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Abstract

Colorimetric biosensors offer low-cost diagnostics but often suffer from subjective interpretation, environmental variability,
and limited quantification. Artificial intelligence (Al) has emerged as a powerful solution, enabling automated analysis of
chromogenic outputs captured via smartphones or imaging systems. This meta-analysis reviews 32 studies (2022-2025)
applying Al to colorimetric biosensing, comparing performance across model types, sensor formats (e.g., paper, wearable, tube-
based), input modalities (e.g., RGB, absorbance), and analyte classes. Key metrics include classification accuracy, regression
strength (R?), and limit of detection (LOD), benchmarked against non-Al and conventional methods.Al-enhanced platforms
consistently improved accuracy, with context-specific gains in R2 and LOD, especially for weak or overlapping signals.
Smartphone-based RGB systems dominated but required calibration strategies such as CNN-GRU correction and illumination
adjustment. Despite promising results, most studies lacked external validation and relied on supervised learning with small
datasets. Semi-supervised approaches and standardized benchmarks are needed to ensure generalizability. Beyond analytical
metrics, Al offered faster readouts, automated interpretation, and support for multiplexed sensing. Future directions include
integrating augmented reality for enhanced usability and applying Al to sensor design and optimization. Collectively, these
advances position Al-enhanced colorimetric biosensors as scalable, field-ready diagnostic tools with growing potential for
clinical and environmental deployment
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1. Introduction

Lack of accurate, acessible, and rapid diagnostics remain a global
issue for healthcare especially in remote, resource-constrained
settings where over 47% of the global population lacks access to
essential diagnostic tools!. While conventional laboratory-based
diagnostics remian the gold standard, they require sophisticated
equipment, trained personnel, and controlled environments. These
limitations contribute significantly to delayed diagnoses and
diagnostic errors, which are estimated to cause approximately
371,000 deaths and 424,000 permanent disabilities annually in the
United States alone?. To address these, portable colorimetric
biosensors, which are analytical devices that detect presence of target
analytes through visible color changes via enzymatic reactions,
nanozyme catalysis, or pH-sensitive dyes, have gained prominence
as low-cost, easy-to-use alternatives capable of delivering rapid
results without the need for laboratory infrastructure®. Google
Trends data show that global interest in colorimetry more than
doubled from late 2021 to early 2025, reflecting growing attention
towards visual-based diagnostics®. By translating biochemical
interactions into observable color changes, they have found
applications in diverse settings from at-home glucose monitoring and
pregnancy testing to field-based detection of pathogens and heavy
metal ions that might be detrimental to health®. Moreover, their
compatibility with paper-based substrates, lateral flow formats, and
nanozyme-enhanced platforms makes them particularly attractive for
decentralized healthcare and environmental monitoring®. However,
despite their significant improvements over traditional diagnostics,
colorimetric biosensors face persistent limitations related to
subjectivity in optical result interpretation, arising from variations in
ambient lighting, camera resolution, user technique, and perceptual
bias, which can significantly affect the accuracy and reproducibility
of results’. This is a hindrance for their widespread adoption in
critical clinical or environmental applications where precision and
standardisation are essential.

Table 1. Summary of recent reviews on Al-Enabled
biosensors and the distinct scope of this work

Year Focus Key Insights
20247 Al in  biochemical | Reviewed Al's role across sensing
sensors (incl. | platforms, highlighting accuracy gains
colorimetric) and implementation challenges.
20243 Al in electrochemical | Showed Al improves sensor sensitivity
biosensors and wearable adaptability.
2024° Al-integrated wound | Reviewed Al-biosensor synergy for
dressings wound  monitoring and  healing
prediction.
2023%° ML-based sensor arrays | Surveyed ML-enhanced
for bacterial detection colorimetric/fluorescent ~ arrays ~ for
pathogen classification.
2025 Al-enhanced Conducts ~ first metadata analysis
(This colorimetric  biosensors | comparing R, accuracy, and sensitivity
review) (health & environment) across 30+ studies.

To overcome these challenges, artificial intelligence (Al) has
emerged as a transformative solution. By analyzing colorimetric
outputs captured via smartphones or imaging devices, Al algorithms
provide automated, consistent, and quantitative interpretation of
biosensor signals. While previous reviews highlight Al applications
in biosensing, few assess its actual performance gains. This review
fills that gap through a metadata analysis of recent Al-enhanced
colorimetric studies, comparing improvements in sensitivity,
accuracy, and regression strength (R2) over traditional and non-Al

methods. Table 1 summarizes prior reviews to contextualize this
study’s contribution.

2. State-of-the-art of Current Research

This work conducted a metadata analysis of 32 peer-reviewed studies
from 2022 to 2025, sourced via Scopus and Google Scholar using
combinations of search terms such as “colorimetric biosensor,” “Al,”
“accuracy,” and “sensitivity.” Studies were included if they
employed artificial intelligence (machine learning or deep learning)
for the interpretation of colorimetric biosensor outputs and reported
at least one quantitative performance metric (e.g., accuracy,
sensitivity, or R?). Data were manually extracted on sensor type,
sample source, analyte, Al model, and comparative improvement
over non-Al or traditional methods. A comprehensive table detailing
these 32 studies is shown in Table S1 (supplementary).

2.1. Sensor Architecture — Form Factor, Platform, and Al Data
Utilization

Figure 2.4.a shows sensor architectures across the 32 studies
prioritized cost-effectiveness, portability, and user-friendliness,
which are qualities best demonstrated by paper-based sensors (10
studies), wearable microfluidic patches (6), and tube/well-based
formats (11), collectively accounting for over 85% of sensor form
factors. In comparison to conventional laboratory-based diagnostics,
these form factors drastically reduce overheads in terms of materials
and logistics, enabling decentralized testing. Device-integrated
sensors (5 studies), while offering superior performance via
embedded optics or processors, still lack scalability due to their high
cost and need for specialized maintenance. Smartphones were
overwhelmingly used for signal collection (28 of 32 studies),
outpacing other platforms like scanners (4), robotic sensors (1), and
microscopes (1), due to their widespread accessibility, built-in
cameras, and ability to process or upload images in real time. This
sensor architecture across these studies is visualized in Figure 2.1.

DATA COLLECTION/
QUANTIFICATION
CONVENTIONAL

. -

WEARABLE PATCHES

DATA FOR Al
INTEGRATION

%

NONE

SENSOR FORMS

VISUAL  gencHTOP

EQUIPMENT

EMERGING ALTERNATIVE ABSORBANCE

S

RGB/COLOR
VALUES

TUBE-BASED ASSAYS

¢4 &

PAPER SENSORS SMARTPHONE

Figure 2.1. Architecture of Al-enabled colorimetric sensors

RGB was the main input for Al models (19 studies), followed by
grayscale (2), absorbance (3), and multimodal setups like RGB with
thermal, mechanoluminescence, or fluorescence (1 each). Its appeal
lies in smartphone compatibility and suitability for CNNs that
process spatial and color features. Absorbance-based methods are
more robust but rely on non-portable, specialized tools. RGB’s
sensitivity to lighting and device variability reduces reliability
without normalization, used in only a few studies (some in Table 2.1).
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These steps are key to improving consistency in real-world settings.
Overall, the move toward RGB-smartphone-Al systems supports
scalable diagnostics, but stronger standardization is still needed to
match lab-grade performance.

Table 2.1 Color correction strategies applied across selected studies

Study Color correction applied

Wang et al.* Trained a CNN-GRU model to adjust for ambient
light and pH variation

Ghateii and | Used flash/no-flash subtraction and lab color space

Jahanshashi % conversion to stabilize lighting conditions

Liu et al* Applied pixel-wise color correction using a 24-color
checker to calibrate camera-based inputs

2.2 Purpose and Sample Type — Monitoring Targets, Matrices,
and Analytes

Figure 2.4.b reveals that sensors are mainly applied to clinical
diagnostics (10/32 studies), metabolic monitoring (7), and food
safety (6), with fewer targeting pathogens (4), cellular assays (2), or
multiplex panels (1). This mirrors the prevalence of accessible
samples like urine (4), sweat (3), saliva, and tears, ideal for wearable
or point-of-care use. However, this also suggests an application bias,
favoring well-characterized analytes in controlled settings. Food and
environmental samples (9 studies combined), which present greater
matrix complexity and signal noise, remain underrepresented despite
being where Al’s disambiguation strengths are most needed. Current
trends favor feasibility over impact, applying Al where outputs are
already interpretable rather than where its value is most critical.

Notably, many Al models have been applied to analytes that already
produce vivid and monotonic color changes, such as glucose and pH,
where human-readable output is already largely feasible. While this
enables automation and precision, it may underutilize AI’s potential.
As shown in Figure 2.2, analytes like HDL, LDL, and troponin
exhibit weaker or grayscale transitions that are far less
distinguishable visually. These cases present the strongest
justification for Al integration yet remain underrepresented. Rather
than reinforcing already discernible signals, Al's role should be
expanded to support analytes with ambiguous visual responses,
where its capacity for pattern recognition and subtle gradient
differentiation can meaningfully extend the reach of colorimetric
sensing.

ANALYTE REPRESENTATIVE SENSOR COLOR RESPONSE # OF STUDIES
LOW CONC. _— HIGH CONC.
GLUCOSE 5
pH
LACTATE 1

cTnil
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4]
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Figure 2.2. Colorimetric responses for selected analytes.

2.3 Al Use Case and Model — Task Types and Algorithms
Employed

Al in colorimetric biosensing has mainly focused on regression (18
of 32 studies) and classification (13), aligning with the direct
relationship between color change and either concentration or
categorical outcome. Regression typically maps RGB patterns to
analyte levels, while classification supports test result interpretation.
These applications suit sensors targeting analytes with clear,
monotonic color shifts like glucose or pH. However, this also reflects
a cautious approach where Al is often applied where signal-response
relationships are already well defined. More advanced tasks like
clustering, anomaly detection, or multimodal fusion remain rare,
despite their potential for handling complex or noisy signals.

Figure 2.3 shows a mismatch between Al task complexity and the
models used in reviewed studies. Simpler regression tasks were most
common and often addressed with traditional ML models like
random forests, even when signals were nonlinear or noisy. Deep
learning was more common in classification tasks, particularly for
spatial data, but rarely used for complex tasks like object detection or
multimodal fusion. For example, Yu et al.?” used an ANN for RGB-
thermal fusion but didn’t apply advanced architectures like attention
or transformers. Unsupervised methods like PCA or t-SNE were
limited to visualization. This suggests model selection is often based
on familiarity, not task fit. As a result, underspecified models may
limit performance in complex or noisy settings and reduce
generalizability outside the lab. Treating model architecture as a key
design element, aligned with task demands and supported by
benchmarking, will be essential for advancing Al in biosensing.
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Figure 2.3. Al model use by task type, showing ML dominates
regression while DL is underused in complex tasks.

2.4 Performance Improvement — Gains Attributed to Al and
Benchmarks

Across all 32 studies, Al integration was credited with enhancing
sensor performance across multiple axes. The most reported gains
were improved accuracy (~20 studies), enhanced sensitivity or lower
limits of detection (~7 studies), faster or automated interpretation (~3
studies), and improved pattern resolution for multiplexed or
overlapping signals (~4 studies). Al enabled detection of subtle
analyte differences, automated endpoint interpretation, and
separation of overlapping outputs in multi-analyte sensors. While
about 7 studies lacked a baseline comparison, those that did
consistently showed Al outperforming visual reads, thresholds, or
uncorrected data. Table 2.2 highlights four representative examples.
Cui et al.? used YOLOVS5 to improve bacterial classification to 95%.
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Yu et al.?” combined colorimetric and thermal signals via ANN to
surpass LOD for cardiac troponin. In Zheng et al’s work'6, CNNs
reduced assay readout time withing minutes to seconds, while
originally taking hours. Ranbir et al?®. and Singh et al.>° used PCA-
LDA to fully separate volatile amines in meat, showing AI’s strength
in multiplex detection. These examples illustrate both performance
gains and how targeted Al use can expand the utility of colorimetric
sensors in real-world settings. However, while showing these gains,
a more quantitative approach is required to fully grasp the importance
of Al in colorimetric biosensing, as explored in subsequent section.

2.4 Meta-analysis of performance improvements
2.4.1. Limit of detection (LOD)

We compared LOD values across studies, as LOD reflects the lowest
detectable concentration above background noise and is key to
assessing sensor sensitivity. This helps determine whether Al
meaningfully improves detection limits in real-world use.
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Figure 2.4 Sankey diagram for Al-enhanced colorimetric biosensor studies sorted by (a) sensor architecture; (b) purpose and sample types,
(c) Al use cases, model classes, and algorithms; and (d) performance improvements (comprehensive table in Table S1)
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Figure 2.5. Log-scale distribution of LOD values across colorimetric detection methods, highlighting analyte-level spread and comparison

to typical/optimal reference values

LOD data from Al-enhanced studies were grouped into four
categories: Al-based, colorimetry only, colorimetry plus smartphone
(non-All), and typical values in human or food samples. Each analyte
within a study was treated as a separate data point. For baseline
methods lacking internal controls, LODs were sourced from recent
reviews or similar studies. Full data appear in Supplementary Table
S1.

