

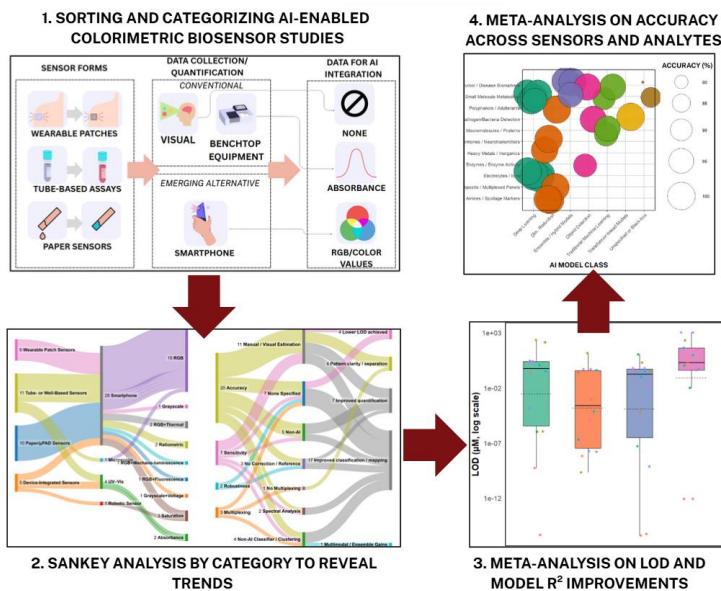
Quantifying the Impact of AI on Colorimetric Biosensor Performance: A Focused Metadata Review

John Salvador Ricacho¹, Gobinath Rajarathnam¹, and Aoni Xu¹

¹ School of Chemical and Biomolecular Engineering, The University of Sydney

E-mail: jric0361@uni.sydney.edu.au

Graphical Abstract



Abstract

Colorimetric biosensors offer low-cost diagnostics but often suffer from subjective interpretation, environmental variability, and limited quantification. Artificial intelligence (AI) has emerged as a powerful solution, enabling automated analysis of chromogenic outputs captured via smartphones or imaging systems. This meta-analysis reviews 32 studies (2022–2025) applying AI to colorimetric biosensing, comparing performance across model types, sensor formats (e.g., paper, wearable, tube-based), input modalities (e.g., RGB, absorbance), and analyte classes. Key metrics include classification accuracy, regression strength (R^2), and limit of detection (LOD), benchmarked against non-AI and conventional methods. AI-enhanced platforms consistently improved accuracy, with context-specific gains in R^2 and LOD, especially for weak or overlapping signals. Smartphone-based RGB systems dominated but required calibration strategies such as CNN-GRU correction and illumination adjustment. Despite promising results, most studies lacked external validation and relied on supervised learning with small datasets. Semi-supervised approaches and standardized benchmarks are needed to ensure generalizability. Beyond analytical metrics, AI offered faster readouts, automated interpretation, and support for multiplexed sensing. Future directions include integrating augmented reality for enhanced usability and applying AI to sensor design and optimization. Collectively, these advances position AI-enhanced colorimetric biosensors as scalable, field-ready diagnostic tools with growing potential for clinical and environmental deployment.

Keywords: colorimetric biosensors, artificial intelligence, machine learning, smartphone diagnostics, point-of-care sensing

1. Introduction

Lack of accurate, accessible, and rapid diagnostics remain a global issue for healthcare especially in remote, resource-constrained settings where over 47% of the global population lacks access to essential diagnostic tools¹. While conventional laboratory-based diagnostics remain the gold standard, they require sophisticated equipment, trained personnel, and controlled environments. These limitations contribute significantly to delayed diagnoses and diagnostic errors, which are estimated to cause approximately 371,000 deaths and 424,000 permanent disabilities annually in the United States alone². To address these, portable colorimetric biosensors, which are analytical devices that detect presence of target analytes through visible color changes via enzymatic reactions, nanzyme catalysis, or pH-sensitive dyes, have gained prominence as low-cost, easy-to-use alternatives capable of delivering rapid results without the need for laboratory infrastructure³. Google Trends data show that global interest in colorimetry more than doubled from late 2021 to early 2025, reflecting growing attention towards visual-based diagnostics⁴. By translating biochemical interactions into observable color changes, they have found applications in diverse settings from at-home glucose monitoring and pregnancy testing to field-based detection of pathogens and heavy metal ions that might be detrimental to health⁵. Moreover, their compatibility with paper-based substrates, lateral flow formats, and nanzyme-enhanced platforms makes them particularly attractive for decentralized healthcare and environmental monitoring⁶. However, despite their significant improvements over traditional diagnostics, colorimetric biosensors face persistent limitations related to subjectivity in optical result interpretation, arising from variations in ambient lighting, camera resolution, user technique, and perceptual bias, which can significantly affect the accuracy and reproducibility of results⁷. This is a hindrance for their widespread adoption in critical clinical or environmental applications where precision and standardisation are essential.

Table 1. Summary of recent reviews on AI-Enabled biosensors and the distinct scope of this work

Year	Focus	Key Insights
2024 ⁷	AI in biochemical sensors (incl. colorimetric)	Reviewed AI's role across sensing platforms, highlighting accuracy gains and implementation challenges.
2024 ⁸	AI in electrochemical biosensors	Showed AI improves sensor sensitivity and wearable adaptability.
2024 ⁹	AI-integrated wound dressings	Reviewed AI-biosensor synergy for wound monitoring and healing prediction.
2023 ¹⁰	ML-based sensor arrays for bacterial detection	Surveyed ML-enhanced colorimetric/fluorescent arrays for pathogen classification.
2025 (This review)	AI-enhanced colorimetric biosensors (health & environment)	Conducts first metadata analysis comparing R^2 , accuracy, and sensitivity across 30+ studies.

To overcome these challenges, artificial intelligence (AI) has emerged as a transformative solution. By analyzing colorimetric outputs captured via smartphones or imaging devices, AI algorithms provide automated, consistent, and quantitative interpretation of biosensor signals. While previous reviews highlight AI applications in biosensing, few assess its actual performance gains. This review fills that gap through a metadata analysis of recent AI-enhanced colorimetric studies, comparing improvements in sensitivity, accuracy, and regression strength (R^2) over traditional and non-AI

methods. Table 1 summarizes prior reviews to contextualize this study's contribution.

2. State-of-the-art of Current Research

This work conducted a metadata analysis of 32 peer-reviewed studies from 2022 to 2025, sourced via Scopus and Google Scholar using combinations of search terms such as “colorimetric biosensor,” “AI,” “accuracy,” and “sensitivity.” Studies were included if they employed artificial intelligence (machine learning or deep learning) for the interpretation of colorimetric biosensor outputs and reported at least one quantitative performance metric (e.g., accuracy, sensitivity, or R^2). Data were manually extracted on sensor type, sample source, analyte, AI model, and comparative improvement over non-AI or traditional methods. A comprehensive table detailing these 32 studies is shown in Table S1 (supplementary).

2.1. Sensor Architecture – Form Factor, Platform, and AI Data Utilization

Figure 2.4.a shows sensor architectures across the 32 studies prioritized cost-effectiveness, portability, and user-friendliness, which are qualities best demonstrated by paper-based sensors (10 studies), wearable microfluidic patches (6), and tube/well-based formats (11), collectively accounting for over 85% of sensor form factors. In comparison to conventional laboratory-based diagnostics, these form factors drastically reduce overheads in terms of materials and logistics, enabling decentralized testing. Device-integrated sensors (5 studies), while offering superior performance via embedded optics or processors, still lack scalability due to their high cost and need for specialized maintenance. Smartphones were overwhelmingly used for signal collection (28 of 32 studies), outpacing other platforms like scanners (4), robotic sensors (1), and microscopes (1), due to their widespread accessibility, built-in cameras, and ability to process or upload images in real time. This sensor architecture across these studies is visualized in Figure 2.1.

