternatives to animal models,
addressing many challenges associated with in vivo studies.2,5

By providing a controlled and realistic environment that
mimics human physiology and pathology, OoCs can help
reduce the discrepancies observed between preclinical
findings and clinical outcomes.5,18,21 This capability positions
them as a fast track for the use of engineered human tissues in
drug development and can potentially revolutionize disease
modelling and drug testing towards more accurate and
personalized healthcare approaches.18

Despite the significant progress, the translation of these
advanced microfluidic platforms into widespread use,
particularly in preclinical validation for clinical applications,
still faces limitations and challenges.5 A critical challenge is
the successful integration of biosensor modules into OoCs for
automated, continual, and long-term monitoring of various
physicochemical and biochemical parameters.5,18 For complex

https://commons.wikimedia.org/wiki/File:Fig)_Lung_on_a_chip.jpg
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applications like pharmacology studies, the development of
multiorgan or body-on-a-chip systems is necessary to replicate
the interconnections and communication between different
organs. However, achieving accurate body scaling and
maintaining functional activity across multiple integrated
organs is extremely complex.5 Other challenges include
optimizing the design of suitable biomodels, overcoming
fabrication complexities associated with microfluidic devices
and integrating components like valves and pumps19,
managing potential contamination issues5, establishing
physiologically relevant conditions like oxygen gradients, and
bridging the gap between academic research and industrial
adoption. Overcoming these challenges is key to unlocking the
potential of OoC technology.

Interest in OoC has intensified due to its potential to create
more physiologically relevant microenvironments for cell
culture, thereby bridging the gap between simplified planar
cell cultures and complex human systems.8,11,16

Recent breakthroughs and emerging trends are pushing the
boundaries of OoC technology, some of which are compared
in Table 1 below. A key trend is the move towards integrating
multiple individual organ chips into multiorgan-on-a-chip or

body-on-a-chip systems, mimicking the physiological
coupling and interactions between different organs in the
human body.4,8,16,24 This is particularly beneficial for studying
systemic responses, drug metabolism, and complex diseases.25

Furthermore, there is increasing emphasis on incorporating
integrated sensors (mechanical, electrochemical, optical) into
OoC platforms for real-time monitoring of cellular behaviors
and tissue functions.8,24,26 Automation and the development of
high-throughput systems are also critical for making OoCs
more viable for industrial applications like drug
screening.24,26,27 Advances in 3D printing and bioprinting
techniques are enabling the rapid fabrication of complex OoC
structures and the precise deposition of cells within
biomaterial-based scaffolds, creating more realistic three-
dimensional tissue architectures.26 The integration of artificial
intelligence (AI), particularly in areas like organoid imaging
and data analysis, is enhancing the efficiency and accuracy of
OOC-based research, especially for high-throughput drug
screening.9,24 These advancements collectively demonstrate
the rapid evolution of OOC technology and its potential to
revolutionize biomedical research and drug development.

Table 1. Comparative Table of Different Modelling Approaches Applied to OoCs.

Modelling
Approach

Scale Input Use Limitations

Computational 
Fluid Dynamics 
(CFD)

Microfluidic 
channels/ 
devices28-30

Geometry, fluid 
properties, flow rate, 
solute and solvent 
parameters, boundary 
conditions29,30

Simulates fluid flow, 
shear stress, and 
concentration gradients28-

31

Complex multiphysics, 
time-consuming meshing,
sensitivity to surface 
tension and viscosity29

Finite Element 
Analysis (FEA) / 
Finite Element 
Method (FEM)

Microfluidic 
devices, 
bioreactors29,31,32

Geometry, material 
properties, physics 
modules (e.g., CFD), 
solute parameters29,32

Models mechanical 
stress, strain, gradient 
formation, and device 
refinement29,31,32

Requires detailed 
meshing, complex 
physics coupling, 
geometric/parameter 
coherence29

Pharmacokinetic/ 
Pharmacodynamic
(PK/PD) & 
Physiologically-
Based
Pharmacokinetic 
(PBPK)

Multi-organ 
systems (e.g., 
gut-liver, whole-
body)11,25,28,33-35

In vitro/OoC data 
(volumes, ADME, flow 
rates, drug 
properties)25,28,33,35

Predicts drug distribution,
toxicity, and human 
PK/PD profiles; supports 
In Vitro-In Vivo 
Extrapolation 
(IVIVE)11,25,33-35

Difficult organ scaling, 
biological/analytical 
uncertainty, complex 
model integration25,33

Artificial 
Intelligence (AI) / 
Machine Learning
(ML)

Variable (e.g., 
single-cell to 
system-
level)5,9,34,36

Experimental features 
(e.g., contractility, 
solubility, oxygen), 
labeled/unlabeled 
data9,34,36,37

Classifies cells, predicts 
outcomes, supports 
toxicology and 
experimental 
design9,25,34,36,37

Performance depends on 
data size/quality, model 
choice, and validation 
strategy9

This review aims to present the different advanced
modelling and analysis techniques that are currently applied
and can be applied to OoCs. Section 2 will discuss the current

strategies (Section 2.1), and emerging OoC technologies
(Section 2.2) with an analysis comparing the technologies
(Section 2.3). Section 3 discusses the challenges  in OoC
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technology (Section 3.1) and how emerging or advanced
techniques can help address these challenges (Section 3.2).
Finally, Section 3.3 discusses the potential future directions
for OoC technology.