As shown in Figure 2.5.a, Al-based platforms had slightly lower
median LODs than typical concentrations in human and health
samples, highlighting significance in diagnostics, but variability was
high across all groups, especially compared to non-Al smartphone-
assisted methods. Mann-Whitney U tests (Table S4) showed no
statistically significant differences (all p > 0.15), indicating that Al
alone doesn’t consistently improve sensitivity. Outliers like del Real
Mata et al’s'® 1 pM H.O: detection with a plasmonic sensor and
random forest model, or Yu et al’s?” 10.8 pg/mL troponin detection
using ANN fusion, highlight AI’s potential under optimized setups.
However, factors like sensor materials, analyte properties, and
sample matrices often have greater influence. Al was most impactful
in cases with overlapping or faint color signals, e.g. Cui et al’s use of
YOLOV5 for low-level bacterial HAase, and Ranbir et al’s?®: and
Singh et al’s.3® PCA-LDA models resolving mixed biogenic amines.
In contrast, analytes with strong color change like glucose or pH
showed minimal LOD gains, though Al improved consistency and
automation. These results suggest Al should be applied selectively,
especially for low-contrast or nonlinear signals. Broader adoption
will require better benchmarking, task-specific Al design, real-world
validation, and comparison to regulatory standards or reference
methods.

2.4.2. Model R?values

We included Rz comparisons across studies as it reflects how well a
sensor’s output follows analyte concentration trends making it an
essential indicator of dose-response consistency, even if not a direct
accuracy measure. R2 data were grouped by method type (Al-based,
colorimetry-only, and smartphone-assisted non-Al) and are
summarized in Table S3 and visualized in Figure 2.5.b. Al-based
platforms showed higher average R? values (0.952-0.9999) and
wider spread than conventional methods, with several achieving

near-perfect calibration under controlled conditions. However,
Mann-Whitney U tests (Table S5) indicated these differences
weren’t statistically significant (p = 0.075 vs. smartphone; p = 0.14
vs. colorimetry-only), suggesting Al doesn’t consistently improve
regression fit across all cases. The best R2 values were seen in studies
with controlled imaging, high signal-to-noise ratios, or carefully
curated datasets. Study 18 reached R? = 0.9999 for cardiac troponin |
using an ANN with thermal and color fusion, while Study 13
achieved robust fits for glucose and cholesterol using ensemble
models that corrected ambient lighting. By contrast, non-Al methods,
especially smartphone-only approaches, showed greater performance
drops under uncontrolled conditions, with R2 values around 0.79-
0.80 for LDL and HDL, likely due to lighting variability. These
findings suggest AI’s greatest strength lies in stabilizing regression
under noisy or nonlinear signal conditions. However, high R? alone
is not sufficient. Some colorimetry-only systems still performed well
for monotonic, high-contrast analytes, highlighting the continued
importance of sensor chemistry. To ensure robust performance,
future work should combine R2 with broader metrics like residual
analysis, external validation, and real-world testing. Overreliance on
R2 may inflate confidence, particularly in the absence of clinical or
field verification.

2.4.2. Accuracy

Unlike limit of detection (LOD) and regression metrics such as R?,
classification accuracy lacks a consistent universal baseline in
biosensing literature. The diversity of decision thresholds, analyte
classes, and labeling protocols across studies means that accuracy
figures are highly context dependent. As such, we do not compare
absolute values across platforms. Instead, we focus on within-dataset
patterns observed across sensor architectures, analyte groups, and Al
model classes, as summarized in Figure 2.6a and Supplementary
Table S6. Overall, Al-enhanced biosensors consistently
outperformed non-Al platforms, with the majority of Al-based
systems achieving accuracies above 90%, and several reaching the
100% benchmark across diverse sensing contexts. These included
both deep learning and hybrid ensemble methods, suggesting the
benefits of nonlinear pattern recognition, especially when signal
variability or interference is present.
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Figure 2.6. Bubble plot of classification/quantification accuracy of Al-enhanced colorimetric biosensors, mapped across sensor form factors

(left) and analyte groups (right) by Al model class

At the architecture level, wearable patch sensors, when paired with
CNN-based models, demonstrated high robustness and accuracy,
often exceeding 95% for multi-biomarker sweat patches. Study 14
achieved 100% classification for glucose, pH, and lactate, enabled by
a VGG16 CNN that captured subtle differences in spatial signal
distributions under ambient conditions. Similarly, paper/uPAD
sensors paired with traditional ML models (e.g., Random Forest,
SVM) also performed well, particularly for urinary and metabolic
analytes, where structured chromogenic arrays generated
reproducible color fingerprints. Study 11, for example, achieved 97%
accuracy in urinary tract infection classification using an SVM-RF
ensemble.Among analyte categories, tumor and cardiac biomarkers
benefited most from Al integration. The fusion of thermal and optical
signals in Study 18, using an ANN, yielded accurate discrimination
of cardiac troponin | (cTnl), reinforcing the strength of multimodal
biosensing for critical clinical analytes . Additionally, for biogenic
amines, LDA-based models maintained >95% accuracy, even under
food matrix variability.

In contrast, non-Al systems, especially those relying on smartphone
cameras with simple thresholding or raw RGB interpretation, showed
greater susceptibility to lighting inconsistencies, with accuracy often
falling to the 85-90% range. These limitations were particularly
evident in complex backgrounds like food spoilage detection or
overlapping chromophores, where Al methods (e.g., PCA-LDA
fusion) restored classification clarity. From the sensor form
perspective, tube- or well-based formats showed generally stable
accuracy due to controlled optics, though wearable and paper-based
formats 6abelled them when enhanced by Al. Notably, the highest
accuracies clustered in deep learning and object detection classes
(Figure 2.6a left panel), reflecting their superior ability to extract
spatial and contextual features from raw image data. Together, these
trends suggest that while chemical design and sensor chemistry
remain foundational, Al integration—especially through CNNs,
hybrid models, and transformer-based architectures—can
significantly amplify diagnostic reliability, especially under variable
environmental or user-handling conditions. Future work should
explore adaptive learning for personalized calibration and establish

standardized accuracy benchmarks across sensor classes.

3. Synthesis and outlook

1. On the use of smartphones and calibration needs- The collected
studies make clear that coupling Al with colorimetric biosensors can
dramatically enhance their capabilities, turning simple color changes
into rich quantitative and actionable data. A unifying theme is the
leveraging of ubiquitous hardware, particularly smartphones , as both
the data acquisition device and computation platform. This
convergence, seen in roughly 90% of the articles, underscores a
practical advantage: Al algorithms deployed on consumer
smartphones can transform point-of-care diagnostics, allowing
immediate analysis in the field. However, this shift toward RGB
smartphone-based pipelines brings new challenges in data
normalization. Different phone cameras and ambient lighting
conditions can skew color readings, requiring robust calibration to
ensure reproducibility®”. Encouragingly, several teams have
introduced clever calibration techniques to tackle this issue. For
example, cloud-connected analysis frameworks now incorporate
hybrid models (CNNs coupled with recurrent networks) to auto-
correct for illumination variances and sensor-specific biases. Such
approaches (e.g. a multichannel CNN-GRU pipeline) have achieved
R2 values ~0.99 by learning to adjust for color temperature
differences in images, effectively standardizing results across
varying conditions. Moving forward, continued innovation in on-
device calibration (from one-time color card references to real-time
algorithmic corrections) will be essential to fully capitalize on
smartphone-enabled Al sensing.

2. On generalizability and data-efficient modelling- Despite the
impressive performance gains reported, most studies lack rigorous
external validation, highlighting a critical gap between controlled
experiments and real-world deployment. Typically, models are
trained and tested on the same lab-generated dataset; few works
verify that an Al model trained on one device or sample set holds up
on others. This absence of external validation and cross-platform
testing raises concerns about generalizability, an issue that future
research must address by incorporating independent test sets, multi-
center trials, or reference sample exchanges. Likewise, the underuse
of semi-supervised learning and data augmentation is notable. Many
Al models for colorimetric sensing rely on relatively small labeled
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datasets, yet few studies leverage the abundance of unlabeled data or
synthetic data generation to improve model robustness. Introducing
semi-supervised algorithms (which can learn from unlabeled color
images) or augmentation techniques (to simulate variations in hue,
intensity, backgrounds, etc.) could significantly enhance model
resilience to real-world variability at minimal cost. Another insight
from our meta-analysis is that AI’s added value appears tied less to
the analyte type and more to the ambiguity of the signal. In other
words, when an assay produces straightforward, high-contrast color
changes (e.g. a single intense color shift for a positive result),
traditional analysis may suffice. But as the color outputs become
more complex, such as subtle gradations, multi-analyte sensor arrays,
or overlapping chromatic responses, advanced machine learning
yields disproportionate benefits®®. Indeed, deep learning models
excel at deciphering high-dimensional color patterns that humans or
simple algorithms struggle to interpret. This trend suggests that future
developers should strategically deploy Al in scenarios of inherent
signal complexity or uncertainty, where its pattern-recognition
strengths are most impactful. It also implies that reporting
performance as a function of assay complexity (rather than only by
analyte category) could be a more meaningful way to evaluate new
Al-enhanced biosensors.

3. On practical gains: speed, multiplexing, and robustness- From a
practical standpoint, Al-driven colorimetric analysis offers
improvements that extend beyond raw analytical metrics,
contributing to better usability and reliability of biosensors. One clear
advantage is speed: once trained, an Al model can interpret a sensor’s
color output in milliseconds, potentially enabling near real-time
readouts and quicker decision-making in point-of-care settings. In
some cases, algorithms can even detect partial color changes before
a reaction is fully complete, shortening the time-to-result. Another
benefit is the capacity for multiplexed detection, that is, analyzing
multiple indicators simultaneously. Traditional colorimetric assays
struggle when multiple test spots or mixed-color outputs must be
interpreted at once, whereas machine learning can untangle such
composite signals with high accuracy. For example, neural network
models have distinguished multiple antibody responses in a single
assay with ~89% accuracy, outperforming conventional methods by
a significant margin®. In general, as more analytes are encoded into
color-based tests, Al will be instrumental in accurately classifying
outcomes across a multidimensional color space. Equally important
is the robustness that Al brings: sophisticated models can
accommodate variability in sample quality or environmental
conditions (such as inconsistent lighting or user handling) better than
rigid threshold-based interpretations. Notably, convolutional neural
networks have maintained strong performance even when images are
noisy or under suboptimal lighting, a resilience crucial for real-world
applications. This robustness reduces the incidence of false negatives
or false positives caused by minor perturbations, thus improving trust
in home or field deployments.

4. On the horizon: integration with AR/VR and digital design-
Looking towards the horizon, there are exciting opportunities to
integrate emerging technologies like augmented and virtual reality
(AR/VR) with Al-based colorometric sensing. Early demonstrations
have shown that AR smartphone apps can overlay interpretive
guidance or even embed fiducial markers into the test to aid real-time
result reading. In the future, a user might simply point a phone at a
paper sensor and see a quantified result or risk assessment pop up
instantly via AR, lowering the barrier to accurate self-testing. VR
environments could also serve as training tools, simulating a wide
range of colorimetric outcomes for clinicians or as a platform to

virtually prototype sensor designs. Moreover, Al itself can be applied
beyond analysis — for instance, using machine-learning optimization
to design better colorimetric assays (selecting optimal reagent
combinations or layout to maximize signal differentiation) or to
create digital twins that predict how a sensor will behave under
various scenarios. These exploratory directions, while in nascent
stages, underscore the expansive potential at the interface of smart
algorithms and biosensing. In summary, the future outlook for Al-
enhanced colorimetric biosensors is one of continued convergence by
merging accessible hardware, powerful algorithms, and user-centric
innovations to deliver faster, multiplexed, and more robust diagnostic
solutions. The next few years will likely witness not only incremental
performance improvements but also a maturing of the field through
standardized evaluation protocols, open datasets for model training,
and perhaps the advent of intelligent sensors that learn and adapt
during use.
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Table S1. Comprehensive table for the 32 reviewed studies on Al-enabled colorimetric biosensor

Sensor Type Analyte Sample Detection Signal collection AI Model Role of AI (with Reported Classificatio Regression Fit Quality
Source Mechanism platform for Al Subgroup Tags) LOD n Accuracy Accuracy (R?orr)
(inverted
MAE or
similar)
Wearable microfluidic ~ Vitamin C, H'Human tears  Analyte-induced Smartphone (RGB CNN-GRU Image-to- Not Not reported 0.001 R2=10.998
colorimetric sensor !! (pH), Ca*, color change in image capture) (1D for pH, concentration reported (MAE)
protein PDMS microfluidic 3D for regression using
patch captured as others) CNN-GRU
RGB signal for (Regression for
concentration Quantification)
mapping
Smartphone-based Hyaluronidas Clinical swabs, Hyaluronic acid (HA) Smartphone YOLOv5  Object detection and 10 92% Not R>=0.97
hydrogel colorimetric e (Haase) food degradation triggers (camera) bacteria classification CFU/mL  (between reported
sensor 2 from bacteria CPRG release, reacts (Image gram + and
with B-galactidose Classification, Object gram -)
and generates color Detection)
changes
Microfluidic plasmonic- H-O: Cancer cell ~ Amplex Red reacts Microscope (image Random Binary classification 1 91% Not Rz=0.98
enhanced colorimetric culture with H202 in presencecapture) Forest of H20: levels from picoMolar (between highreported
sensor 13 medium of HRP, forming a Classifier ~RGB image (Image and low
pink dye; signal Classification) concentration
amplified by classification)
plasmonic
nanostructures
Lip-applied sensor 4 pH Skin surface  Anthocyaninl in lip  Smartphone (selfie CNN Lip color Not 92% (0.92  Not Not reported
(via lip pigment undergoes camera) classification into pH reported reported
application)  pH-triggered color levels using CNN
shift captured via (Image
selfies Classification)
Multicolorimetric sensor HVA, VMA Human urine Redox reaction Smartphone (RGB PCA + LDA Multivariate 0.22 uM  Not reported 100% R2=0.999
array (AuNR-AgNP- (tumor between HVA/VMA image) + PLSR regression and (HVA) and (HVA)
based) (Plasmonic, markers) and Ag" causes silver classification of 0.29 uM
Paper-based) ¥ shell formation on Au tumor markers (VMA) R*=0.999
(VMA)

nanorods, altering
LSPR and generating
multicolor shifts

(Regression, Dim.
Reduction +
Classification)