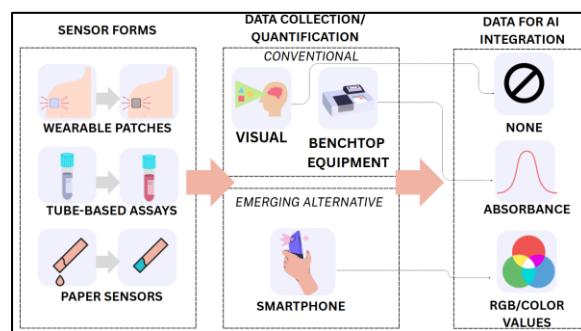


Figure 2.1. Architecture of AI-enabled colorimetric sensors

RGB was the main input for AI models (19 studies), followed by grayscale (2), absorbance (3), and multimodal setups like RGB with thermal, mechanoluminescence, or fluorescence (1 each). Its appeal lies in smartphone compatibility and suitability for CNNs that process spatial and color features. Absorbance-based methods are more robust but rely on non-portable, specialized tools. RGB's sensitivity to lighting and device variability reduces reliability without normalization, used in only a few studies (some in Table 2.1).

These steps are key to improving consistency in real-world settings. Overall, the move toward RGB-smartphone-AI systems supports scalable diagnostics, but stronger standardization is still needed to match lab-grade performance.

Table 2.1 Color correction strategies applied across selected studies

Study	Color correction applied
Wang et al. ¹¹	Trained a CNN-GRU model to adjust for ambient light and pH variation
Ghatei and Jahanshahi ³⁶	Used flash/no-flash subtraction and lab color space conversion to stabilize lighting conditions
Liu et al ⁴²	Applied pixel-wise color correction using a 24-color checker to calibrate camera-based inputs

2.2 Purpose and Sample Type – Monitoring Targets, Matrices, and Analytes

Figure 2.4.b reveals that sensors are mainly applied to clinical diagnostics (10/32 studies), metabolic monitoring (7), and food safety (6), with fewer targeting pathogens (4), cellular assays (2), or multiplex panels (1). This mirrors the prevalence of accessible samples like urine (4), sweat (3), saliva, and tears, ideal for wearable or point-of-care use. However, this also suggests an application bias, favoring well-characterized analytes in controlled settings. Food and environmental samples (9 studies combined), which present greater matrix complexity and signal noise, remain underrepresented despite being where AI's disambiguation strengths are most needed. Current trends favor feasibility over impact, applying AI where outputs are already interpretable rather than where its value is most critical.

Notably, many AI models have been applied to analytes that already produce vivid and monotonic color changes, such as glucose and pH, where human-readable output is already largely feasible. While this enables automation and precision, it may underutilize AI's potential. As shown in Figure 2.2, analytes like HDL, LDL, and troponin exhibit weaker or grayscale transitions that are far less distinguishable visually. These cases present the strongest justification for AI integration yet remain underrepresented. Rather than reinforcing already discernible signals, AI's role should be expanded to support analytes with ambiguous visual responses, where its capacity for pattern recognition and subtle gradient differentiation can meaningfully extend the reach of colorimetric sensing.

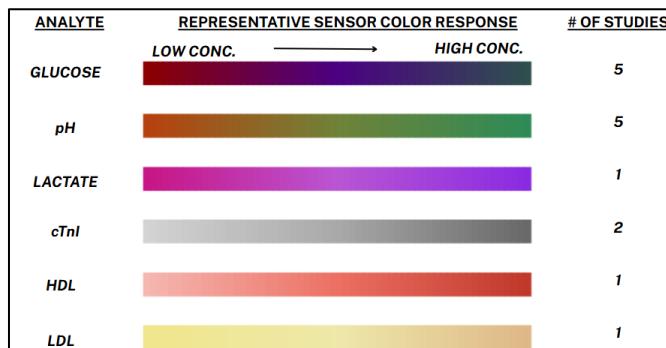


Figure 2.2. Colorimetric responses for selected analytes.

2.3 AI Use Case and Model – Task Types and Algorithms Employed

AI in colorimetric biosensing has mainly focused on regression (18 of 32 studies) and classification (13), aligning with the direct relationship between color change and either concentration or categorical outcome. Regression typically maps RGB patterns to analyte levels, while classification supports test result interpretation. These applications suit sensors targeting analytes with clear, monotonic color shifts like glucose or pH. However, this also reflects a cautious approach where AI is often applied where signal-response relationships are already well defined. More advanced tasks like clustering, anomaly detection, or multimodal fusion remain rare, despite their potential for handling complex or noisy signals.

Figure 2.3 shows a mismatch between AI task complexity and the models used in reviewed studies. Simpler regression tasks were most common and often addressed with traditional ML models like random forests, even when signals were nonlinear or noisy. Deep learning was more common in classification tasks, particularly for spatial data, but rarely used for complex tasks like object detection or multimodal fusion. For example, Yu et al.²⁷ used an ANN for RGB-thermal fusion but didn't apply advanced architectures like attention or transformers. Unsupervised methods like PCA or t-SNE were limited to visualization. This suggests model selection is often based on familiarity, not task fit. As a result, underspecified models may limit performance in complex or noisy settings and reduce generalizability outside the lab. Treating model architecture as a key design element, aligned with task demands and supported by benchmarking, will be essential for advancing AI in biosensing.

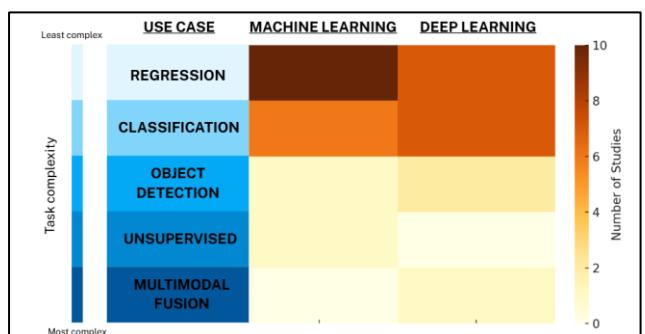


Figure 2.3. AI model use by task type, showing ML dominates regression while DL is underused in complex tasks.

2.4 Performance Improvement – Gains Attributed to AI and Benchmarks

Across all 32 studies, AI integration was credited with enhancing sensor performance across multiple axes. The most reported gains were improved accuracy (~20 studies), enhanced sensitivity or lower limits of detection (~7 studies), faster or automated interpretation (~3 studies), and improved pattern resolution for multiplexed or overlapping signals (~4 studies). AI enabled detection of subtle analyte differences, automated endpoint interpretation, and separation of overlapping outputs in multi-analyte sensors. While about 7 studies lacked a baseline comparison, those that did consistently showed AI outperforming visual reads, thresholds, or uncorrected data. Table 2.2 highlights four representative examples. Cui et al.¹² used YOLOv5 to improve bacterial classification to 95%.

Yu et al.²⁷ combined colorimetric and thermal signals via ANN to surpass LOD for cardiac troponin. In Zheng et al's work¹⁶, CNNs reduced assay readout time withing minutes to seconds, while originally taking hours. Ranbir et al²⁵. and Singh et al.³⁰ used PCA-LDA to fully separate volatile amines in meat, showing AI's strength in multiplex detection. These examples illustrate both performance gains and how targeted AI use can expand the utility of colorimetric sensors in real-world settings. However, while showing these gains, a more quantitative approach is required to fully grasp the importance of AI in colorimetric biosensing, as explored in subsequent section.