2. State-of-the-Art in Advanced Modelling Strategies

2.1. Current Methodologies

Current OoC methodologies are grounded in microfluidic
platforms, allowing precise control of microscale fluids to
mimic physiological conditions.16 Device fabrication
primarily utilizes soft lithography, often with PDMS, known
for its biocompatibility and gas permeability.38 However,
alternatives like thermoplastics and natural materials are
gaining prominence to address PDMS limitations such as drug
absorption.12 3D printing and bioprinting are increasingly
used for rapid prototyping and creating complex 3D tissue
scaffolds.11

A key methodology involves reconstituting functional
tissues by culturing cells (primary, cell lines, or induced
pluripotent stem cells, iPSCs) within the microfluidic chips,
often in 3D structures.10 This requires maintaining a
physiologically relevant cellular microenvironment by
controlling factors like fluid shear stress, soluble factor
concentrations, and cell-matrix interactions.39

To capture systemic complexity, multiorgan-on-a-chip
systems are developed by connecting multiple organ models,
essential for studying drug Absorption, Distribution,
Metabolism, Excretion, and Toxicology (ADME-Tox) and
inter-organ communication.4,11,33 These often incorporate
vascular networks to simulate blood flow and interactions.4

Sensors are being integrated into platforms for real-time
monitoring of tissue function and microenvironmental
parameters. This facilitates feedback control systems essential
for automating high-throughput drug screening.4,10,11,24,26,39

This drive towards automation and high-throughput screening
is critical for the industrial adoption of OoC technology,
particularly in drug development.11,35

Finally, computational modelling, including fluid
dynamics and pharmacokinetic and pharmacodynamic
(PK/PD) simulations, plays a vital role in optimizing chip
design, predicting parameters, and interpreting experimental
data.33,35,39 Computational platforms such as COMSOL
Multiphysics and ANSYS Fluent are commonly used for the
design and analysis of microfluidic organ-on-a-chip systems.
These in silico tools allow for simulations of critical fluid
dynamics and transport phenomena necessary for device
optimization.29,30,35 AI is being integrated for enhanced data
analysis and image processing. These diverse methodologies
collectively contribute to creating and analyzing more
physiologically relevant in vitro models.37

2.2. Integration of Emerging Technologies

OoC technology is a rapidly evolving field that is being
significantly advanced by the integration of several emerging
technologies with established microfluidic and tissue
engineering methodologies.9,10 This convergence aims to
enhance the physiological relevance, functionality, and
scalability of OoC systems to better recapitulate human
biology and meet the demands of applications such as drug
discovery and disease modelling.4,10

A prominent area of integration is the development of
multiorgan-on-a-chip systems, also referred to as body-on-a-
chip, which connect multiple individual organ models using
vascular networks within a single microfluidic
platform.4,16,24,35 This mimics the physiological coupling and
interactions between different organs in the human body.35

Such integrated systems are particularly valuable for studying
systemic responses, such as drug absorption, distribution,
metabolism, and excretion (ADME), as well as complex
inter-organ disease mechanisms.4,16

Another critical integration involves incorporating
integrated sensors directly within OoC platforms.10,24

Integrated sensors (e.g., mechanical, optical, electrochemical)
enable real-time, noninvasive monitoring of tissue function
and microenvironmental conditions.10,24 Examples include
electrochemical sensors for detecting relevant biological
processes and optical oxygen sensors.

To facilitate the widespread adoption of OoC technology,
particularly in pharmaceutical research, there is a significant
push towards automation and the development of high-
throughput systems. Systemized experimental procedures are
being developed to minimize user dependency and improve
reproducibility, which are crucial for applications like drug
screening.10,16

Advances in manufacturing techniques are also being
integrated. 3D printing and bioprinting are increasingly used
for fabricating complex OoC structures and creating more
realistic three-dimensional tissue architectures.26,40 These
methods allow for the precise deposition of cells within
biomaterial-based scaffolds and the rapid construction of
intricate channel geometries.26 3D printing techniques are
considered potentially more cost-efficient for OoC fabrication.