SIIE 1(4) X-X (2025)y Ricacho et al.
Multiplexed Colorimetric Temperature, Wound Colorimetric sensors Smartphone (patch CNN Image-based Not 94-96% (blank) (blank)
Patch (PETAL) !¢ pH, TMA, exudate (rat using liquid crystals, image) classification of reported
uric acid, models) organic dyes, wound biomarkers
moisture enzymes, and metal (Image
ions Classification)
PDA-based lateral flow COVID-19  Clinical serum PDA-NPs conjugated Smartphone (test ~ Vision Band detection and 160 ng/mL Not reported Not Not reported
immunoassay (LFIA)  neutralizing with RBD antigen  strip image) Transformer antibody reported
(Lateral Flow) 7 antibody bind to antibodies; (ViT) + quantification using
reduced PDA binding ResNet50  ViT (Regression,
causes lighter test Object Detection)
line; image processed
via T/(T+C)
grayscale ratio
Dual-dye colorimetric =~ SARS-CoV-2 Nasopharynge Isothermal Smartphone or DETR-based Tube segmentation  100% (blank) (blank) R2=0.998
RT-LAMP assay (Lateral RNA al swabs amplification causes camera (reaction model and COVID result  (reduced to
Flow) '8 pH drop, triggering  tube image) (ResNet50 + classification (Object 83% when
color change in Transformer)Detection, Image diluted)
Xylenol Orange and Classification)
Lavender Green dyes;
image analyzed post-
reaction
Paper-based multiplexed Cardiac and Human serum Targets (e.g., cTnl, Scanner or CatBoost + Color feature Ctnl 75.2% for Not 0.999,
colorimetric biosensor  lipid HDL, LDL) separatedsmartphone (paper PLS-DA, t- extraction and (1.210x10"classification reported 0.9991,
(Paper-based) ' biomarkers and detected via strip image) SNE disease classification -5 ug/mL) of acute 0.999
electrophoresis- (ensemble) (Dim. Reduction + myocardial respectively
induced color change Clustering) HDL infarction
on paper (435.815
ug/mL)
LDL
(383.127
ug/mL)
Urinary disease Urinary Human urine  Colorimetric reaction Smartphone (sensor Random Pattern classification Not 97% (blank) (blank)
colorimetric test array ~ disease of multiple sensors  array image) Forest, of urinary markers  reported classification
(Paper-based) 2° markers (metal—organic SVM, kNN (Image for UTI
complexes and Classification)

chromogenic
reagents) with urine
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constituents captured
via smartphone

Colorimetric sensor usingGlucose Urine samples Glucose induces colorSmartphone Image Not 87.6% Not Not reported
AuNPs?! change to AuNP processing reported  accurate reported
and glucose
illumination concentration
correction prediction
for accurate
color
interpretatio
n across
varying
lighting
conditions
Microfluidic sensor for  Glucose, Synthetic tears Gox/ChOx-mediated Smartphone (app- Deep Neural Regression for Glucose = 100% RMS=0.386  0.996
artificial tears cholesterol, oxidation produces integrated fPAD  Network  pH/glucose/cholester 131 uM (glucose)
(Microfluidic) 2? pH H:0., catalyzing images) (DNN) ol from artificial tear
TMB color change images (Regression Cholestrol 0.997
via HRP; universal for Quantification) 217 uM (cholesterol)
pH indicator used,
smartphone captures
RGB data
Sweat-based biosensor  Glucose, pH, Human sweat Chromogenic Smartphone VGG16- Color regression of Not 100% (blank) R2=10.9999
(Wearable) 2 lactate reactions triggered by (microfluidic chip based CNN sweat biomarker reported  classification for three
sweat analytes across images) levels (Regression for accuracy for biomarkers
spatially arranged Quantification) all
compartments; color biomarkers in
changes recorded via terms of
smartphone quantity
HeLa cell-based Live HeLa  HeLa cell pH-sensitive Smartphone Mask- Quantification of live 51 x 10*  98% (blank) R2=10.959
metabolic colorimetric  cell viability culture achromatic dye (achromatic RCNN cell images (Image cells
sensor 2 (metabolic transitions (black to saturation images) Classification)
activity) orange) based on cell

density; saturation
analyzed via
smartphone images
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Colorimetric biogenic ~ Biogenic Chicken meat Metal-azodye UV-Vis scanner PCA, LDA, Colorimetric amine 0.378 ppm Not reported 100% Not reported
amine sensor for meat >° amines samples complex forminga and smartphone =~ PLSR pattern classification (spermine) accuracy
fingerprint-based (portable strip) (Image (cross
colorimetric Classification) validation),
response; analyzed
via UV-vis
absorbance and RGB §3% for
imaging 1nte.rference
testing
Tea polyphenol sensor  Tea Fermented RGB image Smartphone (RGB SVM Regression and Not Not reported Rc = 0.886,Not reported
during fermentation?®  polyphenols green tea (w/ extraction of CSA  image of sensor quality tracking for reported RMSEC =
ultrasound)  and multivariate array) fermentation 0.042 mg/g,
calibration (Regression for Rp =0.862,
Quantification) and
RMSEP =
0.043 mg/g
Multiplexed troponin Cardiac Human serum Cascade nanozyme- Smartphone + Artificial Feature fusion from 10.8 (blank) (blank) R2=0.9965
sensor (Nanozyme- troponin | based colorimetric ~ thermometer Neural color and temperaturepg/mL
based) ¥’ (cTnl) and photothermal (absorbance + Network signals for cTnl
signals from h- thermal) (ANN, 3 (Multimodal Fusion)
Prussian Blue in hidden
TMB-H-0: system layers, 64
neurons)
Sweat ion and pH patch Na', K*, pH Human sweat Printed chromogenic Smartphone (sweat Explainable Signal mapping for classified 100% (blank) (blank)
sensor 28 during reagent zones and patch image with CNN (with electrolyte and pH  and (>50 nM)
exercise reference dye; color reference dye) ratiometric balance (Regression quantified
change recorded for self- for Quantification)  with 100%
in-situ analyte calibration) accuracy
detection
Thiol-level cancer Thiols (Cys, Standard Thiol-induced UV-Vis reader or Linear Clustering of thiol- 50 nM 100% Not Not reported
detection sensor % GSH, Hey, solutions inhibition of metal ~ smartphone (RGB Discriminantlevel profiles for thiol (not accuracy to reported
DTT, MCH, ion-TPA@GQD absorbance Analysis disease classification specified) separate and
TGA) nanozyme pattern) (LDA) (Dim. Reduction + discriminate
peroxidase-like Clustering) from different
catalysis of TMB- thiols

H:O: reaction,
creating distinct color
patterns
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(“fingerprints”) for
LDA discrimination
Biogenic amine sensor  Biogenic Meat and Metal-azophenol Smartphone or PCA, LDA Color pattern Tryptamine100% (LDA) Not R*=0.96
array 3¢ amines ( cottage cheese complexes (C1-C11) UV—Vis scanner recognition of food 0.40 ppm reported (Tryp), 0.97
) respond to amines  (sensor array spoilage markers o (Spermine)
tryptamine with colorimetric ~ image) (Image Histidine
and “ﬁn LT . .
) gerprint” patterns Classification) 042
spermine) across 10 UV—Vis o ppm
channels Spermine
0.45 ppm
Spermidine
0.66 ppm
Bimodal Visual Sensors Cariogenic ~ Oral swabs, in Bacterial acid Smartphone (dual- CNN-based Segmentation and <1 mg/mL 97.7% Not Not reported
Based on bacteria vitro culture  production mode model bacterial profile (estimated) accuracy in  reported
Mechanoluminescence an(through pH (colorimetric pH shift mechanoluminesce analysis (Object the precise
d Biosensing 3! from lactic via anthocyanin) and nt + color image) Detection, Image )
acid) tooth pressure via Classification) d.ecoupl.mg of
mechanoluminescenc visual signals
e
Heavy metal colorimetric Cr®*, Fe*, Water and AchE inhibition by UV-Vis PCA Metal concentration 0.81 pM, 98% accuracy (blank) 0.95,0.96,0.9
sensor 32 AP, Ni*, serum samples metal ions alters spectrophotometer regression using pixel0.75 uM, inp 9
Cu?t, Zn** enzymatic reaction  (absorbance scan of intensity (Regression 1.06 uM respectively
with chromogenic  arrays) for Quantification)
substrate, producing
color shift patterns cu2+,
Cr3+,
Al3+,
Tea authentication array Tea Tea infusion TMB-H:0: Smartphone or LDA, Classification of Not Discriminatio Not Not reported
sensor 33 polyphenols, samples chromogenic system scanner (nanozyme Decision  authentic vs reported naccuracy reported
adulterants catalyzed by Bpy-Cu array image) Tree (DT), adulterated tea via .
and Asp-Cu HCA color (Image was 100%.
nanozymes; Classification)
inhibition by
polyphenols alters
signal
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AFBI detection in Aflatoxin B1 Peanut extract Aflatoxin B1 (AFB1) Smartphone ANN AFBI concentration 0.6845 ng (blank) (blank) R2=10.9974
ground peanut (AFB1) (ground in food (e.g., (fluorescent + prediction from patchmL/1
samples ** sample) peanuts) colorimetric image (Regression
microneedle patch for Quantification)
image)
CO: strip colorimetric ~ CO: Ambient air  Color change induced Robotic camera andMulti-target CO: level regression 400 ppm  (blank) RMSE = (blank)
sensor 3 (gas sample) by CO--mediated pH RGB sensor Bayesian  from colorimetric 0.27%
shift, captured as (automated Optimizationsignal (Regression
RGB AE across a 6- platform) (BO) for Quantification)
receptor array integrated
with robotic
plcaatform
Paper-based glucose Glucose Human Enzyme-catalyzed = Smartphone Ensemble  Glucose intensity Not 95% (TMB  (blank) R2=0.97
sensor 3¢ plasma colorimetric reaction (flash/no-flash Bagging prediction using Lab reported  color (high conc),
using glucose oxidaseimage pair) Classifier  image values indicator), Rz=10.95
(Gox) and (EBC), (Regression for 91% (KI (low conc)
horseradish Linear Quantification, color
peroxidase (HRP), Regression Classification) indicator)
with TMB for low
and KI for high
glucose concentration
detection
Urine neurotransmitter ~ dopamine Human urine Aggregation-based  Smartphone (LSPR LDA, PLSR Catecholamine level 0.3, 0.5, 100% (LDA) (blank) R2=0.99 for
sensor 37 (DA), LSPR shift from color shift image estimation using 0.2, and 4 analytes
epinephrine AuNP interactions at under pH feature-based models 1.9 mM for
(EP), different pH variation) (Regression for DA, EP,
norepinephrin conditions Quantification, NEP, and
e (NEP), Classification) LD,
and levodopa
(LD)
Smart pPAD for pH and pH, Glucose Aqueous lab- For pH: Pani-NP Smartphone RFR (best), RGB analysis for =~ None (blank) (blank) R2=0.96
glucose 38 prepared undergoes EB to ES  (dipstick color DTR, SVR pH/glucose detection reported (pH), 0.92
solutions state transition; For image under in uPADs (glucose)
glucose: Gox ambient light) (Regression for
generates H20, Quantification)

reducing Pani-NPs,
causing color shift
(blue—green)
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Milk B-lactoglobulin stripf- Milk Glucose-fueled EBFCSmartphone Decision  Grayscale intensity  0.0081 93% Not Not reported
(Lateral Flow)* Lactoglobulin for electrochemical + (colorimetric + Tree (DT), detection for f3- ng/mL, reported

HRP/ABTS voltage strip Random Lactoglobulin

colorimetric detectionreadout) Forest (RF), (Regression for

using smartphone- k-NN, SVM Quantification)

assisted image

processing
Albumin detection strip Albumin Urine Protein concentration Smartphone KNN Intensity ratio 4 mg/L 96% Not Not reported
(Lateral Flow)* triggers color change (dipstick image classifier (vs computation for reported

on dipstick; captured under varied RF, SVM) albumin strip

by smartphone under lighting) (Regression for

varied lighting Quantification)
H20: sensor Hydrogen  Exhaled RGB signal mapping Smartphone (RGB ANN Colorimetric pixel- 0.011 ppm 94% accuracy 0.941
(Spectrophotometric) ' peroxide breath via colorimetric dye mapping of breath Regression based regression of for

response (Eosin blue, test strip) H20: (Regression for quantification

KmnQOs., Starch- Quantification)

Iodine)
Saliva uric acid tPAD  Uric Acid Saliva Prussian blue Smartphone (WPAD Decision ~ Color space Not (blank) MAE=4.2 Not reported
(Microfluidic) # generation reaction  salivary test Tree regression for uric  reported ppm

with salivary UA image) Regressor  acid quantification

forming blue (ML), (Regression for

complex Multiple Quantification)

Polynomial

Regressor
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Table S2. Reported LOD values in Al-based studies, colorimetry only, colorimetry plus smartphone, and typical values in

food, human, and environment samples

(cTnl) in human
serum

4.52x10-16 uM

(0.013 pgmL—1)

3.9X107* pg/ml

Analyte LOD Al-based (pM )* LOD colorimetry only* LOD colorimetry plus Typical values*
smartphone (no Al)*
H202 in cells 0.000001 pM 10.24 pM*3 0.24 pM* 0.01 pM%
VMA in urine 0.22 uM 0.340 uM 0.260 uM*® 28.7 uM
HVA in urine 0.29 yM 0.313 uM 0.397 pM* 41 uM
COVID-19 antibody 1.07 x 10°¢ 6.00 x 1075 uM*’ 2.11x10° uM None
in human serum
(9 ng/uL)

(160 ng/mL)
Cardiac troponin 5.06x10 10 5.44 x 107 uM 1.63x108 uM 48
(cTnl) in human
serum

(1.210 x 107-5 ug/mL) (0.013 pg mL—1) 3.9X107* pg/ml 0.02 ng/L*
LDL in human serum | 1.277 x 10~ uM 7.33 x 10710 uM>0 1.77x107°85¢ 0.53%

(383.127 ug/mL) (2.1999 pg/mL) (5.31 mg/dI) (100 mg/dL)
HDL in human serum | 1.09 uM 2 mg/dL>3 2.03 x 107 uM

(8.10 mg/dI)5!