2.4 Meta-analysis of performance improvements

2.4.1. Limit of detection (LOD)

We compared LOD values across studies, as LOD reflects the lowest detectable concentration above background noise and is key to assessing sensor sensitivity. This helps determine whether AI meaningfully improves detection limits in real-world use.

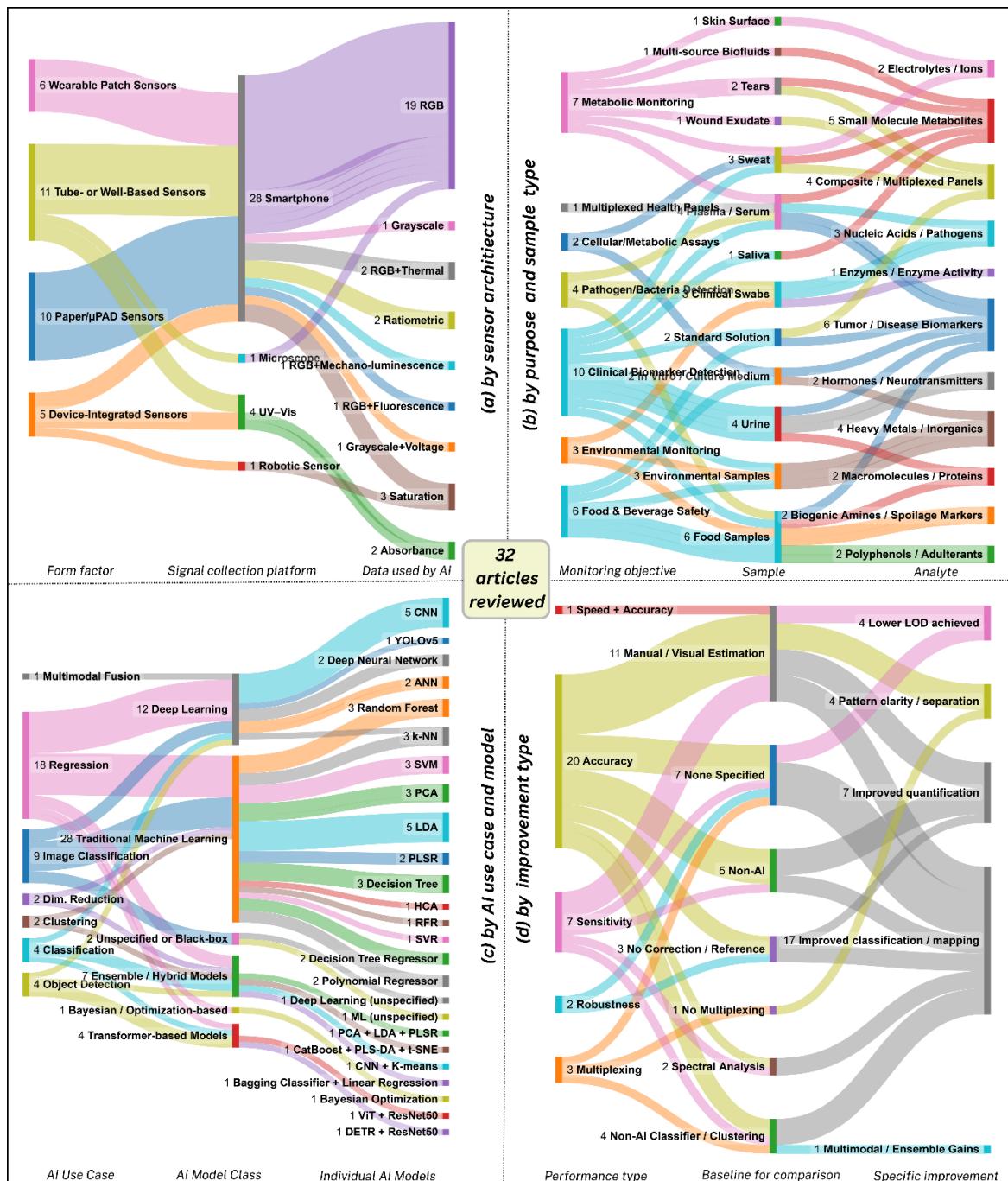


Figure 2.4 Sankey diagram for AI-enhanced colorimetric biosensor studies sorted by (a) sensor architecture; (b) purpose and sample types; (c) AI use cases, model classes, and algorithms; and (d) performance improvements (comprehensive table in Table S1)

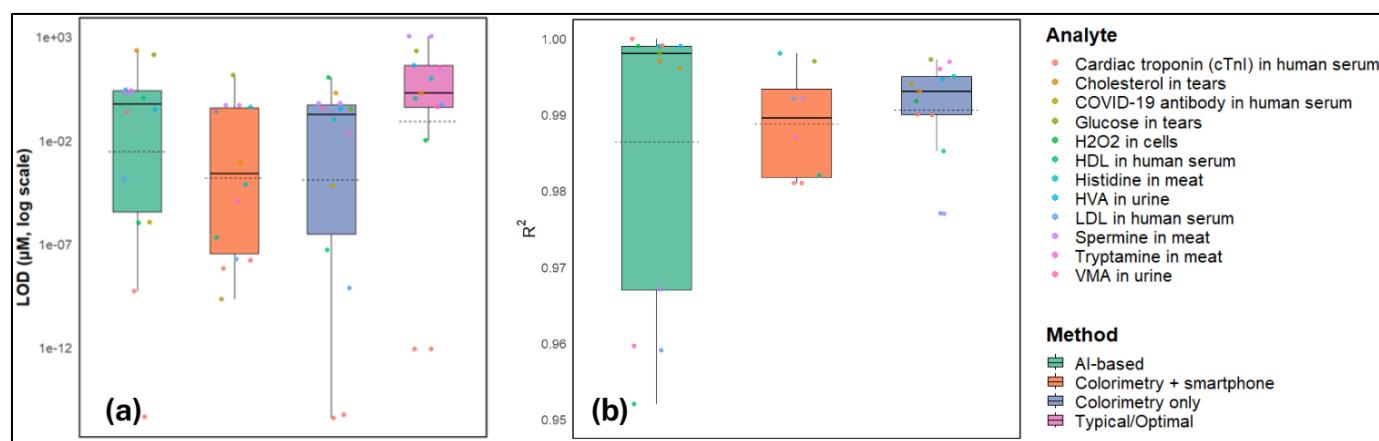


Figure 2.5. Log-scale distribution of LOD values across colorimetric detection methods, highlighting analyte-level spread and comparison to typical/optimal reference values

LOD data from AI-enhanced studies were grouped into four categories: AI-based, colorimetry only, colorimetry plus smartphone (non-AI), and typical values in human or food samples. Each analyte within a study was treated as a separate data point. For baseline methods lacking internal controls, LODs were sourced from recent reviews or similar studies. Full data appear in Supplementary Table S1.

As shown in Figure 2.5.a, AI-based platforms had slightly lower median LODs than typical concentrations in human and health samples, highlighting significance in diagnostics, but variability was high across all groups, especially compared to non-AI smartphone-assisted methods. Mann-Whitney U tests (Table S4) showed no statistically significant differences (all $p > 0.15$), indicating that AI alone doesn't consistently improve sensitivity. Outliers like del Real Mata et al.'s¹³ 1 pM H₂O₂ detection with a plasmonic sensor and random forest model, or Yu et al.'s²⁷ 10.8 pg/mL troponin detection using ANN fusion, highlight AI's potential under optimized setups. However, factors like sensor materials, analyte properties, and sample matrices often have greater influence. AI was most impactful in cases with overlapping or faint color signals, e.g. Cui et al.'s use of YOLOv5 for low-level bacterial HAase, and Ranbir et al.'s²⁵ and Singh et al.'s³⁰ PCA-LDA models resolving mixed biogenic amines. In contrast, analytes with strong color change like glucose or pH showed minimal LOD gains, though AI improved consistency and automation. These results suggest AI should be applied selectively, especially for low-contrast or nonlinear signals. Broader adoption will require better benchmarking, task-specific AI design, real-world validation, and comparison to regulatory standards or reference methods.