Furthermore, AI and computational modelling are being
integrated to enhance both the design and analysis phases of
OoC research.9,24,32,35 Computational fluid dynamics (CFD) is
used to design optimal microfluidic channel geometries and
understand fluid flow patterns.35 PK/PD modelling helps
predict drug behavior and optimize experimental design and
sampling.32 AI is particularly beneficial for tasks such as
organoid imaging analysis and processing complex datasets,
significantly enhancing the efficiency and accuracy of studies,
especially in high-throughput drug screening.24 Numerical
simulation is also used to predict parameters like oxygen
concentration and distribution within the devices.35
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These integrations of multiorgan systems, advanced
sensors, automation, 3D printing, and computational
approaches are collectively driving OoC technology towards
becoming more sophisticated, predictive, and applicable tools
for biomedical research and drug development.9,10

2.3. Comparative Analysis

OoC technologies offer a valuable step towards more
physiologically relevant in vitro models, providing precise
control over the cellular microenvironment and enabling
real-time monitoring.11,41 However, relying solely on
traditional experimental methods encounters significant
limitations including challenges in achieving industrial
scalability, ensuring high reproducibility, accurately
replicating complex tissue structures, addressing material
compatibility issues, and a lack of widespread
standardization.11,12,42,43 Data acquisition can also be limited
by reliance on endpoint assays.11 The integration of advanced
computational modelling and AI is crucial for overcoming
these bottlenecks. These in silico approaches enable rapid
simulation and analysis, providing insights into device design,
optimizing parameters for fluid dynamics and transport, and
supporting complex analyses like PK/PD modelling.33,35,38,41

AI and machine learning algorithms further enhance the field
by facilitating automated image analysis, cell classification,
and predictive modelling based on complex cellular data from
OoC systems.34,44 In the study by Carvalho, et al. 41, a
numerical model capable of reproducing the fluid flow
behavior within an OoC device was developed and validated.
By comparing the model's predictions to experimental results,
including qualitative particle paths and quantitative particle
velocities, they demonstrated its accuracy and reliability.41

This synergistic combination of experimental OoC
development with advanced computational tools is essential
for improving the predictive power and robustness of these
platforms.34

3. Challenges and Future Perspectives

3.1. Identified Challenges

Applying advanced modelling techniques, such as
numerical simulation and mathematical modelling, to OoC
platforms presents several key challenges, summarized in
Table 2. These challenges arise from the complexity of
replicating human physiology in microfluidic devices and the
early stage of standardizing the technology.

Table 2. Major Challenges in OoC Systems.

Challenge Source Impact Modelling Solution

Data Availability 
& Quality

Data often comes from end-
point assays; lacks spatio-
temporal resolution. Validation 
is hard due to low robustness 
and missing standards. 
Sampling is limited.9,11,33,42

Reduces reproducibility and 
hinders dynamic analysis. 11,42

Use of AI/big data analytics for
interpretation; optimization of 
sampling; push for standardized
reporting9,11,33

Computational 
Complexity

Models are essential but hard to
apply; 3D tracking is complex. 
Analysis must match 
biology.9,12,25,41

Limits predictive accuracy and 
optimization.25

Custom numerical and PK/PD 
models handle complexity. 
Tailored analysis improves 
relevance.12,25,41

Scalability Issues Scaling organs and translating 
data is difficult. Industrial 
scale-up is limited.10-12,15,16,25,43

Affects in vivo relevance and 
slows commercialization.25

Use of PBPK scaling models; 
development of high-
throughput and modular system
designs.16,25

Integration of 
Multiple 
Technologies

Combines microfluidics, 
biomaterials, and sensors. 
Multi-organ signals and system 
miniaturization are 
complex.7,9,10,13,15,26,31,45

Increases system complexity; 
hinders functional replication 
and commercial 
viability.9,16,26,42

Modular design frameworks; 
collaboration-driven system 
modelling; incorporation of 
real-time sensor data into 
simulations.9,13,26

In addition to these, other challenges include the need for
model validation with existing platforms11,42, the lack of
standardization in design, manufacturing, and operating
procedures11,42,43, the requirement for technical skills and user
dependency leading to low reproducibility10,13, limitations of
current biomaterials3,13,15,24, difficulties with sensor
integration and data acquisition9,11,26,42, and the overall

engineering limitations in recreating the full physiological
complexity of human organs.9,11,24,42

3.2. Role of Modelling in Addressing Challenges

Advanced modelling techniques are critical for overcoming
many of the challenges associated with OoC technology.25,35