(435.815 ug/mL) 5.00x10—8 uM 40 mg/dL
Glucose in tears 131uM 0.32 uM > 13.49 uM> 0.2 mM%6

(23.61 mg/L) 0.05765 mg/L (360 mg/L)
Cholesterol in tears 217 uM 1.9 uM®” 0.00085 M 1.9 uM

(83.87 mg/L) 0.7356 mg/L
Spermine in chicken 1.87 uM 0.57 um>® 0.4644 uM 988.4 uM
meat

0.378 ppm 0.115 mg/L 0.094 ug/mL5° 200 ppm®°
Cardiac troponin 10.8 picogram/mL 5.44 x 1076 uM .63x10°8 um* 0.02 ng/L*

Tryptamine in meat 2.50 uM 20 nMs? 1.74 pg/L 82 5 mg/kg meat5?
0.40 ppm 0.0032 mg/L 1.086 x 10 uM

Histidine in meat 2.71 uM 0.1 pM® 8 ug/L% 9.0 uM*®®
0.42 ppm

Spermine in meat 2.22 M 0.57 uMm>8 0.4644 uM 988.4 uM
0.45 ppm 0.115 mg/L 0.094 ug/mL>° 200 ppm*®°

*Values were converted using molar masses




Table S3. Reported R? values in Al-based studies, colorimetry only, and colorimetry plus smartphone

Analyte LOD Al-based (pM ) LOD colorimetry only LOD colorimetry plus smartphone (no
Al)
H202 in cells 0.998 0.9972 0.997
VMA in urine 0.999 0.996 0.997
HVA in urine 0.999 0.995 0.998
Cardiac troponin (cTnl) 0.999 0.990 0.981
in human serum
LDL in human serum 0.999 0.9946 0.7917
HDL in human serum 0.999 0.9918 0.8018
Glucose in tears 0.996 0.994 0.995
Cholesterol in tears 0.997 0.993 0.993
Spermine in chicken 0.959 0.977 0.99209
meat
Cardiac troponin (cTnl) 0.9999 0.990 0.981
in human serum
Tryptamine in meat 0.9596 0.9969 0.987
Histidine in meat 0.952 0.9852 0.982
Spermine in meat 0.967 0.977 0.99209
*values correspond to cited studies in Table S2
Table S4. Statistical testing (Mann-Whitney U test) for LOD
Pair p-value
Al-based vs Colorimetry + smartphone p =0.1610359
Al-based vs Colorimetry only p =0.3011529
Al-based vs Typical/Optimal p =0.2747575

*Statistical testing was conducted using R Studio’s Wilcoxon rank-sum tests
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Table S5. Statistical testing (Mann-Whitney U test) for R?

Pair p-value
Al-based vs Colorimetry + smartphone p =0.07539264
Al-based vs Colorimetry only p =0.1422894

*Statistical testing was conducted using R Studio’s Wilcoxon rank-sum tests

Table S6.Data for bubble plot analysis with information obtained from Table S5

Al Subgroup Analyte Classification | Analyte Group Sensor Type
Accuracy
Object Detection Hyaluronidase (HAase) 92 | Enzymes / Enzyme Activity Tube- or Well-Based
Sensors
Traditional Machine Ha,,04,, 91 | Small Molecule Metabolites Tube- or Well-Based
Learning Sensors
Deep Learning pH 92 | Electrolytes/ lons Wearable Patch Sensors
Ensemble / Hybrid HVA 100 | Tumor / Disease Biomarkers Paper/1%4PAD Sensors
Models
Ensemble / Hybrid VMA 100 | Tumor / Disease Biomarkers Paper/T¥sPAD Sensors
Models
Transformer-based SARS-CoV-2 RNA 100 | Pathogen/Bacteria Detection Tube- or Well-Based
Models Sensors
Unspecified or Black- Cardiac and lipid 75.2 | Tumor / Disease Biomarkers Paper/T%sPAD Sensors
box biomarkers
Traditional Machine Urinary disease markers 97 | Tumor / Disease Biomarkers Paper/T¥sPAD Sensors
Learning
Unspecified or Black- Glucose 87.6 | Small Molecule Metabolites Tube- or Well-Based
box Sensors
Deep Learning Glucose 100 | Small Molecule Metabolites Tube- or Well-Based
Sensors
Deep Learning cholesterol 100 | Small Molecule Metabolites Tube- or Well-Based
Sensors
Deep Learning pH 100 | Electrolytes / lons Tube- or Well-Based
Sensors
Deep Learning Glucose 100 | Small Molecule Metabolites Wearable Patch Sensors
Deep Learning pH 100 | Electrolytes/ lons Wearable Patch Sensors
Deep Learning lactate 100 | Small Molecule Metabolites Wearable Patch Sensors
Object Detection Live HeLa cell viability 98 | Tumor / Disease Biomarkers Tube- or Well-Based
Sensors
Dim. Reduction Biogenic amines 100 | Biogenic Amines / Spoilage Paper/l¥4PAD Sensors
Markers
Deep Learning Naa=? 100 | Electrolytes / lons Wearable Patch Sensors
Deep Learning Kae° 100 | Electrolytes/ lons Wearable Patch Sensors
Deep Learning pH 100 | Electrolytes / lons Wearable Patch Sensors
Dim. Reduction Thiols 100 | Composite / Multiplexed Tube- or Well-Based
Panels Sensors
Dim. Reduction Biogenic amines 100 | Biogenic Amines / Spoilage Tube- or Well-Based
Markers Sensors
Object Detection Cariogenic bacteria 97.7 | Pathogen/Bacteria Detection Paper/TsPAD Sensors
Dim. Reduction Heavy metals 98 | Heavy Metals / Inorganics Tube- or Well-Based
Sensors
Dim. Reduction Tea polyphenols 100 | Polyphenols / Adulterants Tube- or Well-Based

Sensors
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Ensemble / Hybrid Glucose 95 | Small Molecule Metabolites Paper/T¥sPAD Sensors
Models
Dim. Reduction Catecholamines 100 | Hormones / Neurotransmitters | Tube- or Well-Based
Sensors
Traditional Machine I2-Lactoglobulin 93 | Macromolecules / Proteins Tube- or Well-Based
Learning Sensors
Traditional Machine Albumin 96 | Macromolecules / Proteins Tube- or Well-Based
Learning Sensors
Deep Learning Ha,,04,, 94 | Small Molecule Metabolites Tube- or Well-Based

Sensors
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Abstract

The variability of renewable energy sources presents a major challenge for maintaining power
system stability and long-duration energy storage. Power-to-Hydrogen (PtH) systems provide a
viable solution by converting surplus renewable into hydrogen, which can be stored and used
across different sectors. This review focuses on focuses on modelling strategies applied to three
core PtH. processes: hydrogen production via electrolysis, storage, and integration into smart grids.
Traditional modelling approaches including computational fluid dynamics (CFD), techno-
economic analysis (TEA), process simulation, and linear programming (LP) remain essential for
system design but are limited in handling dynamic, real-time operations. In contrast, emerging
methods including machine learning (ML), reinforcement learning (RL), surrogate modelling,
digital twins, and augmented/virtual reality (AR/VR) platforms offer improved adaptability,
predictive control, and operator interaction. However, these tools face limitations related to data
availability, computational cost, model interpretability, and integration with existing simulation
environments. The review identifies a growing shift toward hybrid modelling frameworks that
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combine physical accuracy with data-driven adaptability. Future research should focus on building
standardised datasets, developing interoperable modelling platforms, expanding the role of real-
time visualisation technologies, and must be supported not only by technical innovation but also
by evolving policy for scalable and resilient PtH.-integrated smart grid.

Keywords: Power-to-X (P2X), Power-to-Hydrogen (PtH:), renewable energy storage, smart-
grids, advanced modelling, computer simulations, artificial intelligence, machine learning,

AR/VR

1. Introduction

The global energy transition is accelerating the deployment
of renewable energy sources such as solar and wind®.
However, their inherent variability introduces operational
challenges to modern power systems, particularly in ensuring
consistent supply and grid stability.! Energy storage
technologies have become central to enabling reliable and
flexible renewable integration.?

Power-to-Hydrogen (PtH:) has emerged as a promising
long-duration energy storage solution.3®> By converting
renewable energy into hydrogen via electrolysis, PtH- enables
energy to be stored in chemical form and later utilised across
sectors, including electricity, transport, and industrial
applications®. Unlike conventional battery storage, hydrogen
offers higher storage capacity over longer timescales, making
it suitable for seasonal balancing and sector coupling.®

Recent research has increasingly focused on modelling
strategies that support the deployment of PtH. systems.
Advanced simulations and Al-augmented tools are now being
used to enable dynamic integration with smart grid, optimise
conversion efficiency and assess techno-economic viability,
and enable dynamic integration with smart grids.”8 Despite

increased attention, few reviews have synthesized the full
modelling stack from electrolyis to grid-scale integration.’

This review aims to synthesise emerging modelling
approaches applied to PtH. systems, with emphasis on
processes involving energy conversion, compression and
storage, and smart grid integration.

2. Modelling strategies across the PtH, system

PtH. systems core processes include hydrogen production,
storage, and electric grid integration, each requires specialised
modelling approaches to optimize performance, cost, and
control. This section reviews emerging modelling strategies
applied at each stage, with particular emphasis on process-
level simulations, safety and reliability, and system
coordination models. Comparative summaries and case
studies are provided to illustrate how these methods are
applied in practice and to highlight their respective advantages
and limitations.

2.1 Electrolysis process control and optimization

Hydrogen production via electrolysis is the foundational
process in PtH. systems. Electrolysis enables the conversion
of electrical energy typically from renewable energy sources

Table 1 | Traditional and emerging models used in electrolysis systems control and optimization

Type Approach Strengths Limitations Tools Ref.
Traditional | Computational Fluid High spatial detail; flow and heat | Computationally expensive | COMSOL, [12,18]
Dynamics (CFD) analysis ANSYS
Process Simulation + System-wide modelling; cost- Rigid to variable input; Aspen Plus [13,19]
Techno-economic analysis limited real-time use
assessment (TEA)
Numerical optimization Effective for tuning and design Requires well-defined MATLAB [13,20]
refinement objectives
Monte Carlo simulation Captures uncertainty Requires many runs; less Python, [14,20]
mechanistic MATLAB
Emerging | Machine Learning (ML) Fast and adaptive forecasting Needs large, quality TensorFlow [15,21]
datasets
Reinforcement Learning Real-time adaptive control under Complex training and OpenAl Gym, [15,22]
(RL) fluctuating inputs policy validation Stable Baselines
Surrogate models Reduces simulation time; enables | Accuracy limited to trained | GPFlow, [12,15]
real-time control domain surrogateML
AR/VR + Digital twins Visual diagnostics and operator High development cost Unity [16,17]
training
XXXX=XXXKS XX XXXXKX © 2025 SJIE
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into chemical energy by splitting water into hydrogen and
oxygen®. The most common types of water electrolysis
technologies include Alkaline Water Electrolysis (AEL),
Proton Exchange Membrane Electrolysis (PEM), Solid Oxide
Electrolyser Cell (SOEC), Anion Exchange Membrane
Electrolysis (AEM).10 These technologies differ in terms of
operating temperature, response time, system complexity, and
integration potential with variable power inputs.1%-11 These
factors influence the selection and design of appropriate
modelling strategies for control and optimization.