2.4.2. Model R² values

We included R² comparisons across studies as it reflects how well a sensor's output follows analyte concentration trends making it an essential indicator of dose-response consistency, even if not a direct accuracy measure. R² data were grouped by method type (AI-based, colorimetry-only, and smartphone-assisted non-AI) and are summarized in Table S3 and visualized in Figure 2.5.b. AI-based platforms showed higher average R² values (0.952–0.9999) and wider spread than conventional methods, with several achieving

near-perfect calibration under controlled conditions. However, Mann-Whitney U tests (Table S5) indicated these differences weren't statistically significant ($p = 0.075$ vs. smartphone; $p = 0.14$ vs. colorimetry-only), suggesting AI doesn't consistently improve regression fit across all cases. The best R² values were seen in studies with controlled imaging, high signal-to-noise ratios, or carefully curated datasets. Study 18 reached R² = 0.9999 for cardiac troponin I using an ANN with thermal and color fusion, while Study 13 achieved robust fits for glucose and cholesterol using ensemble models that corrected ambient lighting. By contrast, non-AI methods, especially smartphone-only approaches, showed greater performance drops under uncontrolled conditions, with R² values around 0.79–0.80 for LDL and HDL, likely due to lighting variability. These findings suggest AI's greatest strength lies in stabilizing regression under noisy or nonlinear signal conditions. However, high R² alone is not sufficient. Some colorimetry-only systems still performed well for monotonic, high-contrast analytes, highlighting the continued importance of sensor chemistry. To ensure robust performance, future work should combine R² with broader metrics like residual analysis, external validation, and real-world testing. Overreliance on R² may inflate confidence, particularly in the absence of clinical or field verification.

2.4.2. Accuracy

Unlike limit of detection (LOD) and regression metrics such as R², classification accuracy lacks a consistent universal baseline in biosensing literature. The diversity of decision thresholds, analyte classes, and labeling protocols across studies means that accuracy figures are highly context dependent. As such, we do not compare absolute values across platforms. Instead, we focus on within-dataset patterns observed across sensor architectures, analyte groups, and AI model classes, as summarized in Figure 2.6a and Supplementary Table S6. Overall, AI-enhanced biosensors consistently outperformed non-AI platforms, with the majority of AI-based systems achieving accuracies above 90%, and several reaching the 100% benchmark across diverse sensing contexts. These included both deep learning and hybrid ensemble methods, suggesting the benefits of nonlinear pattern recognition, especially when signal variability or interference is present.

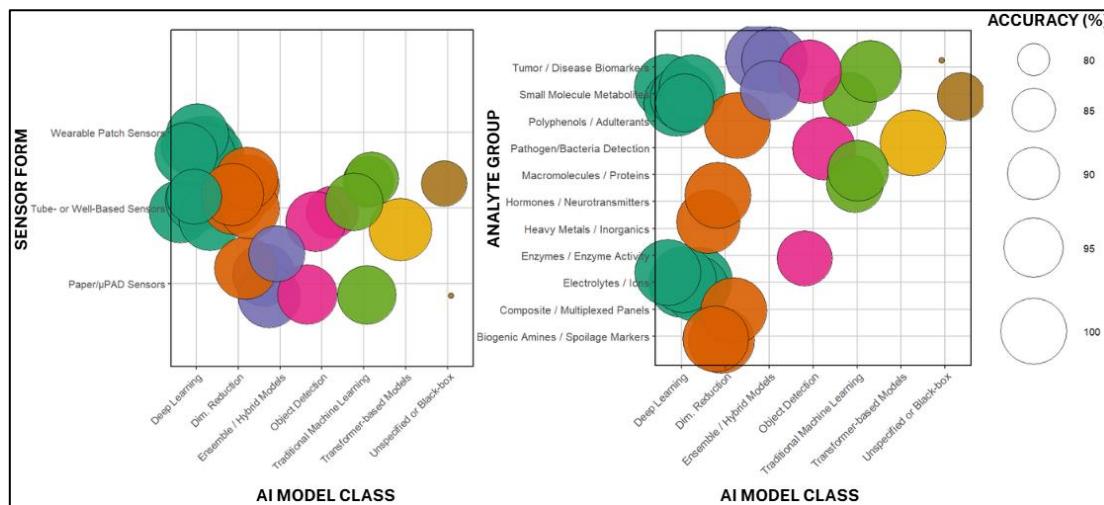


Figure 2.6. Bubble plot of classification/quantification accuracy of AI-enhanced colorimetric biosensors, mapped across sensor form factors (left) and analyte groups (right) by AI model class

At the architecture level, wearable patch sensors, when paired with CNN-based models, demonstrated high robustness and accuracy, often exceeding 95% for multi-biomarker sweat patches. Study 14 achieved 100% classification for glucose, pH, and lactate, enabled by a VGG16 CNN that captured subtle differences in spatial signal distributions under ambient conditions. Similarly, paper/µPAD sensors paired with traditional ML models (e.g., Random Forest, SVM) also performed well, particularly for urinary and metabolic analytes, where structured chromogenic arrays generated reproducible color fingerprints. Study 11, for example, achieved 97% accuracy in urinary tract infection classification using an SVM-RF ensemble. Among analyte categories, tumor and cardiac biomarkers benefited most from AI integration. The fusion of thermal and optical signals in Study 18, using an ANN, yielded accurate discrimination of cardiac troponin I (cTnI), reinforcing the strength of multimodal biosensing for critical clinical analytes. Additionally, for biogenic amines, LDA-based models maintained >95% accuracy, even under food matrix variability.

In contrast, non-AI systems, especially those relying on smartphone cameras with simple thresholding or raw RGB interpretation, showed greater susceptibility to lighting inconsistencies, with accuracy often falling to the 85–90% range. These limitations were particularly evident in complex backgrounds like food spoilage detection or overlapping chromophores, where AI methods (e.g., PCA-LDA fusion) restored classification clarity. From the sensor form perspective, tube- or well-based formats showed generally stable accuracy due to controlled optics, though wearable and paper-based formats labelled them when enhanced by AI. Notably, the highest accuracies clustered in deep learning and object detection classes (Figure 2.6a left panel), reflecting their superior ability to extract spatial and contextual features from raw image data. Together, these trends suggest that while chemical design and sensor chemistry remain foundational, AI integration—especially through CNNs, hybrid models, and transformer-based architectures—can significantly amplify diagnostic reliability, especially under variable environmental or user-handling conditions. Future work should explore adaptive learning for personalized calibration and establish standardized accuracy benchmarks across sensor classes.

3. Synthesis and outlook

1. On the use of smartphones and calibration needs- The collected studies make clear that coupling AI with colorimetric biosensors can dramatically enhance their capabilities, turning simple color changes into rich quantitative and actionable data. A unifying theme is the leveraging of ubiquitous hardware, particularly smartphones, as both the data acquisition device and computation platform. This convergence, seen in roughly 90% of the articles, underscores a practical advantage: AI algorithms deployed on consumer smartphones can transform point-of-care diagnostics, allowing immediate analysis in the field. However, this shift toward RGB smartphone-based pipelines brings new challenges in data normalization. Different phone cameras and ambient lighting conditions can skew color readings, requiring robust calibration to ensure reproducibility⁶⁷. Encouragingly, several teams have introduced clever calibration techniques to tackle this issue. For example, cloud-connected analysis frameworks now incorporate hybrid models (CNNs coupled with recurrent networks) to auto-correct for illumination variances and sensor-specific biases. Such approaches (e.g. a multichannel CNN-GRU pipeline) have achieved R^2 values ~0.99 by learning to adjust for color temperature differences in images, effectively standardizing results across varying conditions. Moving forward, continued innovation in on-device calibration (from one-time color card references to real-time algorithmic corrections) will be essential to fully capitalize on smartphone-enabled AI sensing.