Mathematical and computational models are essential tools for
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quantitatively analysing OoC systems and predicting their
complex responses.12 They offer significant advantages over
purely experimental approaches, providing insights into fluid
flow physics with good precision and accuracy in a rapid and
cost-effective manner.30,41 Computational tools can be used
alongside theoretical and experimental methods in
microfluidics research.41 Integrating computational models
with OoC experiments provides more quantitative,
mechanistic, and physiologically relevant insights than
experiments alone.25 Numerical studies and simulations are
performed for optimization purposes, helping to expedite the
OoC design process by reducing the need for fabricating
numerous prototypes and conducting costly laboratory
experiments.30,41

Examples from past and current studies demonstrate the
impact of these strategies. In the study done by Jeong, et al. 30,
numerical approach-based simulation models have been
developed to accurately predict in vivo levels of shear stress
in microfluidic Blood-Brain Barrier (BBB)-on-a-chip models.
This prediction, which showed a low error rate compared to
experimental results, helps to mimic in vivo conditions and
establish parameters for successful cell culture, such as tight
junction formation. The shear stress model was validated by
comparing numerical simulation results with experimental
data, achieving a <3% error rate, and demonstrating its
reliability in mimicking in vivo conditions.30 CFD and Finite
Element Analysis (FEA) are important tools for characterizing
biological microflows, predicting biofluid dynamics, and even
solid biomechanics.25 In another study done by Zheng, et al.
35, numerical simulations can also assess the feasibility and
efficiency of a microfluidic design before fabrication,
reducing experimental trial and error and speeding up the
development process. Beyond optimizing design and flow,
modelling is used to simulate complex biological behaviors in
multicellular constructs, providing critical insights for
improving reproducibility or guiding the achievement of
desired form and function.35 Multiscale models for multi-
organ or human-on-a-chip systems are more suitable for
modelling long-term drug transport and PK/PD effects.12,34,35

Computational modelling can assist in analyzing, optimizing,
and revising the design of 3D culture microfluidic chips,
significantly reducing cost and time compared to repetitive
experimental measurements.35 For instance, mathematical
models have been used to predict tumor angiogenesis by
integrating quantitative experimental data in the study done
by Phillips, et al. 37 Furthermore, the integration of machine
learning algorithms can accelerate data analysis and image
classification in OoC systems, enabling real-time monitoring
and automated decision-making in cell culture.11,34,46 This
helps to accelerate preclinical drug screening and disease
modelling.34

3.3. Future Directions

Advanced modelling techniques are already critical for the
quantitative analysis and prediction capabilities of OoC
systems, offering speed and cost advantages over purely
experimental methods.28,33,37 Incremental advancements in
these methodologies, particularly through enhanced
integration of AI and improved visualization, hold significant
potential for further progress. Enhanced AI integration,
utilizing algorithms like machine learning and deep
learning34,37,44, can accelerate data analysis and interpretation,
such as automated image classification and quantitative
assessment of cellular responses34,37, while also refining
predictions in areas like drug efficacy and toxicity by
improving the estimation of PK/PD parameters from complex
data.33,35,37 The design and optimization of microfluidic
devices and experimental protocols can be streamlined by
more tightly coupling simulation techniques (e.g., CFD4) with
AI, allowing for rapid exploration of design parameters,
prediction of optimal configurations, and optimization of
aspects like sampling times.14,33,37 Additionally, making AI
models more transparent through explainable AI is important
for gaining regulatory trust and improving their use in OoC
platforms, especially since some deep learning methods are
difficult to interpret and can limit understanding in drug
development.47

Improved visualization techniques, such as layering
simulation data onto experimental images or potentially
exploring 3D renderings (with techniques like those used for
segmented medical images), can enhance researchers'
understanding of complex, dynamic processes within the chip,
making data interpretation more intuitive and potentially
improving reproducibility.37,44 Projects like ARinBIO explore
Augmented Reality/ Virtual Reality (AR/VR) to improve data
visualization and collaboration. This initiative seeks to
streamline laboratory workflows, reduce errors, and facilitate
personalized medicine by providing real-time data
visualization and interaction within augmented
environments.48

Regulation and standardization are crucial for the wider
adoption and implementation of OoC technology, as a lack of
regulatory consensus on acceptance criteria currently presents
a significant hurdle to their use by end-users.42 International
efforts are underway by regulatory agencies and
organizations, including the International Organization for
Standardization (ISO), which is developing the ISO/AWI
25693 standard.49,50 This standard, currently under
development, specifies requirements for the development
process of OoC used for the evaluation of substances, aiming
to ensure fitness for purpose and support broader regulatory
acceptance.49
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4. Conclusion and Recommendations

This review highlights the critical role of advanced
modelling techniques, such as computational fluid dynamics,
finite element analysis, PK/PD simulations, and artificial
intelligence, in enhancing the design, function, and analysis
of OoC systems. These tools enable the replication of complex
physiological environments, support data interpretation, and
improve predictive modelling for drug development.
However, key challenges remain, including limited data
quality, computational complexity, scaling issues, and the
integration of multidisciplinary technologies. Addressing
these barriers is essential for advancing OoC adoption in both
research and industrial settings.