Table 1 outlines different modelling approaches applied to
electrolysis system control and optimisation. Traditional
methods such as CFD are used to analyze thermal gradients,
flow behaviour, and gas evolution in electrolyser cells’?,
These models provide high physical accuracy but are
computationally intensive and limited to offline analysis. At
the system level, process simulation combined with TEA
supports performance evaluation and cost estimation under
different scenarios.’® However, these models assume fixed
input profiles and are not suited for dynamic control.
Numerical optimization is used to refine design and operating
parameters but requires well-defined objectives and may
converge to local minima.'® Monte Carlo simulations quantify
uncertainties in cost drivers or input variability, though they
do not capture time-dependent system dynamics.4

To address the limitations of static modelling approaches,
recent studies have adopted data-driven methods. ML
methods such as Artificial Neural Networks (ANN) was used
for predicting stack performance and hydrogen output using
operational or simulation data.!>2! These models improve
prediction speed but require large, well-labelled datasets.
Reinforcement learning (RL) has also been applied for
adaptive electrolyser control under fluctuating power inputs,
though it demands complex training environments.
Surrogate models, derived from CFD or system simulations,
are employed for fast approximation in control applications!2.
These are often integrated into digital twins, which combine
physical models with real-time data to support diagnostics and

optimisation. Moreover, emerging AR and digital twin
platforms provide visual interfaces for system monitoring and
operator support. While still limited in deployment, these tools
have shown potential for training and real-time fault
identification.16

A recent study?? integrated CFD and Al and ML-based
modeling for enhanced alkaline water electrolysis cell
performance for hydrogen production. CFD was coupled with
an ANN surrogate model to predict current density in an
alkaline electrolyser, reducing simulation time by over 90%
while maintaining accuracy demonstrating the advantage of
combining physical and data-driven methodologies.

Traditional models remain essential for system design and
validation, while emerging approaches improve adaptability
and control. Integrating both supports more efficient and
robust electrolysis under variable operating conditions.

2.2 Hydrogen storage safety and reliability

Hydrogen storage refers to the containment of hydrogen
following its production, through electrolysis, for later use in

Table 2 | Traditional and emerging models used in PtH: hydrogen storage safety and reliability

Type Approach Strengths Limitations Tools Ref.
Traditional | Finite Element Modelling Structural stress, fatigue, and | High setup time, not real-time | ANSYS, [27]
(FEM) failure analysis Abaqus
CFD Thermal gradient and gas Computationally intensive COMSOL [27,28]
flow simulation Multiphysics
Thermodynamic modelling | Pressure—temperature Oversimplifies dynamic MATLAB [29]
relationships system behaviour
Emerging | ML (SVM, ANN) Fault and anomaly detection Data quality and availability MATLAB, [23,30]
Scikit-learn
Digital twins Integrated real-time Complex integration, early- Unity, [31]
monitoring and simulation stage adoption TensorFlow
loT-based monitoring and Real-time condition tracking Sensor dependency; 10T sensors, [32]
predictive analytics and decision support integration complexity predictive
algorithms

XXXX-XXXX/ XX/ XXXXXX
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energy conversion, industrial processes, or transport.?

Hydrogen produced via electrolysis is commonly stored as g

compressed gas in tanks or vessels.2428 These systems operate \  RGEND

under conditions involving high pressure, temperature
gradients, and cyclic loading, which introduce risks related to
leakage, structural fatigue, and material degradation. While
modelling of electrolysis systems often prioritises process
optimisation, modelling of storage primarily addresses
structural integrity, safety, and system reliability.23 Predictive
modelling supports the identification of failure modes and
degradatlon trends, informing maintenance schedules and
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Figure 1 | Simplified schematic of electricity and hydrogen
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computatlonally intensive and are not well suited to dynamic
or real-time applications. Thermodynamic models offer
simplified assessments but may fail to capture transient
behaviour under variable conditions. On the other hand,
emerging approaches integrate data-driven and system-level
methods to improve adaptability and fault prediction. ML
algorithms, including support vector machines (SVM) and
ANN, have been used for anomaly detection, failure
classification, and degradation forecasting from operational
sensor data.?39 Digital twins extend these capabilities by
linking virtual models with live input data to enable real-time
condition monitoring and diagnostics. Moreover, loT-based
platforms further support storage reliability by enabling
continuous sensor-driven tracking and data-informed decision
support. While these methods offer greater responsiveness,
they depend on stable data infrastructure and integration with
physical systems.32

XXXX-XXXX/ XX/ XXXXXX

An example of integrating traditional and emerging
methods is presented by EI-Amin et al.3”, who combined
CFD-generated hydrogen dispersion data with machine
learning models, specifically Random Forest and SVM,
to predict concentration profiles in turbulent buoyant
jets. The framework reduced computational load while
maintaining prediction accuracy, enabling real-time
inference for leak detection and storage safety. The
system demonstrated predictive capabilities that
enhanced operational safety and informed timely
maintenance decisions.
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The complexity of the process coupled with the challenges
of integrating variable renewable generation makes modelling
techniques indispensable®. Accurate and dynamic modelling
is essential to characterize efficiency, analyse dynamic
behaviour, perform complex optimizations, capture real-world
complexities, and manage real-time energy flows.”13. This
necessitates advanced control and coordination strategies for
optimal operation.3® Modelling serves as a tool to support the
design and evaluation of these control and coordination
systems®® and addressing these challenges effectively requires
the application of both traditional and emerging methods.”16

Table 3 summarizes representative traditional and
emerging modelling approaches applied in the coordination
and control of hydrogen storage systems within smart grid
environments. These models vary in computational
complexity, real-time adaptability, and integration capacity.

Conventional modelling approaches such as rule-based
scheduling, mixed-integer linear programming (MILP) and
linear programming (LP), and deterministic grid simulation
have historically formed the basis of hydrogen dispatch and
grid interaction modelling.:-43  These techniques are
deterministic in structure and generally assume perfect
foresight, static grid inputs, and isolated sub-system control.
For example, MILP has been used to compute optimal
hydrogen operation plans based on pre-defined load forecasts
and tariff structures, but lacks responsiveness under real-time
fluctuations or market variability.*? Similarly, deterministic
simulation models accurately compute hydrogen reconversion
impacts on power system stability and power flow (e.g.,
voltage deviations), yet are limited in resolving multi-energy
coordination or stochastic influences.*® Furthermore, rule-
based dispatch, often implemented in Excel-based methods
which provides operational simplicity but cannot adapt to
dynamic system feedback or uncertainty.*! These methods are
computationally efficient for system sizing and offline
planning but insufficient for online scheduling or integrated
sector coupling.

To address these constraints, data-driven and adaptive
control methods have been increasingly adopted. Deep RL
enable model-free learning of control strategies through
interaction with dynamic environments.#44% These methods
have been shown to optimise hydrogen system dispatch under
variable renewable input, demand response signals, and
multi-layer objectives (e.g., thermal, electrical, storage).
However, effective deployment requires large-scale training
data, hyperparameter tuning, and convergence stability
management, as seen in the development of actor—critic
architectures and dual-network stabilisation.#> Digital twin
frameworks integrates physical system models with real-time
sensor data, predictive analytics, and control feedback
mechanisms.*® These systems simulate, monitor, and optimise
hydrogen production, storage, and fuel cell systems
simultaneously. Although promising, their implementation is

XXXX-XXXX/ XX/ XXXXXX

constrained by high setup costs, model-data synchronisation
issues, and computational overhead—especially in real-time
grid-connected applications.*® On the other hand, AR/VR
technologies offer additional operational value by supporting
operator situational awareness, particularly during dispatch
decision-making and fault management.#’ Platforms such as
Verciti provide immersive visualisations of hydrogen
operations and enhance safety training for decentralised
system operators.*8

Traditional methods provide guarantees in optimization
and deterministic planning, but fail to handle uncertainty,
dynamic control, or sector integration. In contrast, Al-driven

and hybrid frameworks support adaptable, real-time
scheduling but require extensive training, are less
interpretable, and lack standardisation for industrial

deployment.#148 Hybrid models are gaining traction for
balancing  computational  efficiency  with  physical
consistency.84 Recent applications illustrate how traditional
modelling can be operationalised through interactive digital
environments. For example, Folgado et al.*® developed a
digital twin of a proton exchange membrane (PEM)
electrolyser embedded within a MATLAB-based graphical
user interface, deployed in a photovoltaic-powered smart grid.
The digital twin is based on a deterministic equivalent
electrical model and communicates with a PLC via Modbus
TCP/IP in real time. This setup enables operators to monitor
hydrogen production metrics, assess deviations between
simulated and measured performance, and support control
decisions. The study highlights how traditional physics-based
models can be integrated into real-time, user-interactive
systems improving the coordination between hydrogen
systems and smart grid operation.

Modelling strategies are shifting from deterministic
formulations toward adaptive, interactive frameworks. Case
studies such as Folgado et al.*® demonstrate how equation-
based electrolyser models can be embedded in digital twin
systems for real-time monitoring within smart microgrids.
Future modelling platforms must integrate real-time control
logic, data feedback, and intuitive human interfaces to enable
scalable hydrogen storage coordination in complex energy
systems.

3. Challenges and Future Perspective

Emerging modelling and Al-based approaches offer
significant advantages over traditional methods in PtH.
systems but remains constrained by several technical and
operational challenges. These limitations currently hinder the
scalability, real-time deployment, and integration of advanced
tools within smart grid environments.

The strong dependence on high-quality data is a primary
limitation. ML and RL models require large volumes of well-
labelled, high-frequency datasets to train predictive or control
agents. In PtH. applications, this type of data is often
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unavailable due to limited sensor coverage, proprietary system
architectures, or inconsistencies in temporal resolution. As a
result, data-driven models risk overfitting or underperforming
in real-world settings, particularly when transferred between
systems with differing configurations.*445

Another challenge lies in the computational complexity
and training overhead of these models. RL, surrogate model
development, and real-time digital twins require significant
computing resources for convergence and deployment. For
example, actor—critic RL algorithms and physics-informed
neural networks (PINNs) demand extended training cycles
and often rely on specialised hardware. These resource
demands limit the feasibility of deploying such models in
real-time, safety-critical environments like hydrogen storage
and dispatch control.45:46

Model transparency and interpretability also present a
barrier to adoption. While Al-based models are effective at
pattern recognition and dynamic optimisation, their internal
decision logic is often non-transparent. This “black-box”
nature makes it difficult for operators and engineers to
understand, validate, or troubleshoot behaviour during
abnormal conditions. In PtH. systems, which involve high
pressures, thermal gradients, and interdependent components,
lack of interpretability can reduce stakeholder trust and pose
regulatory challenges.*

The integration of Al with traditional physics-based
models is another challenge. Hybrid systems that couple
data-driven modules with deterministic simulations promise
the best of both domains, but remain difficult to implement.
Challenges include synchronising time scales, reconciling
different data formats, and managing error propagation
between subsystems. Few frameworks exist to seamlessly
integrate CFD, process simulation, and RL agents within a
unified control or optimisation environment.1249

Additionally, operator readiness and system maturity limit
the deployment of immersive technologies such as AR/VR
and digital twins. These platforms are increasingly used for
simulation and training, but rarely serve in active control
environments. Visualisation tools and human-in-the-loop
interfaces hold promise for enhancing fault awareness and
decision support, yet their development is fragmented and
lacks standardisation for PtH.-specific applications.4748

Future research must focus on bridging these limitations.
First, hybrid models that embed physical laws into learning
architectures could improve adaptability without sacrificing
interpretability.®  Second, developing  open-source,
interoperable frameworks for co-simulation would facilitate
integration between Al and physics-based tools. Third,
investment in high-resolution, standardised datasets from
operational PtH. systems will be essential to unlock the full
potential of machine learning. Fourth, AR/VR platforms and
digital twins should be developed with greater emphasis on
system interoperability and real-time responsiveness, making
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them viable for not just training but also active supervision.
Lastly, regulatory frameworks must evolve in parallel with
modelling innovations. For example, Australia’s National
Hydrogen Strategy and Guarantee of Origin Scheme are
advancing hydrogen certification, dedicated Al governance
remains underdeveloped.>%> Future modelling research
should align with emerging standards for transparency,
auditability, and validation.

Emerging modelling technologies can evolve from
experimental tools into operational enablers for real-time,
adaptive, and resilient PtH. smart grid coordination by
addressing these challenges.

3. Conclusion

This review examined modelling strategies for PtH:
systems, focusing on three core processes: production,
storage, and grid integration, as a response to renewable
energy intermittency. While traditional methods remain
essential for system design and optimisation, they lack the
adaptability required for real-time coordination and multi-
vector control. Emerging strategies offer greater
responsiveness but are constrained by data requirements,
computational demands, limited interpretability, and
challenges in integration with existing physical models.

Future researches should prioritise hybrid frameworks that
combine physical accuracy with data-driven adaptability by
combining traditional with emerging modelling and Al-based
strategies across the PtH.-integrated smart grid system.
Moreover, future researches should focus on building
standardised datasets, developing interoperable modelling
platforms and expanding the role of real-time visualisation
technologies. Lastly, modelling must be supported not only by
technical innovation but also by regulatory frameworks to
promote transparency, auditability, and certification for
enabling safe, scalable PtH. deployment within smart grid.
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ADVANCED/EMERGING TECHNOLOGIES
Abstract

Organ-on-a-Chip (OoC) technology offers a promising alternative to traditional in vitro and animal models by
replicating key physiological features of human organs within microfluidic platforms. These systems are
increasingly used in drug development, toxicity testing, and disease modelling. However, widespread adoption is
limited by challenges such as complex design requirements, scalability issues, data interpretation difficulties, and
the integration of diverse technologies. This review explores the role of advanced modelling approaches, such as
computational fluid dynamics (CFD), finite element analysis (FEA), pharmacokinetic/pharmacodynamic (PK/PD)
models, and artificial intelligence (Al), in addressing these barriers. These tools enable precise simulation,
optimization, and data analysis of OoC systems, supporting their design and predictive capabilities. Key challenges
identified include limited data quality, computational complexity, organ scaling, and system integration. Modelling
solutions, including explainable Al and multiscale simulation, offer pathways to overcome these issues. The
integration of emerging technologies like 3D printing, real-time sensing, and automation is also discussed. The
review concludes with recommendations for refining existing modelling techniques, improving transparency in
Al applications, and supporting interdisciplinary collaboration to drive standardization and regulatory acceptance.
These efforts are essential for realizing the full potential of OoCs in biomedical research and preclinical drug
development.