2. On generalizability and data-efficient modelling- Despite the impressive performance gains reported, most studies lack rigorous external validation, highlighting a critical gap between controlled experiments and real-world deployment. Typically, models are trained and tested on the same lab-generated dataset; few works verify that an AI model trained on one device or sample set holds up on others. This absence of external validation and cross-platform testing raises concerns about generalizability, an issue that future research must address by incorporating independent test sets, multi-center trials, or reference sample exchanges. Likewise, the underuse of semi-supervised learning and data augmentation is notable. Many AI models for colorimetric sensing rely on relatively small labeled

datasets, yet few studies leverage the abundance of unlabeled data or synthetic data generation to improve model robustness. Introducing semi-supervised algorithms (which can learn from unlabeled color images) or augmentation techniques (to simulate variations in hue, intensity, backgrounds, etc.) could significantly enhance model resilience to real-world variability at minimal cost. Another insight from our meta-analysis is that AI's added value appears tied less to the analyte type and more to the ambiguity of the signal. In other words, when an assay produces straightforward, high-contrast color changes (e.g. a single intense color shift for a positive result), traditional analysis may suffice. But as the color outputs become more complex, such as subtle gradations, multi-analyte sensor arrays, or overlapping chromatic responses, advanced machine learning yields disproportionate benefits⁶⁸. Indeed, deep learning models excel at deciphering high-dimensional color patterns that humans or simple algorithms struggle to interpret. This trend suggests that future developers should strategically deploy AI in scenarios of inherent signal complexity or uncertainty, where its pattern-recognition strengths are most impactful. It also implies that reporting performance as a function of assay complexity (rather than only by analyte category) could be a more meaningful way to evaluate new AI-enhanced biosensors.

3. On practical gains: speed, multiplexing, and robustness- From a practical standpoint, AI-driven colorimetric analysis offers improvements that extend beyond raw analytical metrics, contributing to better usability and reliability of biosensors. One clear advantage is speed: once trained, an AI model can interpret a sensor's color output in milliseconds, potentially enabling near real-time readouts and quicker decision-making in point-of-care settings. In some cases, algorithms can even detect partial color changes before a reaction is fully complete, shortening the time-to-result. Another benefit is the capacity for multiplexed detection, that is, analyzing multiple indicators simultaneously. Traditional colorimetric assays struggle when multiple test spots or mixed-color outputs must be interpreted at once, whereas machine learning can untangle such composite signals with high accuracy. For example, neural network models have distinguished multiple antibody responses in a single assay with ~89% accuracy, outperforming conventional methods by a significant margin⁶⁸. In general, as more analytes are encoded into color-based tests, AI will be instrumental in accurately classifying outcomes across a multidimensional color space. Equally important is the robustness that AI brings: sophisticated models can accommodate variability in sample quality or environmental conditions (such as inconsistent lighting or user handling) better than rigid threshold-based interpretations. Notably, convolutional neural networks have maintained strong performance even when images are noisy or under suboptimal lighting, a resilience crucial for real-world applications. This robustness reduces the incidence of false negatives or false positives caused by minor perturbations, thus improving trust in home or field deployments.

4. On the horizon: integration with AR/VR and digital design- Looking towards the horizon, there are exciting opportunities to integrate emerging technologies like augmented and virtual reality (AR/VR) with AI-based colorimetric sensing. Early demonstrations have shown that AR smartphone apps can overlay interpretive guidance or even embed fiducial markers into the test to aid real-time result reading. In the future, a user might simply point a phone at a paper sensor and see a quantified result or risk assessment pop up instantly via AR, lowering the barrier to accurate self-testing. VR environments could also serve as training tools, simulating a wide range of colorimetric outcomes for clinicians or as a platform to

virtually prototype sensor designs. Moreover, AI itself can be applied beyond analysis – for instance, using machine-learning optimization to design better colorimetric assays (selecting optimal reagent combinations or layout to maximize signal differentiation) or to create digital twins that predict how a sensor will behave under various scenarios. These exploratory directions, while in nascent stages, underscore the expansive potential at the interface of smart algorithms and biosensing. In summary, the future outlook for AI-enhanced colorimetric biosensors is one of continued convergence by merging accessible hardware, powerful algorithms, and user-centric innovations to deliver faster, multiplexed, and more robust diagnostic solutions. The next few years will likely witness not only incremental performance improvements but also a maturing of the field through standardized evaluation protocols, open datasets for model training, and perhaps the advent of intelligent sensors that learn and adapt during use.

4. Acknowledgments

The authors acknowledge the use of artificial intelligence tools for language refinement and copyediting during manuscript preparation. All content and interpretations remain the sole responsibility of the authors.

References

1. Fleming, K. A. et al. The Lancet Commission on diagnostics: transforming access to diagnostics. *Lancet* **2021**, 398(10315), 1997–2050. [https://doi.org/10.1016/S0140-6736\(21\)00673-5](https://doi.org/10.1016/S0140-6736(21)00673-5)
2. Newman-Toker, D. E. et al. Serious misdiagnosis-related harms in malpractice claims: The “Big Three” – vascular events, infections, and cancers. *BMJ Qual. Saf.* **2023**, 32, 100–112.
3. Sun, Z., Zhang, B., Tu, H., Pan, C., Chai, Y., & Chen, W. Advances in colorimetric biosensors of exosomes: novel approaches based on natural enzymes and nanozymes. *Nanoscale* **2024**, 16, 1005–
4. Google Trends. *Colorimetry – Worldwide, 2021–2025*. <https://trends.google.com> (accessed 4 May 2025).
5. Yang, F.-Q., & Ge, L. Colorimetric Sensors: Methods and Applications. *Sensors* **2023**, 23(5), 2749
6. Cai, Y., Wang, Y., Wu, Y., et al. Current trends in colorimetric biosensors using nanozymes for detecting biotoxins. *Analyst* **2024**, 149, 1234–1245.
7. Flynn, C. D. & Chang, D. Artificial Intelligence in Point-of-Care Biosensing: Challenges and Opportunities. *Diagnostics* **14**, 1100 (2024).
8. Nur, S., Salleh, M., Rozan Mohamad Yunus & Halimah Badioze Zaman. Artificial Intelligence–Powered Electrochemical Sensor: Recent Advances, Challenges, and Prospects. *Heliyon* **10**, e37964–e37964 (2024).
9. Prakashan, D., Kaushik, A. & Gandhi, S. Smart sensors and wound dressings: Artificial intelligence-supported chronic skin monitoring – A review. *Chemical Engineering Journal* **497**, 154371 (2024).

10. Yang, C. & Zhang, H. A review on machine learning-powered fluorescent and colorimetric sensor arrays for bacteria identification. *Microchimica Acta* **190**, (2023).

11. Wang, Z. *et al.* An artificial intelligence-assisted microfluidic colorimetric wearable sensor system for monitoring of key tear biomarkers. *Npj Flexible Electronics* **8**, (2024).

12. Cui, R. *et al.* AI-assisted smartphone-based colorimetric biosensor for visualized, rapid and sensitive detection of pathogenic bacteria. *Biosensors and Bioelectronics* **259**, 116369 (2024).

13. del Real Mata, C. *et al.* AI-Assisted Plasmonic Enhanced Colorimetric Fluidic Device for Hydrogen Peroxide Detection from Cancer Cells. *Advanced Materials Technologies* **10**, (2024).