Future research should focus on the following priorities to
advance Organ-on-a-Chip (OoC) technology:

 Refine current modelling techniques to enhance 
physiological accuracy and predictive power, 
especially for multiorgan and systemic models.

 Develop explainable AI frameworks to improve 
model transparency and build trust for regulatory 
approval and clinical integration.

 Integrate emerging technologies cautiously, 
including:

o Real-time sensor data for continuous 
monitoring

o 3D bioprinting for replicating complex 
tissue structures

o Augmented and virtual reality tools for 
enhanced visualization and collaboration

 Ensure compatibility and usability of integrated 
technologies with biological systems to facilitate 
practical adoption.

 Promote interdisciplinary collaboration among 
biologists, engineers, data scientists, and regulators 
to standardize platforms and accelerate their 
application in personalized medicine and drug 
development.
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Graphical Abstract 

Abstract 

Organ-on-a-chip (OOC) is an emerging microfluidic platform that mimics key physiological 

functions of the human body, offering promising tools for drug screening, disease modeling, 

and personalized medicine (context). This review highlights recent advances in OOC 

modeling, with a focus on Computational Fluid Dynamics (CFD), Finite Element Analysis 

(FEM), multiphysics simulation, artificial intelligence (AI), and augmented/virtual reality 

(AR/VR) (key advance). We summarize the applications of these approaches in fluid 

dynamics, mechanical responses, chemical transport, and system visualization, explicitly 

addressing their roles at different modeling layers relevant to chip performance (scope). 

Finally, we discuss current challenges, including organ complexity, multi-organ integration, 

validation, and standardization, and propose that future progress will rely on interdisciplinary 

collaboration, hybrid modeling strategies, and real-time AI integration to accelerate 

biomedical translation (outlook). 
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1. Introduction 

Organ-on-a-Chip (OoC) is a cutting-edge technology that 

combines biology and microtechnology, capable of simulating 

key physiological functions of the human body on 

microfluidic chips1,2. It exactly controls trace amounts of fluid 

through the use of microchannels to supply cells and tissue 

structures with a close-to-physiological microenvironment3. 

OOC employs chip-based regulated device systems to supply 

cells and tissue structures with biochemical and physical 

environments close to in vivo conditions to allow scientists to 

experiment on these systems in vitro4. This allows scientists 

to more accurately control the microenvironment in which the 

cells reside and directly view the reaction of the cells and 

tissues5. 

In comparison to conventional two-dimensional cell 

culturing, the scale of the channels in microfluidic systems is 

comparable to that of cells and more effectively replicates the 

extracellular microenvironment and the three-dimensional 

tissue structure6,7. It is able to perform precise regulation of 

mechanical stimulation to the cells, delivery of nutrients and 

chemical gradients. With these technologies, it is possible to 

create miniature cavities of precise structures and accurately 

regulate the molecules and the cells within the microfluidic 

system to accurately duplicate the organs' microenvironment 

and replicate the physiological and disease conditions in the 

body8. With this technology, it offers a highly bionic and high-

throughput new experimental system for drug screening, 

disease studies and personalized medicine. 

But in order to fully tap the potential of OOC, advanced 

modeling techniques assume key significance9. Modeling not 

only allows for chip design to be optimized, fluid and cell 

behavior to be predicted, and the trial-and-error experiment to 

be minimized but also enhances the reproducibility of the 

system. CFD, FEM as well as multi-physics field simulation 

provide valuable information on the flow field distribution, the 

mechanical stress, the nutrient gradient and the response of the 

cell within the chip. Meanwhile, recent emerging technologies 

including AI and AR/VR have continuously improved the 

precision of designs, data analysis functions, and visual 

interaction to further enhance the accuracy of modeling. 

In the past few years, scientists have constructed various 

types of organ chips, e.g., the brain10, heart11, lung12 and 

cancer models13, and made good performance in various 

applications. Organ-on-a-chip has become a valuable tool for 

the academia and industry to study the functions of organs and 

discover new medicines. For example, the bionic lung chip has 

effectively duplicated the relationship between human alveoli 

and capillary structures, offering a new way for drug 

screening14. 

However, despite the fact that OOC technology is 

extremely innovative, there are still many challenges15. One of 

the primary challenges is standardization in the process of 

manufacturing16. Up to now, due to the lack of a uniform 

system of material and techniques, not only does it hinder the 

reproducibility of experiments but also the mass production 

and low-cost process. Second, the cooperation and coupling 

between different chip organs have not yet been effectively 

integrated, and as a result, it becomes challenging to simulate 

comprehensive multiple-organ interaction. Likewise, OOC 

also encounters the problem of medical verification and 

regulation: how to undergo medical verification and be 

certified by the US FDA is a primary challenge for the 

transition of OOC toward application17. 