Keywords: organ-on-a-chip, OoC, microfluidic, artificial intelligence, Al, machine learning, 3D printing, simulation,
computational fluid dynamics, CFD.
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1. Introduction

The development of sophisticated in vitro models has
become increasingly important in life science and industry,
particularly for applications in medicine, biology, and
chemistry.? Traditional two-dimensional (2D) cell cultures
and animal models struggle to replicate human physiology,
hindering data translation and contributing to high drug failure
rates.>> This has spurred the evolution of new technologies
aimed at creating more biologically relevant systems.>6

Notably selected as one of the "Top Ten Emerging
Technologies" by the World Economic Forum’, The
development of organ-on-a-chip (OoC) technology is driven
by these limitations of traditional preclinical models.*® OoCs
address these limitations by combining advances in
microfabrication, tissue engineering, biomaterials, and stem

cell engineering to reconstruct key structural, functional, arfgohi

physiological aspects of human tissues and organs on a chip.
7.9-11 Miniature tissues, cells, or organoids are cultured within
the channels and compartments of a microfluidic device.3711-
13 This device, often made of materials like
polydimethylsiloxane (PDMS), is engineered with structures
such as tiny channels, chambers, and sometimes porous
membranes to recreate the organ's microarchitecture.347.11.14
The cells may also be embedded within an extracellular matrix
analogue or hydrogel inside these compartments. OoC
platforms hold promise for various applications, including
enhancing our understanding of tissue and organ physiology,
modelling diseases (such as cancer), developing and screening
drugs, evaluating drug toxicity and efficacy, and facilitating
personalized medicine by using patient-derived cells.348
11,15,16

Building upon the foundation of microfluidics, the OoC
system has emerged as a biomimetic system.” Microfluidics,
refers to technologies that manipulate small fluid volumes
(mL, nL, pL) within fabricated channels.118 Microfluidic
approaches allow for constant miniaturization, automation,
and parallelization of processes?, offering advantages such as
low dose requirements, improved sensitivity, -efficient
processing, great spatial accuracy, good integration, and
straightforward control for biological studies.l® These
microfluidic systems can perform several functions, including
sample pretreatment, separation, dilution, mixing, chemical
reaction, detection, and product extraction, all potentially on a
single chip.1® The precise control offered by microfluidics
allows for the emulation of dynamic conditions, such as blood
flow, mechanical forces, and concentration gradients, which
are crucial for maintaining tissue-specific functions and
mimicking the cellular microenvironment.810.11.16

OoCs are essentially microfluidic cell culture systems
designed to precisely replicate the structure and function of a
living organ or functional unit in vitro.52%21 They can
stimulate the tissue or cell microenvironment and regulate
crucial parameters like concentration gradients, shear stress,

XXXX-XXXX/ XX/ XXXXXX

Figure 1. A lung-on-a-chip. Image by &1-&2 15, licensed
under CC BY -SA 4.0. Source: Link

517 These platforms integrate microfluidic
networks with three-dimensional (3D) tissue-engineered
models to recapitulate physiological conditions.5

The applications of organ-on-a-chip platforms are diverse
and rapidly expanding. They are used as models for studying
development and diseases, such as Alzheimer's and
schizophrenia, particularly through brain-on-chip models.
OoCs play a significant role in drug development, including
drug screening and assessing drug release.2%6.1822.23 They are
particularly valuable for toxicity testing, such as evaluating
hepatotoxicity, and nephrotoxicity.>18 Furthermore, OoCs
contribute to personalized medicine by offering functional
testing for precision medicine and personalized drug
development. They are also explored in the context of
nanomedicine for validating the performance and biotoxicity
of nanomaterials.> Beyond these, OoCs are used to study
vascularization of organoids, drug delivery systems, host-
microbial interactions, inflammatory processes, and cancer
growth and metastasis.®2* The technology is even being
applied to create point-of-care (POC) diagnostic systems.18

The significance of organ-on-a-chip platforms lies in their
potential to serve as robust alternatives to animal models,
addressing many challenges associated with in vivo studies.2®
By providing a controlled and realistic environment that
mimics human physiology and pathology, OoCs can help
reduce the discrepancies observed between preclinical
findings and clinical outcomes.>1821 This capability positions
them as a fast track for the use of engineered human tissues in
drug development and can potentially revolutionize disease
modelling and drug testing towards more accurate and
personalized healthcare approaches.'®

Despite the significant progress, the translation of these
advanced microfluidic platforms into widespread use,
particularly in preclinical validation for clinical applications,
still faces limitations and challenges.® A critical challenge is
the successful integration of biosensor modules into OoCs for
automated, continual, and long-term monitoring of various
physicochemical and biochemical parameters.>18 For complex
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applications like pharmacology studies, the development of
multiorgan or body-on-a-chip systems is necessary to replicate
the interconnections and communication between different
organs. However, achieving accurate body scaling and
maintaining functional activity across multiple integrated
organs is extremely complex.> Other challenges include
optimizing the design of suitable biomodels, overcoming
fabrication complexities associated with microfluidic devices
and integrating components like valves and pumps',
managing potential contamination issues®, establishing
physiologically relevant conditions like oxygen gradients, and
bridging the gap between academic research and industrial
adoption. Overcoming these challenges is key to unlocking the
potential of OoC technology.

Interest in OoC has intensified due to its potential to create
more physiologically relevant microenvironments for cell
culture, thereby bridging the gap between simplified planar
cell cultures and complex human systems.811.16

Recent breakthroughs and emerging trends are pushing the
boundaries of OoC technology, some of which are compared
in Table 1 below. A key trend is the move towards integrating
multiple individual organ chips into multiorgan-on-a-chip or

body-on-a-chip systems, mimicking the physiological
coupling and interactions between different organs in the
human body.#81624 This is particularly beneficial for studying
systemic responses, drug metabolism, and complex diseases.?
Furthermore, there is increasing emphasis on incorporating
integrated sensors (mechanical, electrochemical, optical) into
OoC platforms for real-time monitoring of cellular behaviors
and tissue functions.82426 Automation and the development of
high-throughput systems are also critical for making OoCs
more viable for industrial applications like drug
screening.242627 Advances in 3D printing and bioprinting
techniques are enabling the rapid fabrication of complex OoC
structures and the precise deposition of cells within
biomaterial-based scaffolds, creating more realistic three-
dimensional tissue architectures.?® The integration of artificial
intelligence (Al), particularly in areas like organoid imaging
and data analysis, is enhancing the efficiency and accuracy of
OOC-based research, especially for high-throughput drug
screening.®2* These advancements collectively demonstrate
the rapid evolution of OOC technology and its potential to
revolutionize biomedical research and drug development.

Table 1. Comparative Table of Different Modelling Approaches Applied to OoCs.

(CFD)

devices?8-30

solute and solvent
parameters, boundary
conditions?9:30

concentration gradients2®-
31

Modelling Scale Input Use Limitations
Approach
Computational Microfluidic Geometry, fluid Simulates fluid flow, Complex multiphysics,
Fluid Dynamics channels/ properties, flow rate, shear stress, and time-consuming meshing,

sensitivity to surface
tension and viscosity?®

Finite Element
Analysis (FEA) /
Finite Element
Method (FEM)

Microfluidic
devices,
bioreactors29:31.32

Geometry, material
properties, physics
modules (e.g., CFD),
solute parameters29:32

Models mechanical
stress, strain, gradient
formation, and device
refinement2931.32

Requires detailed
meshing, complex
physics coupling,
geometric/parameter
coherence?®

Pharmacokinetic/
Pharmacodynamic
(PK/PD) &

Multi-organ
systems (e.qg.,
gut-liver, whole-

In vitro/OoC data
(volumes, ADME, flow
rates, drug

Predicts drug distribution,
toxicity, and human
PK/PD profiles; supports

Difficult organ scaling,
biological/analytical
uncertainty, complex

(ML)

Ieve|)5,9,34,36

labeled/unlabeled
data9,34,36,37

experimental
design9,25,34,36,37

Physiologically- body)11.2528.33-35 | properties)2%28.33.35 In Vitro-In Vivo model integration?5:33
Based Extrapolation

Pharmacokinetic (IVIVE)112533-35

(PBPK)

Artificial Variable (e.g., Experimental features Classifies cells, predicts Performance depends on
Intelligence (Al) / | single-cell to (e.g., contractility, outcomes, supports data size/quality, model
Machine Learning | system- solubility, oxygen), toxicology and choice, and validation

strategy®

This review aims to present the different advanced
modelling and analysis techniques that are currently applied
and can be applied to OoCs. Section 2 will discuss the current
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strategies (Section 2.1), and emerging OoC technologies
(Section 2.2) with an analysis comparing the technologies
(Section 2.3). Section 3 discusses the challenges in OoC
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technology (Section 3.1) and how emerging or advanced
techniques can help address these challenges (Section 3.2).
Finally, Section 3.3 discusses the potential future directions
for OoC technology.

2. State-of-the-Art in Advanced Modelling Strategies

2.1. Current Methodologies

Current OoC methodologies are grounded in microfluidic
platforms, allowing precise control of microscale fluids to
mimic  physiological conditions.’® Device fabrication
primarily utilizes soft lithography, often with PDMS, known
for its biocompatibility and gas permeability.3® However,
alternatives like thermoplastics and natural materials are
gaining prominence to address PDMS limitations such as drug
absorption.*? 3D printing and bioprinting are increasingly
used for rapid prototyping and creating complex 3D tissue
scaffolds.?

A key methodology involves reconstituting functional
tissues by culturing cells (primary, cell lines, or induced
pluripotent stem cells, iPSCs) within the microfluidic chips,
often in 3D structures.’® This requires maintaining a
physiologically relevant cellular microenvironment by
controlling factors like fluid shear stress, soluble factor
concentrations, and cell-matrix interactions.3®

To capture systemic complexity, multiorgan-on-a-chip
systems are developed by connecting multiple organ models,
essential for studying drug Absorption, Distribution,
Metabolism, Excretion, and Toxicology (ADME-Tox) and
inter-organ communication.#1%3 These often incorporate
vascular networks to simulate blood flow and interactions.*

Sensors are being integrated into platforms for real-time
monitoring of tissue function and microenvironmental
parameters. This facilitates feedback control systems essential
for automating high-throughput drug screening.#1011.24.26,39
This drive towards automation and high-throughput screening
is critical for the industrial adoption of OoC technology,
particularly in drug development.11.35

Finally, computational modelling, including fluid
dynamics and pharmacokinetic and pharmacodynamic
(PK/PD) simulations, plays a vital role in optimizing chip
design, predicting parameters, and interpreting experimental
data.3333% Computational platforms such as COMSOL
Multiphysics and ANSYS Fluent are commonly used for the
design and analysis of microfluidic organ-on-a-chip systems.
These in silico tools allow for simulations of critical fluid
dynamics and transport phenomena necessary for device
optimization.2®30:35 A is being integrated for enhanced data
analysis and image processing. These diverse methodologies
collectively contribute to creating and analyzing more
physiologically relevant in vitro models.%

2.2. Integration of Emerging Technologies

XXXX-XXXX/ XX/ XXXXXX

OoC technology is a rapidly evolving field that is being
significantly advanced by the integration of several emerging
technologies with established microfluidic and tissue
engineering methodologies.®1® This convergence aims to
enhance the physiological relevance, functionality, and
scalability of OoC systems to better recapitulate human
biology and meet the demands of applications such as drug
discovery and disease modelling.410

A prominent area of integration is the development of
multiorgan-on-a-chip systems, also referred to as body-on-a-
chip, which connect multiple individual organ models using
vascular  networks  within a single  microfluidic
platform.416.2435 This mimics the physiological coupling and
interactions between different organs in the human body.3®
Such integrated systems are particularly valuable for studying
systemic responses, such as drug absorption, distribution,
metabolism, and excretion (ADME), as well as complex
inter-organ disease mechanisms.*16

Another critical integration involves incorporating
integrated sensors directly within OoC platforms.10.24
Integrated sensors (e.g., mechanical, optical, electrochemical)
enable real-time, noninvasive monitoring of tissue function
and microenvironmental conditions.1%24 Examples include
electrochemical sensors for detecting relevant biological
processes and optical oxygen sensors.

To facilitate the widespread adoption of OoC technology,
particularly in pharmaceutical research, there is a significant
push towards automation and the development of high-
throughput systems. Systemized experimental procedures are
being developed to minimize user dependency and improve
reproducibility, which are crucial for applications like drug
screening.10.16

Advances in manufacturing techniques are also being
integrated. 3D printing and bioprinting are increasingly used
for fabricating complex OoC structures and creating more
realistic three-dimensional tissue architectures.264% These
methods allow for the precise deposition of cells within
biomaterial-based scaffolds and the rapid construction of
intricate channel geometries.?6 3D printing techniques are
considered potentially more cost-efficient for OoC fabrication.