14. Sun, S. *et al.* BioCosMe: Lip-based Cosmetics with Colorimetric Biosensors for Salivary Analysis using Deep Learning. *Proceedings of the 2024 ACM International Symposium on Wearable Computers* 32–39 (2024) doi:<https://doi.org/10.1145/3675095.3676610>.

15. Hassani-Marand, M., Jafarinejad, S. & Hormozi-Nezhad, M. R. An AI-enabled multi colorimetric sensor array: Towards rapid and noninvasive detection of neuroblastoma urinary markers. *Sensors and Actuators B: Chemical* **396**, 134571 (2023).

16. Xin Ting Zheng *et al.* Battery-free and AI-enabled multiplexed sensor patches for wound monitoring. *Battery-free and AI-enabled multiplexed sensor patches for wound monitoring* **9**, (2023).

17. Tong, H. *et al.* Artificial intelligence-assisted colorimetric lateral flow immunoassay for sensitive and quantitative detection of COVID-19 neutralizing antibody. *Biosensors and Bioelectronics* **213**, 114449 (2022).

18. Wansadaj Jaroenram *et al.* One-step colorimetric isothermal detection of COVID-19 with AI-assisted automated result analysis: A platform model for future emerging point-of-care RNA/DNA disease diagnosis. *Biosensors and Bioelectronics* **249**, 123375–123375 (2022).

19. Siew, J., T. Malathi Thevarajah, Chang, S. W. & Khor, S. M. Paper-based multiplexed colorimetric biosensing of cardiac and lipid biomarkers integrated with machine learning for accurate acute myocardial infarction early diagnosis and prognosis. *Sensors and Actuators B Chemical* **394**, 134403–134403 (2023).

20. Yang, J. *et al.* Machine Learning-Assistant Colorimetric Sensor Arrays for Intelligent and Rapid Diagnosis of Urinary Tract Infection. *ACS Sensors* **9**, 1945–1956 (2024).

21. Feng, F. *et al.* Artificial intelligence-assisted colorimetry for urine glucose detection towards enhanced sensitivity, accuracy, resolution, and anti-illuminating capability. *Nano Research* (2023) doi:<https://doi.org/10.1007/s12274-022-5311-5>.

22. Baştürk, M., Yüzer, E., şen, M. & Kılıç, V. Smartphone-Embedded Artificial Intelligence-Based Regression for Colorimetric Quantification of Multiple Analytes with a Microfluidic Paper-Based Analytical Device in Synthetic Tears. *Advanced Intelligent Systems* (2024) doi:<https://doi.org/10.1002/aisy.202400202>.

23. Liu, Z. *et al.* Explainable Deep-Learning-Assisted Sweat Assessment via a Programmable Colorimetric Chip. *Analytical Chemistry* **94**, 15864–15872 (2022).

24. Do Hyeon Jung *et al.* Automatic quantification of living cells via a non-invasive achromatic colorimetric sensor through machine learning-assisted image analysis using a smartphone. *Chemical engineering journal* **450**, 138281–138281 (2022).

25. Ranbir, Singh, G., Singh, H., Kaur, N. & Singh, N. Azodye-based colorimetric sensor array for identification of biogenic amines: Food forensics by portable RGB-based signal readout. *Sensors and Actuators B: Chemical* **387**, 133794 (2023).

26. Li, H. *et al.* Porphyrin and pH sensitive dye-based colorimetric sensor array coupled chemometrics for dynamic monitoring of tea quality during ultrasound-assisted fermentation. *Microchemical Journal* **197**, 109813 (2023).

27. Yu, Z., Gong, H., Li, M. & Tang, D. Hollow prussian blue nanzyme-richened liposome for artificial neural network-assisted multimodal colorimetric-photothermal immunoassay on smartphone. *Biosensors and Bioelectronics* **218**, 114751 (2022).

28. Zhang, J. *et al.* Explainable Deep Learning-Assisted Self-Calibrating Colorimetric Patches for In Situ Sweat Analysis. *Analytical Chemistry* **96**, 1205–1213 (2024).

29. Zhu, X., Li, T., Hai, X. & Bi, S. A nanzyme-based colorimetric sensor array as electronic tongue for thiols discrimination and disease identification. *Biosensors and Bioelectronics* **213**, 114438 (2022).

30. Singh, H., Singh, G., Kaur, N. & Singh, N. Pattern-based colorimetric sensor array to monitor food spoilage using automated high-throughput analysis. *Biosensors and Bioelectronics* **196**, 113687 (2022).

31. Feng, H. *et al.* Bimodal Visual Sensors Based on Mechanoluminescence and Biosensing for Artificial Intelligence-Assisted Orthodontics. *Advanced Functional Materials* (2024) doi:<https://doi.org/10.1002/adfm.202416437>.

32. Zhai, C. *et al.* An enzyme response-regulated colorimetric assay for pattern recognition sensing application using biomimetic inorganic-protein hybrid nanoflowers. *Chemical Engineering Journal* **431**, 134107 (2022).

33. Yang, X. *et al.* A colorimetric sensor array based on peroxidase activity nanzyme for the highly efficient differential sensing of tea polyphenols and Tieguanyin adulteration. *Food Chemistry* **432**, 137265 (2023).

34. Kong, Y. *et al.* Artificial neural network-facilitated V2C MNs-based colorimetric/fluorescence dual-channel biosensor for highly sensitive detection of AFB1 in peanut. *Talanta* **266**, 125056 (2024).

35. Chen, Y. *et al.* Robot-accelerated development of a colorimetric CO₂ sensing array with wide ranges and high sensitivity via multi-target Bayesian optimizations. *Sensors and Actuators B: Chemical* **390**, 133942 (2023).

36. Solaleh Ghateii & Amir Jahanshahi. Colorimetric detection of glucose with smartphone-coupled μ PADs: harnessing machine learning algorithms in variable lighting environments. *Sensors and actuators. B, Chemical* **400**, 134835–134835 (2024).

37. Hassani-Marand, M., Fahimi-Kashani, N. & Hormozi Nezhad, M. R. Machine-Learning Assisted Multiplex Detection of Catecholamine Neurotransmitters with a Colorimetric Sensor Array. *Analytical Methods* (2023) doi:<https://doi.org/10.1039/d2ay01797k>.

38. Lee, T. et al. A regression-based machine learning approach for pH and glucose detection with redox-sensitive colorimetric paper sensors. *Analytical Methods* **14**, 4749–4755 (2022).

39. Xu, J. et al. Machine Learning-Assisted Portable Dual-Readout Biosensor for Visual Detection of Milk Allergen. *Nano Letters* (2025) doi:<https://doi.org/10.1021/acs.nanolett.5c01001>.

40. Bhatt, S., Kumar, S., Gupta, M. K., Datta, S. K. & Dubey, S. K. Colorimetry-based and smartphone-assisted machine-learning model for quantification of urinary albumin. *Measurement Science and Technology* **35**, 015030–015030 (2023).

41. Mizaj Shabil Sha et al. A smartphone-interfaced, low-cost colorimetry biosensor for selective detection of bronchiectasis via an artificial neural network. *RSC advances* **12**, 23946–23955 (2022).

42. Liu, W. et al. Machine-Learning-Based Colorimetric Sensor on Smartphone for Salivary Uric Acid Detection. *Ieee.org* (2023) doi:<https://doi.org/10.21227/8ad0-mw22>.

43. Xi, X. et al. Preparation of Au/Pt/Ti3C2Cl2 nanoflakes with self-reducing method for colorimetric detection of glutathione and intracellular sensing of hydrogen peroxide. *Carbon* **197**, 476–484 (2022).