The aim of this paper is to comprehensively review the 

modelling approaches for microfluidic platforms in Organ-on-

a-Chip (OOC), assess the role of traditional techniques such 

as Computational Fluid Dynamics (CFD), Finite Element 

Analysis (FEA), and Multi-Physics Field Simulation (MFSS) 

in the design and optimisation of OOCs, and explore the 

innovative breakthroughs brought by the emerging 

technologies such as Artificial Intelligence (AI), Machine 

Learning (ML) and Augmented/Virtual Reality (AR/VR). 

However, existing reviews mostly focus on chip fabrication or 

biological applications, with less systematic summaries of the 

synergies of these modelling strategies and their challenges, 

such as multi-scale coupling, data integration and 

standardisation issues. By filling this gap, this paper provides 

ideas and references for the development of OOC in 

biomedical engineering. 

2. Modelling and Intelligent Technologies 

With the rapid development of organ-on-a-chip (OOC) 

technology, advanced modeling methods and intelligent 

technologies are playing an increasingly important role in it. 

Modeling tools such as Computational Fluid Dynamics 

(CFD)18, Finite Element Analysis (FEM), and multiphysics 

simulation provide reliable theoretical support for chip design, 

fluid control, and physiological process prediction. 

Meanwhile, the introduction of emerging technologies such as 

artificial intelligence (AI), machine learning, and 

augmented/virtual reality (AR/VR) has greatly enhanced the 

efficiency of data analysis, design optimization, and 

visualization. Figure 1 shows how CFD, FEM, and 

multiphysics relate to key OOC components. 

2.1 Traditional computational modeling methods 

2.1.1 CFD 
Computational Fluid Dynamics (CFD) is a method based 

on numerical analysis, which is used to simulate and predict 

the flow, pressure, velocity, temperature and material 

transport behavior of fluids (liquids or gases) under different 

conditions18. 

Hydrodynamic parameters such as shear force, pressure 

and flow rate can significantly affect the morphology, 

proliferation, function and survival rate of cells, and thereby 



   

 3  
 

play a key role in the overall function and activity of tissues19. 

Microfluidic devices provide a highly promising method for 

studying these parameters and the fluid behavior in different 

microchannel structures20. Microfluidic devices (MFDS) are 

made of biocompatible materials and contain tiny channels21. 

Organ-on-a-chip (OOC) utilizes this technology to simulate 

the microenvironment of specific tissues or organs22. 

Green et al. investigated the influence of channel geometry 

on cell adhesion by designing microchannels with sharp turns 

and curved turns and combining them with fluid dynamics 

simulations. Their results show that the flow velocity and 

shear stress distribution in the curved and turning 

microchannels are more uniform, which helps to improve the 

cell adhesion effect23. 

Bakuova et al. demonstrated through CFD analysis and 

experiments based on Huh7 cells that the elliptical cavity liver 

chip has superior flow and filling characteristics compared to 

the circular cavity chip, and successfully verified the adhesion 

and continuous growth of cells24 

However, CFD mainly focuses on fluid systems and is 

difficult to directly handle the solid deformation of chips or 

multi-physics field coupling. Moreover, its mesh division and 

boundary condition setting are complex, the calculation time 

is long, and it requires powerful computing resources25. 

2.1.2 Finite Element Analysis (FEM) 
Finite element Analysis (FEM) is a numerical tool used to 

predict the mechanical properties in organ-on-a-chip (OOC), 

capable of simulating the deformation, stress distribution and 

fluid-structure coupling effects of chip materials. The 

application of FEM is conducive to optimizing chip design, 

improving durability and security. However, its modeling is 

complex and the parameter setting is cumbersome, and it 

needs to be combined with experimental verification to ensure 

the reliability of the simulation. Furthermore, at present, many 

designs still mainly rely on trial-and-error experiments and 

have not fully utilized the advantages of FEM26. 

2.1.3 Multi-physics field simulation 

Multiphysics simulation is an integrated approach used to 

simultaneously study the interactions among various physical 

processes such as fluids, mechanics, chemistry, and heat 

conduction, and is particularly suitable for complex organ-on-

a-chip (OOC) systems. Multiphysics simulation not only helps 

optimize chip design and enhance the physiological relevance 

of experiments but also provides a powerful tool for the 

prediction of complex systems. 

Jeon et al. utilized multi-physics field simulation combined 

with experiments to study the effects of fluid flow in the 

intestinal-liver microarray on intestinal cells and liver cells, 

optimized the flow velocity and shear force parameters, and 

explored the effects of fatty acid transport, liver lipid 

accumulation, and anti-fatty liver drugs27. 