Furthermore, Al and computational modelling are being
integrated to enhance both the design and analysis phases of
OoC research.%243235 Computational fluid dynamics (CFD) is
used to design optimal microfluidic channel geometries and
understand fluid flow patterns.3> PK/PD modelling helps
predict drug behavior and optimize experimental design and
sampling.32 Al is particularly beneficial for tasks such as
organoid imaging analysis and processing complex datasets,
significantly enhancing the efficiency and accuracy of studies,
especially in high-throughput drug screening.* Numerical
simulation is also used to predict parameters like oxygen
concentration and distribution within the devices.®
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These integrations of multiorgan systems, advanced
sensors, automation, 3D printing, and computational
approaches are collectively driving OoC technology towards
becoming more sophisticated, predictive, and applicable tools
for biomedical research and drug development.®10

2.3. Comparative Analysis

OoC technologies offer a valuable step towards more
physiologically relevant in vitro models, providing precise
control over the cellular microenvironment and enabling
real-time monitoring.14* However, relying solely on
traditional experimental methods encounters significant
limitations including challenges in achieving industrial
scalability, ensuring high reproducibility, accurately
replicating complex tissue structures, addressing material
compatibility issues, and a lack of widespread
standardization.1124243 Data acquisition can also be limited
by reliance on endpoint assays.!! The integration of advanced
computational modelling and Al is crucial for overcoming
these bottlenecks. These in silico approaches enable rapid
simulation and analysis, providing insights into device design,
optimizing parameters for fluid dynamics and transport, and
supporting complex analyses like PK/PD modelling.33.35.38:41

Al and machine learning algorithms further enhance the field
by facilitating automated image analysis, cell classification,
and predictive modelling based on complex cellular data from
OoC systems.3** In the study by Carvalho, et al. 4, a
numerical model capable of reproducing the fluid flow
behavior within an OoC device was developed and validated.
By comparing the model's predictions to experimental results,
including qualitative particle paths and quantitative particle
velocities, they demonstrated its accuracy and reliability.*
This synergistic combination of experimental OoC
development with advanced computational tools is essential
for improving the predictive power and robustness of these
platforms.34

3. Challenges and Future Perspectives

3.1. Identified Challenges

Applying advanced modelling techniques, such as
numerical simulation and mathematical modelling, to OoC
platforms presents several key challenges, summarized in
Table 2. These challenges arise from the complexity of
replicating human physiology in microfluidic devices and the
early stage of standardizing the technology.

Table 2. Major Challenges in OoC Systems.

temporal resolution. Validation
is hard due to low robustness
and missing standards.
Sampling is limited.?11.33:42

Challenge Source Impact Modelling Solution
Data Availability | Data often comes from end- Reduces reproducibility and Use of Al/big data analytics for
& Quality point assays; lacks spatio- hinders dynamic analysis. 1142 interpretation; optimization of

sampling; push for standardized
reporting®11:33

Models are essential but hard to
apply; 3D tracking is complex.
Analysis must match
biologyl9,12,25,41

Computational
Complexity

Limits predictive accuracy and
optimization.2®

Custom numerical and PK/PD
models handle complexity.
Tailored analysis improves
relevance.12.2541

Scalability Issues | Scaling organs and translating
data is difficult. Industrial

scale-up is limited.10-12.1516,25.43

Affects in vivo relevance and
slows commercialization.?

Use of PBPK scaling models;
development of high-
throughput and modular system
designs.16:25

Integration of
Multiple
Technologies

Combines microfluidics,
biomaterials, and sensors.
Multi-organ signals and system
miniaturization are

Increases system complexity;
hinders functional replication
and commercial
viability.9.16.26:42

Modular design frameworks;
collaboration-driven system
modelling; incorporation of
real-time sensor data into

CompIex.7’9’10'13’15'26’31'45

simulations.®13.26

In addition to these, other challenges include the need for
model validation with existing platformsi42, the lack of
standardization in design, manufacturing, and operating
procedures!4243  the requirement for technical skills and user
dependency leading to low reproducibilityl®13, limitations of
current  biomaterials3131524  difficulties with  sensor
integration and data acquisition®11.2642 and the overall

XXXX-XXXX/ XX/ XXXXXX

engineering limitations in recreating the full physiological
complexity of human organs.®11.24:42

3.2. Role of Modelling in Addressing Challenges

Advanced modelling techniques are critical for overcoming
many of the challenges associated with OoC technology.?>35
Mathematical and computational models are essential tools for
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guantitatively analysing OoC systems and predicting their
complex responses.’2 They offer significant advantages over
purely experimental approaches, providing insights into fluid
flow physics with good precision and accuracy in a rapid and
cost-effective manner.3041 Computational tools can be used
alongside theoretical and experimental methods in
microfluidics research.*! Integrating computational models
with  OoC experiments provides more quantitative,
mechanistic, and physiologically relevant insights than
experiments alone.2> Numerical studies and simulations are
performed for optimization purposes, helping to expedite the
OoC design process by reducing the need for fabricating
numerous prototypes and conducting costly laboratory
experiments.3041

Examples from past and current studies demonstrate the
impact of these strategies. In the study done by Jeong, et al. %,
numerical approach-based simulation models have been
developed to accurately predict in vivo levels of shear stress
in microfluidic Blood-Brain Barrier (BBB)-on-a-chip models.
This prediction, which showed a low error rate compared to
experimental results, helps to mimic in vivo conditions and
establish parameters for successful cell culture, such as tight
junction formation. The shear stress model was validated by
comparing numerical simulation results with experimental
data, achieving a <3% error rate, and demonstrating its
reliability in mimicking in vivo conditions.?® CFD and Finite
Element Analysis (FEA) are important tools for characterizing
biological microflows, predicting biofluid dynamics, and even
solid biomechanics.? In another study done by Zheng, et al.
35 numerical simulations can also assess the feasibility and
efficiency of a microfluidic design before fabrication,
reducing experimental trial and error and speeding up the
development process. Beyond optimizing design and flow,
modelling is used to simulate complex biological behaviors in
multicellular constructs, providing critical insights for
improving reproducibility or guiding the achievement of
desired form and function.® Multiscale models for multi-
organ or human-on-a-chip systems are more suitable for
modelling long-term drug transport and PK/PD effects.12:3435
Computational modelling can assist in analyzing, optimizing,
and revising the design of 3D culture microfluidic chips,
significantly reducing cost and time compared to repetitive
experimental measurements.®> For instance, mathematical
models have been used to predict tumor angiogenesis by
integrating quantitative experimental data in the study done
by Phillips, et al. 37 Furthermore, the integration of machine
learning algorithms can accelerate data analysis and image
classification in OoC systems, enabling real-time monitoring
and automated decision-making in cell culture.113446 This
helps to accelerate preclinical drug screening and disease
modelling.34

XXXX-XXXX/ XX/ XXXXXX

3.3. Future Directions

Advanced modelling techniques are already critical for the
guantitative analysis and prediction capabilities of OoC
systems, offering speed and cost advantages over purely
experimental methods.283337 Incremental advancements in
these methodologies, particularly through enhanced
integration of Al and improved visualization, hold significant
potential for further progress. Enhanced Al integration,
utilizing algorithms like machine learning and deep
learning3437:44, can accelerate data analysis and interpretation,
such as automated image classification and quantitative
assessment of cellular responses®*%’, while also refining
predictions in areas like drug efficacy and toxicity by
improving the estimation of PK/PD parameters from complex
data.33337 The design and optimization of microfluidic
devices and experimental protocols can be streamlined by
more tightly coupling simulation techniques (e.g., CFD*) with
Al, allowing for rapid exploration of design parameters,
prediction of optimal configurations, and optimization of
aspects like sampling times.143337 Additionally, making Al
models more transparent through explainable Al is important
for gaining regulatory trust and improving their use in OoC
platforms, especially since some deep learning methods are
difficult to interpret and can limit understanding in drug
development.#

Improved visualization techniques, such as layering
simulation data onto experimental images or potentially
exploring 3D renderings (with techniques like those used for
segmented medical images), can enhance researchers'
understanding of complex, dynamic processes within the chip,
making data interpretation more intuitive and potentially
improving reproducibility.3”44 Projects like ARinBIO explore
Augmented Reality/ Virtual Reality (AR/VVR) to improve data
visualization and collaboration. This initiative seeks to
streamline laboratory workflows, reduce errors, and facilitate
personalized medicine by providing real-time data
visualization  and  interaction  within ~ augmented
environments.*

Regulation and standardization are crucial for the wider
adoption and implementation of OoC technology, as a lack of
regulatory consensus on acceptance criteria currently presents
a significant hurdle to their use by end-users.*? International
efforts are underway by regulatory agencies and
organizations, including the International Organization for
Standardization (ISO), which is developing the ISO/AWI
25693 standard.*®5° This standard, currently under
development, specifies requirements for the development
process of OoC used for the evaluation of substances, aiming
to ensure fitness for purpose and support broader regulatory
acceptance.®

© 2025 SJIE



SJIE 1(4) X-X (2025)

Isabel Iris Claro!

4. Conclusion and Recommendations

This review highlights the critical role of advanced
modelling techniques, such as computational fluid dynamics,
finite element analysis, PK/PD simulations, and artificial
intelligence, in enhancing the design, function, and analysis
of OoC systems. These tools enable the replication of complex
physiological environments, support data interpretation, and
improve predictive modelling for drug development.
However, key challenges remain, including limited data
quality, computational complexity, scaling issues, and the
integration of multidisciplinary technologies. Addressing
these barriers is essential for advancing OoC adoption in both
research and industrial settings.

Future research should focus on the following priorities to
advance Organ-on-a-Chip (OoC) technology:

o Refine current modelling techniques to enhance
physiological accuracy and predictive power,
especially for multiorgan and systemic models.

o Develop explainable Al frameworks to improve
model transparency and build trust for regulatory
approval and clinical integration.

e Integrate emerging technologies cautiously,

including:
o Real-time sensor data for continuous
monitoring

o 3D bioprinting for replicating complex
tissue structures

0 Augmented and virtual reality tools for
enhanced visualization and collaboration

e Ensure compatibility and usability of integrated
technologies with biological systems to facilitate
practical adoption.

e  Promote interdisciplinary collaboration among
biologists, engineers, data scientists, and regulators
to standardize platforms and accelerate their
application in personalized medicine and drug
development.
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Organ-on-a-chip (OOC) is an emerging microfluidic platform that mimics key physiological
functions of the human body, offering promising tools for drug screening, disease modeling,
and personalized medicine (context). This review highlights recent advances in OOC
modeling, with a focus on Computational Fluid Dynamics (CFD), Finite Element Analysis
(FEM), multiphysics simulation, artificial intelligence (Al), and augmented/virtual reality
(AR/VR) (key advance). We summarize the applications of these approaches in fluid
dynamics, mechanical responses, chemical transport, and system visualization, explicitly
addressing their roles at different modeling layers relevant to chip performance (scope).
Finally, we discuss current challenges, including organ complexity, multi-organ integration,
validation, and standardization, and propose that future progress will rely on interdisciplinary
collaboration, hybrid modeling strategies, and real-time Al integration to accelerate
biomedical translation (outlook).
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1. Introduction

Organ-on-a-Chip (OoC) is a cutting-edge technology that
combines biology and microtechnology, capable of simulating
key physiological functions of the human body on
microfluidic chips'2. It exactly controls trace amounts of fluid
through the use of microchannels to supply cells and tissue
structures with a close-to-physiological microenvironment®.
OO0C employs chip-based regulated device systems to supply
cells and tissue structures with biochemical and physical
environments close to in vivo conditions to allow scientists to
experiment on these systems in vitro®. This allows scientists
to more accurately control the microenvironment in which the
cells reside and directly view the reaction of the cells and
tissues®.

In comparison to conventional two-dimensional cell
culturing, the scale of the channels in microfluidic systems is
comparable to that of cells and more effectively replicates the
extracellular microenvironment and the three-dimensional
tissue structure®’. It is able to perform precise regulation of
mechanical stimulation to the cells, delivery of nutrients and
chemical gradients. With these technologies, it is possible to
create miniature cavities of precise structures and accurately
regulate the molecules and the cells within the microfluidic
system to accurately duplicate the organs' microenvironment
and replicate the physiological and disease conditions in the
body?®. With this technology, it offers a highly bionic and high-
throughput new experimental system for drug screening,
disease studies and personalized medicine.

But in order to fully tap the potential of OOC, advanced
modeling techniques assume key significance®. Modeling not
only allows for chip design to be optimized, fluid and cell
behavior to be predicted, and the trial-and-error experiment to
be minimized but also enhances the reproducibility of the
system. CFD, FEM as well as multi-physics field simulation
provide valuable information on the flow field distribution, the
mechanical stress, the nutrient gradient and the response of the
cell within the chip. Meanwhile, recent emerging technologies
including Al and AR/VR have continuously improved the
precision of designs, data analysis functions, and visual
interaction to further enhance the accuracy of modeling.

In the past few years, scientists have constructed various
types of organ chips, e.g., the brain®, heart'!, lung** and
cancer models'®, and made good performance in various
applications. Organ-on-a-chip has become a valuable tool for
the academia and industry to study the functions of organs and
discover new medicines. For example, the bionic lung chip has
effectively duplicated the relationship between human alveoli
and capillary structures, offering a new way for drug
screening.