44. Peng, Z. et al. Rapid colorimetric detection of H₂O₂ in living cells and its upstream series of molecules based on oxidase-like activity of CoMnO₃ nanofibers. *Sensors and Actuators B: Chemical* **382**, 133540 (2023).

45. Kasatkin, A. & Urakov, A. Effect of hydrogen peroxide on erythrocyte temperature in vitro. *Chemico-Biological Interactions* **354**, 109837 (2022).

46. Miri, A., Orouji, A. & Hormozi-Nezhad, M. R. Etched-suppressed gold nanorods providing highly distinctive plasmonic patterns: Towards multiplex analysis of neuroblastoma biomarkers. *Analytica Chimica Acta* **1325**, 343119 (2024).

47. Surasak Kasetsirikul et al. Detection of the SARS-CoV-2 humanized antibody with paper-based ELISA. *Analyst* **145**, 7680–7686 (2020).

48. Ulloa-Gomez, A. M., Agredo, A., Lucas, A., Somvanshi, S. B. & Stanciu, L. Smartphone-based colorimetric detection of cardiac troponin T via label-free aptasensing. *Biosensors and Bioelectronics* **222**, 114938 (2022).

49. University of Rochester Medical Center. *Rochester.edu* <https://www.urmc.rochester.edu/encyclopedia/content?contentypei=d167&contentid=troponin> (2024).

50. Li, G. et al. Colorimetric aptasensors for sensitive low-density lipoprotein detection based on reduced oxide graphene@molybdenum disulfide-ferrocene nanosheets with peroxidase-like activity. *Analytical Methods* (2024) doi:<https://doi.org/10.1039/d4ay01648c>.

51. Pakira, V., Agarwal, R., Chatterjee, S., Mukherjee, A. & Chakraborty, S. Lipidest: a lipid profile screening test under extreme point of care settings using a portable spinning disc and an office scanner. *Analytical Methods* **15**, 2427–2440 (2023).

52. Johns Hopkins Medicine. Lipid panel. *Johns Hopkins Medicine* <https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/lipid-panel> (2024).

53. Chunta, S., Suedee, R. & Lieberzeit, P. A. High-density lipoprotein sensor based on molecularly imprinted polymer. *Analytical and Bioanalytical Chemistry* **410**, 875–883 (2017).

54. Fan, J., Zhou, K. & Wang, J. Glucose Oxidase Coupling with Pistol-Like DNAzyme Based Colorimetric Assay for Sensitive Glucose Detection in Tears and Saliva. *Applied Biochemistry and Biotechnology* (2024) doi:<https://doi.org/10.1007/s12010-024-05046-7>.

55. Kap, Ö., Kılıç, V., Hardy, J. G. & Horzum, N. Smartphone-based colorimetric detection systems for glucose monitoring in the diagnosis and management of diabetes. *Analyst* **146**, 2784–2806 (2021).

56. Sen, D. K. & Sarin, G. S. Tear glucose levels in normal people and in diabetic patients. *British Journal of Ophthalmology* **64**, 693–695 (1980).

57. Alle, M. et al. Gold nanoparticles spontaneously grown on cellulose nanofibrils as a reusable nanozyme for colorimetric detection of cholesterol in human serum. *International Journal of Biological Macromolecules* **201**, 686–697 (2022).

58. Shi, Z. et al. Highly sensitive and selective colorimetric and fluorescent dual-readout assay for the analysis of spermine, spermidine and cysteine. *Dyes and Pigments* **220**, 111659 (2023).

59. Wei, Y. et al. Smartphone-integrated colorimetric sensor for rapid and highly selective detection of spermine in food based on the laccase-mimicking activity of flower-shaped Mn₃O₄ nanoparticles. *Microchemical Journal* **198**, 110148–110148 (2024).

60. Naila, A., Flint, S., Fletcher, G., Bremer, P. & Meerdink, G. Control of Biogenic Amines in Food-Existing and Emerging Approaches. *Journal of Food Science* **75**, R139–R150 (2010).

61. Fan, M. et al. Highly sensitive detection of tryptophan (Trp) in serum based on diazo-reaction coupling with Surface-Enhanced Raman Scattering and colorimetric assay. *Analytica Chimica Acta* **1119**, 52–59 (2020).

62. Xie, C. et al. Fast detection of tryptamine in meat products with azide-functionalized covalent organic frameworks confined in molecularly imprinted polymers. *Food Chemistry* **452**, 139527 (2024).

63. Schirone, M. *et al.* Biogenic Amines in Meat and Meat Products: A Review of the Science and Future Perspectives. *Foods* **11**, 788 (2022).

64. Saadati, A. *et al.* Optical discrimination of histamine and ethylenediamine in meat samples using a colorimetric affordable test strip (CATS): introducing a novel lab-on paper sensing strategy for low-cost ensuring food safety by rapid and accurate monitoring of biogenic amines. *RSC Advances* **14**, 8602–8614 (2024).

65. Wang, J. *et al.* DNAzyme-based and smartphone-assisted colorimetric biosensor for ultrasensitive and highly selective detection of histamine in meats. *Food Chemistry* **435**, 137526 (2024).

66. Michalski, M., Pawul-Gruba, M. & Madejska, A. Histamine contents in raw long-ripening meat products commercially available in Poland. *Journal of Veterinary Research* **65**, 477–481 (2021).

67. Russell, S. M., Doménech-Sánchez, A. & Roberto. Augmented Reality for Real-Time Detection and Interpretation of Colorimetric Signals Generated by Paper-Based Biosensors. *ACS Sensors* **2**, 848–853 (2017).

68. Han, G.-R. *et al.* Machine learning in point-of-care testing: innovations, challenges, and opportunities. *Nature Communications* **16**, (2025).

Table S1. Comprehensive table for the 32 reviewed studies on AI-enabled colorimetric biosensor

Sensor Type	Analyte	Sample Source	Detection Mechanism	Signal collection platform for AI	AI Model	Role of AI (with Subgroup Tags)	Reported LOD	Classification Accuracy	Regression Accuracy (inverted MAE or similar)	Fit Quality (R ² or r)
Wearable microfluidic colorimetric sensor ¹¹	Vitamin C, H ⁺ Human tears (pH), Ca ²⁺ , protein		Analyte-induced color change in PDMS microfluidic patch captured as RGB signal for concentration mapping	Smartphone (RGB image capture)	CNN-GRU (1D for pH, 3D for others)	Image-to-concentration regression using CNN-GRU (Regression for Quantification)	Not reported	Not reported	0.001 (MAE)	R ² = 0.998
Smartphone-based hydrogel colorimetric sensor ¹²	Hyaluronidas e (Haase) food from bacteria	Clinical swabs, Hyaluronic acid (HA) CPRG release, reacts with β-galactidose and generates color changes		Smartphone degradation triggers (camera)	YOLOv5	Object detection and 10 bacteria classification (Image Classification, Object Detection)	10 CFU/mL	92% (between gram + and gram -)	Not reported	R ² = 0.97
Microfluidic plasmonic-enhanced colorimetric sensor ¹³	H ₂ O ₂	Cancer cell culture medium	Amplex Red reacts with H ₂ O ₂ in presence of HRP, forming a pink dye; signal amplified by plasmonic nanostructures	Microscope (image capture)	Random Forest Classifier	Binary classification of H ₂ O ₂ levels from picoMolar RGB image (Image Classification)	1 picoMolar	91% (between high and low concentration)	Not reported	R ² = 0.98
Lip-applied sensor ¹⁴	pH	Skin surface (via lip application)	Anthocyanin in lip pigment undergoes pH-triggered color shift captured via selfies	Smartphone (selfie camera)	CNN	Lip color classification into pH levels using CNN (Image Classification)	Not reported	92% (0.92)	Not reported	Not reported
Multicolorimetric sensor array (AuNR-AgNP-based) (Plasmonic, Paper-based) ¹⁵	HVA, VMA	Human urine (tumor markers)	Redox reaction between HVA/VMA and Ag ⁺ causes silver shell formation on Au nanorods, altering LSPR and generating multicolor shifts	Smartphone (RGB image)	PCA + LDA + PLSR	Multivariate regression and classification of tumor markers (Regression, Dim. Reduction + Classification)	0.22 μM (HVA) and 0.29 μM (VMA)	Not reported	100% (HVA) and 100% (VMA)	R ² = 0.999 (HVA) and R ² = 0.999 (VMA)