2.2 The Application of AI in OOC 

AI, especially machine learning algorithms, can be used to 

automate chip design and parameter optimization. By training 

algorithms, researchers can predict in advance which design is 

the most suitable for a specific biological application, 

significantly reducing the cost of trial and error. Machine 

learning is a common method for achieving artificial 

intelligence, and deep learning is one of the important 

algorithms among them. 

The research by Li et al. indicates that organ-on-a-chip 

(OOC) systems based on deep learning have demonstrated 

great potential at multiple levels28. Through algorithms such 

as convolutional Neural networks (CNN) and recurrent neural 

networks (RNN), image analysis, cell recognition, dynamic 

tracking, segmentation and functional prediction in the chip 

can be efficiently achieved, greatly improving the automation 

level of data processing. In addition, deep learning has also 

demonstrated significant value in aspects such as the design 

optimization of microfluidic chips, fluid dynamics analysis, 

and cell behaviour prediction. This study points out that by 

integrating deep learning technology, OOC is expected to 

achieve higher accuracy and efficiency in drug screening, 

disease modelling, personalized medicine, and multi-organ 

 

Figure 1. Schematic of Organ-on-a-Chip and modelling methods 
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Table 1. Summary of modelling tools, applications, advantages, and challenges in Organ-on-a-Chip research 

Tool Application Advantage Challenge Recent Example 

CFD Simulate fluid flow, 

shear stress, nutrient 

transport in 

microchannels 

High accuracy, clear 

physical principles 

Complex setup, high 

computational cost 

Barbosa et al. (2024), 

thermal and fluid flow 

modeling in OoC29. 

FEM Analyze mechanical 

deformation, stress 

distribution, fluid–

structure interaction 

Accurate mechanical 

predictions, good for 

membrane deformation 

Complex meshing, 

needs precise material 

data 

de Menezes (2020), 

finite element approach 

for OoC design26. 

Multiphysics 

Simulation 

Combine fluid, 

mechanical, thermal, 

chemical effects 

Comprehensive system 

analysis 

High modeling 

difficulty, long 

computation time 

Jeon et al. (2021), gut–

liver-on-a-chip for 

hepatic steatosis 

modeling27. 

AI Optimize design, 

predict behavior, 

analyze images 

Fast data processing, 

automated optimization 

Needs large, high-

quality datasets; 

limited interpretability 

Isozaki et al. (2020), 

AI integration in lab-

on-a-chip systems30. 

AR/VR Visualization, training, 

remote collaboration 

Improved visualization 

and interactivity 

Limited integration 

with physical systems 

Broek (2025), 

visualization tool for 

OoC fibrotic disease 

model31. 

system research, bringing new opportunities for in vitro 

alternative experiments and precision medicine28. 

Isozaki et al. reviewed the combined application of 

artificial intelligence (AI) and Lab-on-a-Chip, pointing out 

that machine learning and deep learning have significantly 

improved the analytical efficiency and accuracy in aspects 

such as high-throughput imaging, cell classification, and 

drug screening30. The article also mentioned that algorithms 

such as Support Vector Machine (SVM) and Convolutional 

Neural Network (CNN) have been successfully applied in 

cell cycle analysis and blood cell detection. At the same time, 

it emphasized future challenges such as model 

interpretability and data quality. 

Lightweight models such as decision trees and embedded 

machine learning can also be introduced in for real-time 

control and adaptive tuning32. Such methods are faster in 

computation, consume less power and are more suitable for 

integration with portable and miniaturised devices. 

2.3 The Application of AR/VR in OOC 

Augmented Reality (AR) and virtual reality (VR) are 

visualization and interaction technologies that have 

developed rapidly in recent years. These two technologies 

have the advantages of being intuitive, dynamic and highly 

interactive, which makes them show wide application 

potential in many scientific research and engineering fields. 

Recent works have demonstrated the growing significance 

of AR and VR in medical applications, including their 

application in organ-on-a-chip (OOC) studies. For example, 

VR associated with Computer-aided Modeling (CAM) has 

been used in tele-surgery to increase the accuracy of 

operations and collaborative planning33,34. In the study of 

OOC, the use of AR/VR technology can project the Body-

on-a-Chip (BOC) system and combine several OOC units to 

model a whole organism35,36. By fusing real-time data and 

immersive visualization, the use of AR/VR increases the 

capacity of researchers to track dynamic processes, study 

drug effects, and tune up experimental protocols without the 

need for direct physical manipulation. Further, AR/VR also 

enhances inter-team communications37. 

Although AR/VR has shown great potential in aspects 

such as visualization, simulation and training, the integration 

with actual OOC systems still faces some obstacles. 

Including the limitations of hardware miniaturization and the 

challenge of real-time data synchronization between virtual 

and physical systems. 