However, despite the fact that OOC technology is
extremely innovative, there are still many challenges'®. One of
the primary challenges is standardization in the process of
manufacturing®®. Up to now, due to the lack of a uniform

system of material and techniques, not only does it hinder the
reproducibility of experiments but also the mass production
and low-cost process. Second, the cooperation and coupling
between different chip organs have not yet been effectively
integrated, and as a result, it becomes challenging to simulate
comprehensive multiple-organ interaction. Likewise, OOC
also encounters the problem of medical verification and
regulation: how to undergo medical verification and be
certified by the US FDA is a primary challenge for the
transition of OOC toward application?’.

The aim of this paper is to comprehensively review the
modelling approaches for microfluidic platforms in Organ-on-
a-Chip (OOC), assess the role of traditional techniques such
as Computational Fluid Dynamics (CFD), Finite Element
Analysis (FEA), and Multi-Physics Field Simulation (MFSS)
in the design and optimisation of OOCs, and explore the
innovative breakthroughs brought by the emerging
technologies such as Artificial Intelligence (Al), Machine
Learning (ML) and Augmented/Virtual Reality (AR/VR).
However, existing reviews mostly focus on chip fabrication or
biological applications, with less systematic summaries of the
synergies of these modelling strategies and their challenges,
such as multi-scale coupling, data integration and
standardisation issues. By filling this gap, this paper provides
ideas and references for the development of OOC in
biomedical engineering.

2. Modelling and Intelligent Technologies

With the rapid development of organ-on-a-chip (OOC)
technology, advanced modeling methods and intelligent
technologies are playing an increasingly important role in it.
Modeling tools such as Computational Fluid Dynamics
(CFD)*8, Finite Element Analysis (FEM), and multiphysics
simulation provide reliable theoretical support for chip design,
fluid control, and physiological process prediction.
Meanwhile, the introduction of emerging technologies such as

artificial intelligence  (Al), machine learning, and
augmented/virtual reality (AR/VR) has greatly enhanced the
efficiency of data analysis, design optimization, and
visualization. Figure 1 shows how CFD, FEM, and

multiphysics relate to key OOC components.
2.1 Traditional computational modeling methods

2.1.1CFD

Computational Fluid Dynamics (CFD) is a method based
on numerical analysis, which is used to simulate and predict
the flow, pressure, velocity, temperature and material
transport behavior of fluids (liquids or gases) under different
conditions®®.

Hydrodynamic parameters such as shear force, pressure
and flow rate can significantly affect the morphology,
proliferation, function and survival rate of cells, and thereby
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Figure 1. Schematic of Organ-on-a-Chip and modelling methods

play a key role in the overall function and activity of tissues*®.
Microfluidic devices provide a highly promising method for
studying these parameters and the fluid behavior in different
microchannel structures?®. Microfluidic devices (MFDS) are
made of biocompatible materials and contain tiny channels?.
Organ-on-a-chip (OOC) utilizes this technology to simulate
the microenvironment of specific tissues or organs??.

Green et al. investigated the influence of channel geometry
on cell adhesion by designing microchannels with sharp turns
and curved turns and combining them with fluid dynamics
simulations. Their results show that the flow velocity and
shear stress distribution in the curved and turning
microchannels are more uniform, which helps to improve the
cell adhesion effect?.

Bakuova et al. demonstrated through CFD analysis and
experiments based on Huh7 cells that the elliptical cavity liver
chip has superior flow and filling characteristics compared to
the circular cavity chip, and successfully verified the adhesion
and continuous growth of cells?

However, CFD mainly focuses on fluid systems and is
difficult to directly handle the solid deformation of chips or
multi-physics field coupling. Moreover, its mesh division and
boundary condition setting are complex, the calculation time
is long, and it requires powerful computing resources®.

2.1.2 Finite Element Analysis (FEM)

Finite element Analysis (FEM) is a numerical tool used to
predict the mechanical properties in organ-on-a-chip (OOC),
capable of simulating the deformation, stress distribution and
fluid-structure coupling effects of chip materials. The
application of FEM is conducive to optimizing chip design,
improving durability and security. However, its modeling is
complex and the parameter setting is cumbersome, and it
needs to be combined with experimental verification to ensure
the reliability of the simulation. Furthermore, at present, many
designs still mainly rely on trial-and-error experiments and
have not fully utilized the advantages of FEM?,

2.1.3 Multi-physics field simulation

Multiphysics simulation is an integrated approach used to
simultaneously study the interactions among various physical
processes such as fluids, mechanics, chemistry, and heat
conduction, and is particularly suitable for complex organ-on-
a-chip (OOC) systems. Multiphysics simulation not only helps
optimize chip design and enhance the physiological relevance
of experiments but also provides a powerful tool for the
prediction of complex systems.

Jeon et al. utilized multi-physics field simulation combined
with experiments to study the effects of fluid flow in the
intestinal-liver microarray on intestinal cells and liver cells,
optimized the flow velocity and shear force parameters, and
explored the effects of fatty acid transport, liver lipid
accumulation, and anti-fatty liver drugs?”.

2.2 The Application of Al in OOC

Al, especially machine learning algorithms, can be used to
automate chip design and parameter optimization. By training
algorithms, researchers can predict in advance which design is
the most suitable for a specific biological application,
significantly reducing the cost of trial and error. Machine
learning is a common method for achieving artificial
intelligence, and deep learning is one of the important
algorithms among them.

The research by Li et al. indicates that organ-on-a-chip
(OOC) systems based on deep learning have demonstrated
great potential at multiple levels?®. Through algorithms such
as convolutional Neural networks (CNN) and recurrent neural
networks (RNN), image analysis, cell recognition, dynamic
tracking, segmentation and functional prediction in the chip
can be efficiently achieved, greatly improving the automation
level of data processing. In addition, deep learning has also
demonstrated significant value in aspects such as the design
optimization of microfluidic chips, fluid dynamics analysis,
and cell behaviour prediction. This study points out that by
integrating deep learning technology, OOC is expected to
achieve higher accuracy and efficiency in drug screening,
disease modelling, personalized medicine, and multi-organ



Table 1. Summary of modelling tools, applications, advantages, and challenges in Organ-on-a-Chip research

Tool Application Advantage Challenge Recent Example
CFD Simulate fluid flow, High accuracy, clear Complex setup, high Barbosa et al. (2024),
shear stress, nutrient physical principles computational cost thermal and fluid flow
transport in modeling in OoC%,
microchannels
FEM Analyze mechanical Accurate mechanical Complex meshing, de Menezes (2020),
deformation, stress predictions, good for needs precise material | finite element approach
distribution, fluid— membrane deformation data for OoC design?.
structure interaction
Multiphysics Combine fluid, Comprehensive system High modeling Jeon et al. (2021), gut—
Simulation mechanical, thermal, analysis difficulty, long liver-on-a-chip for
chemical effects computation time hepatic steatosis
modeling?’.
Al Optimize design, Fast data processing, Needs large, high- Isozaki et al. (2020),
predict behavior, automated optimization quality datasets; Al integration in lab-
analyze images limited interpretability on-a-chip systems®.
AR/VR Visualization, training, | Improved visualization Limited integration Broek (2025),
remote collaboration and interactivity with physical systems visualization tool for
OoC fibrotic disease
model®L,

system research, bringing new opportunities for in vitro
alternative experiments and precision medicine®,

Isozaki et al. reviewed the combined application of
artificial intelligence (Al) and Lab-on-a-Chip, pointing out
that machine learning and deep learning have significantly
improved the analytical efficiency and accuracy in aspects
such as high-throughput imaging, cell classification, and
drug screening®. The article also mentioned that algorithms
such as Support Vector Machine (SVM) and Convolutional
Neural Network (CNN) have been successfully applied in
cell cycle analysis and blood cell detection. At the same time,
it emphasized future challenges such as model
interpretability and data quality.

Lightweight models such as decision trees and embedded
machine learning can also be introduced in for real-time
control and adaptive tuning®. Such methods are faster in
computation, consume less power and are more suitable for
integration with portable and miniaturised devices.

2.3 The Application of AR/VR in 00OC

Augmented Reality (AR) and virtual reality (VR) are
visualization and interaction technologies that have
developed rapidly in recent years. These two technologies
have the advantages of being intuitive, dynamic and highly
interactive, which makes them show wide application
potential in many scientific research and engineering fields.

Recent works have demonstrated the growing significance
of AR and VR in medical applications, including their
application in organ-on-a-chip (OOC) studies. For example,
VR associated with Computer-aided Modeling (CAM) has

been used in tele-surgery to increase the accuracy of
operations and collaborative planning®*2*. In the study of
OOC, the use of AR/VR technology can project the Body-
on-a-Chip (BOC) system and combine several OOC units to
model a whole organism?®-%, By fusing real-time data and
immersive visualization, the use of AR/VR increases the
capacity of researchers to track dynamic processes, study
drug effects, and tune up experimental protocols without the
need for direct physical manipulation. Further, AR/VR also
enhances inter-team communications®”.

Although AR/VR has shown great potential in aspects
such as visualization, simulation and training, the integration
with actual OOC systems still faces some obstacles.
Including the limitations of hardware miniaturization and the
challenge of real-time data synchronization between virtual
and physical systems.

2.4 Comprehensive evaluation

Advanced technologies such as Computational Fluid
Dynamics (CFD), Finite Element Analysis (FEM),
multiphysics simulation, artificial intelligence (Al), and
augmented/virtual reality (AR/VR) are instrumental in the
enhanced design and application of organ-on-a-chip (OQC).
CFD and FEM offer high accuracy but need complex setup
and heavy computing. Multiphysics simulation captures
system interactions but is even more demanding. Al brings
efficiency and flexibility to design and data analysis but
depends on large, quality datasets and often lacks
interpretability. AR/VR improves visualization and user
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Figure 2. Complementary Modelling Methods in Organ-
on-a-Chip
interaction but is still mainly used as a support tool, with
limited integration into chip systems.

Table 1 summarizes the main tools, their typical
applications in organ-on-chip systems, as well as their
respective main advantages and challenges.

To illustrate the complementarity and integration of
various modelling approaches in Organ-on-a-Chip systems,
Figure 2 presents a schematic Venn diagram highlighting the
overlaps and shared roles of CFD, FEM, multiphysics
simulation, Al, and AR/VR technologies.

Overall, each technology has its own focus and
complementary advantages in OOC. In the future, it is
necessary to promote cross-disciplinary integration,
combining the rigor of traditional modeling with the
predictive ability of Al and the intuitiveness of AR/VR, to
achieve a more efficient, intelligent and reliable OOC system,
opening up broader prospects for biomedical research and
precision medicine.

2.5 Validation

Verification is a key step to ensure that the modeling
results accurately reflect the biological performance in the
OOC system. For instance, the fluid flow and shear force
obtained from CFD simulation can be verified through
microparticle imaging velocity measurement (UPIV) or
tracer dye experiments®, The results predicted by FEM can
be compared by observation with a high-resolution
microscope or traction microscopy®. The prediction of cell
behavior or drug response by Al needs to be verified through
means such as time series imaging, molecular analysis or
histological analysis*. Effective verification can not only

enhance the credibility of the model, but also identify the
deficiencies that need improvement in the model.

Meinicke et al. combined uPIV measurement and CFD
simulation to study the single-phase fluid dynamics in porous
Si0: glass foam. In the study, pPIV was used to observe the
flow of DMSO in porous structures, and the experimental
data were compared with the CFD model reconstructed by
X-rays. The research shows that the experimental results are
highly consistent with the numerical results, effectively
verifying the CFD prediction®..

3 Challenges and Future Perspectives

Although organ-on-a-chip (OOC) technology has made
many advancements, it still faces many challenges in
practical applications. How to accurately restore the complex
structures of human organs and biological interfaces remains
difficult*?.

Although traditional modeling methods (such as CFD,
FEM, and multiphysics simulation) are accurate in
calculation, they are complex in operation and time-
consuming. Al offers new approaches to design optimization
and data analysis, but it relies on a large amount of high-
quality data and has limited model interpretability. AR/VR
has improved visualization and interaction, but the deep
integration with OOC is still insufficient.

Furthermore, OOC lacks a unified platform and standards,
resulting in the difficulty of repeating experiments and
integrating and analyzing data. The stable supply of human
cells and the development of multi-organ shared culture
media are also key bottlenecks for promotion.

Interdisciplinary cooperation among biology, engineering
and computational science needs to be strengthened in the
future. By integrating modeling, Al and AR/VR, drive OOC
to achieve more intelligent and efficient applications. And
accelerate its clinical transformation in drug screening,
disease research and precision medicine.

4 Conclusion and Recommendations

As the core technology of organ-on-a-chip (OOC), the
microfluidic platform provides a solid foundation for its
application in biomedical engineering. The combination of
traditional modelling methods, artificial intelligence (Al),
and augmented/virtual reality (AR/VR) has jointly promoted
the design optimization, data analysis, and functional
expansion of OOC, opening new avenues for fields such as
drug screening, disease research, and personalized medicine.

In the future, the development of organ-on-a-chip (OOC)
will increasingly rely on close collaboration in the fields of
engineering, computing and biology. Hybrid digital twins are
expected to combine sensors and Al to achieve real-time
monitoring and regulation of OOC for personalized drug
screening and disease prediction. Through the real-time
feedback system embedded in machine learning (embedded
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ML), researchers can adjust the fluid parameters, drug
concentrations, etc. of the chip based on real-time data in the
experiment, improving the flexibility and physiological
relevance of the experiment. These advancements are
expected to shorten the transition from the laboratory to
clinical practice and promote the wide application of OOC in
drug development and personalized medicine.
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