2.4 Comprehensive evaluation 

Advanced technologies such as Computational Fluid 

Dynamics (CFD), Finite Element Analysis (FEM), 

multiphysics simulation, artificial intelligence (AI), and 

augmented/virtual reality (AR/VR) are instrumental in the 

enhanced design and application of organ-on-a-chip (OOC). 

CFD and FEM offer high accuracy but need complex setup 

and heavy computing. Multiphysics simulation captures 

system interactions but is even more demanding. AI brings 

efficiency and flexibility to design and data analysis but 

depends on large, quality datasets and often lacks 

interpretability. AR/VR improves visualization and user 
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interaction but is still mainly used as a support tool, with 

limited integration into chip systems. 

Table 1 summarizes the main tools, their typical 

applications in organ-on-chip systems, as well as their 

respective main advantages and challenges. 

To illustrate the complementarity and integration of 

various modelling approaches in Organ-on-a-Chip systems, 

Figure 2 presents a schematic Venn diagram highlighting the 

overlaps and shared roles of CFD, FEM, multiphysics 

simulation, AI, and AR/VR technologies. 

Overall, each technology has its own focus and 

complementary advantages in OOC. In the future, it is 

necessary to promote cross-disciplinary integration, 

combining the rigor of traditional modeling with the 

predictive ability of AI and the intuitiveness of AR/VR, to 

achieve a more efficient, intelligent and reliable OOC system, 

opening up broader prospects for biomedical research and 

precision medicine. 

2.5 Validation 

Verification is a key step to ensure that the modeling 

results accurately reflect the biological performance in the 

OOC system. For instance, the fluid flow and shear force 

obtained from CFD simulation can be verified through 

microparticle imaging velocity measurement (μPIV) or 

tracer dye experiments38. The results predicted by FEM can 

be compared by observation with a high-resolution 

microscope or traction microscopy39. The prediction of cell 

behavior or drug response by AI needs to be verified through 

means such as time series imaging, molecular analysis or 

histological analysis40. Effective verification can not only 

enhance the credibility of the model, but also identify the 

deficiencies that need improvement in the model. 

Meinicke et al. combined μPIV measurement and CFD 

simulation to study the single-phase fluid dynamics in porous 

SiO₂ glass foam. In the study, μPIV was used to observe the 

flow of DMSO in porous structures, and the experimental 

data were compared with the CFD model reconstructed by 

X-rays. The research shows that the experimental results are 

highly consistent with the numerical results, effectively 

verifying the CFD prediction41. 

3 Challenges and Future Perspectives 

Although organ-on-a-chip (OOC) technology has made 

many advancements, it still faces many challenges in 

practical applications. How to accurately restore the complex 

structures of human organs and biological interfaces remains 

difficult42.  

Although traditional modeling methods (such as CFD, 

FEM, and multiphysics simulation) are accurate in 

calculation, they are complex in operation and time-

consuming. AI offers new approaches to design optimization 

and data analysis, but it relies on a large amount of high-

quality data and has limited model interpretability. AR/VR 

has improved visualization and interaction, but the deep 

integration with OOC is still insufficient. 

Furthermore, OOC lacks a unified platform and standards, 

resulting in the difficulty of repeating experiments and 

integrating and analyzing data. The stable supply of human 

cells and the development of multi-organ shared culture 

media are also key bottlenecks for promotion. 

Interdisciplinary cooperation among biology, engineering 

and computational science needs to be strengthened in the 

future. By integrating modeling, AI and AR/VR, drive OOC 

to achieve more intelligent and efficient applications. And 

accelerate its clinical transformation in drug screening, 

disease research and precision medicine. 

4 Conclusion and Recommendations 

As the core technology of organ-on-a-chip (OOC), the 

microfluidic platform provides a solid foundation for its 

application in biomedical engineering. The combination of 

traditional modelling methods, artificial intelligence (AI), 

and augmented/virtual reality (AR/VR) has jointly promoted 

the design optimization, data analysis, and functional 

expansion of OOC, opening new avenues for fields such as 

drug screening, disease research, and personalized medicine. 

In the future, the development of organ-on-a-chip (OOC) 

will increasingly rely on close collaboration in the fields of 

engineering, computing and biology. Hybrid digital twins are 

expected to combine sensors and AI to achieve real-time 

monitoring and regulation of OOC for personalized drug 

screening and disease prediction. Through the real-time 

feedback system embedded in machine learning (embedded 

Figure 2. Complementary Modelling Methods in Organ-

on-a-Chip 
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ML), researchers can adjust the fluid parameters, drug 

concentrations, etc. of the chip based on real-time data in the 

experiment, improving the flexibility and physiological 

relevance of the experiment. These advancements are 

expected to shorten the transition from the laboratory to 

clinical practice and promote the wide application of OOC in 

drug development and personalized medicine. 
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