Multiplexed Colorimetric Patch (PETAL) ¹⁶	Temperature, pH, TMA, uric acid, moisture	Wound exudate (rat models)	Colorimetric sensors using liquid crystals, organic dyes, enzymes, and metal ions	Smartphone (patch image)	CNN	Image-based classification of wound biomarkers (Image Classification)	Not reported	94–96%	(blank)	(blank)
PDA-based lateral flow immunoassay (LFIA) (Lateral Flow) ¹⁷	COVID-19 neutralizing antibody	Clinical serum	PDA-NPs conjugated with RBD antigen bind to antibodies; reduced PDA binding causes lighter test line; image processed via T/(T+C) grayscale ratio	Smartphone (test strip image)	Vision Transformer (ViT) + ResNet50	Band detection and quantification using ViT (Regression, Object Detection)	160 ng/mL	Not reported	Not reported	Not reported
Dual-dye colorimetric RT-LAMP assay (Lateral Flow) ¹⁸	SARS-CoV-2	Nasopharyngeal swabs	Isothermal amplification causes pH drop, triggering color change in Xylenol Orange and Lavender Green dyes; image analyzed post-reaction	Smartphone or camera (reaction tube image)	DETR-based model and COVID result (ResNet50 + Transformer)Detection, Image Classification	Tube segmentation and COVID result (reduced to 83% when Object Detection)	100%	(blank)	(blank)	R ² = 0.998
Paper-based multiplexed colorimetric biosensor (Paper-based) ¹⁹	Cardiac and lipid biomarkers	Human serum	Targets (e.g., cTnI, HDL, LDL) separated and detected via electrophoresis-induced color change on paper	Scanner or smartphone (paper strip image)	CatBoost + PLS-DA, t-SNE (ensemble)	Color feature extraction and disease classification (Dim. Reduction + Clustering)	CtnI (1.210x10 ⁴ ug/mL) and LDL (435.815 ug/mL)	75.2% for acute myocardial infarction	Not reported	0.999, 0.9991, 0.999 respectively
Urinary disease colorimetric test array (Paper-based) ²⁰	Urinary disease markers	Human urine	Colorimetric reaction of multiple sensors (metal–organic complexes and chromogenic reagents) with urine	Smartphone (sensor array image)	Random Forest, SVM, kNN	Pattern classification of urinary markers (Image Classification)	Not reported	97% classification for UTI	(blank)	(blank)

constituents captured via smartphone								
Colorimetric sensor using Glucose AuNPs ²¹	Urine samples	Glucose induces color change to AuNP	Smartphone	Image processing and illumination correction for accurate color interpretation across varying lighting conditions	Not reported	87.6% accurate glucose concentration prediction	Not reported	Not reported
Microfluidic sensor for artificial tears (Microfluidic) ²²	Glucose, cholesterol, pH	Synthetic tears	Gox/ChOx-mediated oxidation produces H ₂ O ₂ , catalyzing TMB color change via HRP; universal pH indicator used; smartphone captures RGB data	Smartphone (app-integrated µPAD images)	Deep Neural Network (DNN)	Regression for pH/glucose/cholesterol from artificial tear images (Regression for Quantification)	Glucose = 100% 131 uM Cholesterol = 217 uM	RMS=0.386 0.996 (glucose) 0.997 (cholesterol)
Sweat-based biosensor (Wearable) ²³	Glucose, pH, lactate	Human sweat	Chromogenic reactions triggered by sweat analytes across images) spatially arranged compartments; color changes recorded via smartphone	Smartphone (microfluidic chip based CNN)	VGG16-based CNN	Color regression of sweat biomarker levels (Regression for Quantification)	Not reported 100% classification accuracy for all biomarkers in terms of quantity	(blank) R ² = 0.9999 for three biomarkers
HeLa cell-based metabolic colorimetric sensor ²⁴	Live HeLa cell viability	HeLa cell culture	pH-sensitive achromatic dye transitions (black to orange) based on cell density; saturation analyzed via smartphone images	Smartphone (achromatic saturation images)	Mask-RCNN	Quantification of live cell images (Image Classification)	51 × 10 ⁴ 98% (blank)	R ² = 0.959

Colorimetric biogenic amine sensor for meat ²⁵	Biogenic amines	Chicken meat samples	Metal-azodye complex forming a fingerprint-based colorimetric response; analyzed via UV-vis absorbance and RGB imaging	UV-Vis scanner and smartphone (portable strip)	PCA, LDA, PLSR	Colorimetric amine pattern classification (Image Classification)	0.378 ppm (spermine)	Not reported	100% accuracy (cross validation), 83% for interference testing	Not reported
Tea polyphenol sensor during fermentation ²⁶	Tea polyphenols	Fermented green tea (w/ ultrasound)	RGB image extraction of CSA and multivariate calibration	Smartphone (RGB image of sensor array)	SVM	Regression and quality tracking for fermentation (Regression for Quantification)	Not reported	Not reported	Rc = 0.886, Not reported RMSEC = 0.042 mg/g, Rp = 0.862, and RMSEP = 0.043 mg/g	Not reported
Multiplexed troponin sensor (Nanozyme-based) ²⁷	Cardiac troponin I (cTnI)	Human serum	Cascade nanozyme-based colorimetric and photothermal signals from h-Prussian Blue in TMB-H ₂ O ₂ system	Smartphone + thermometer (absorbance + thermal)	Artificial Neural Network (ANN, 3 hidden layers, 64 neurons)	Feature fusion from color and temperature signals for cTnI (Multimodal Fusion)	10.8 pg/mL	(blank)	(blank)	R ² = 0.9965
Sweat ion and pH patch sensor ²⁸	Na ⁺ , K ⁺ , pH	Human sweat during exercise	Printed chromogenic reagent zones and reference dye; color change recorded for in-situ analyte detection	Smartphone (sweat patch image with reference dye)	Explainable CNN (with ratiometric self-calibration)	Signal mapping for electrolyte and pH balance (Regression for Quantification)	classified and quantified with 100% accuracy	100% (≥50 nM)	(blank)	(blank)
Thiol-level cancer detection sensor ²⁹	Thiols (Cys, GSH, Hcy, DTT, MCH, TGA)	Standard solutions	Thiol-induced inhibition of metal ion-TPA@GQD nanozyme peroxidase-like catalysis of TMB-H ₂ O ₂ reaction, creating distinct color patterns	UV-Vis reader or smartphone (RGB absorbance pattern)	Linear Discriminant Analysis (LDA)	Clustering of thiol-level profiles for disease classification (Dim. Reduction + Clustering)	50 nM thiol (not specified)	100% accuracy to separate and discriminate from different thiols	Not reported	Not reported

("fingerprints") for LDA discrimination									
Biogenic amine sensor array ³⁰	Biogenic amines (tryptamine and spermine)	Meat and cottage cheese	Metal-azophenol complexes (C1–C11) respond to amines with colorimetric "fingerprint" patterns across 10 UV–Vis channels	Smartphone or UV-Vis scanner (sensor array image)	PCA, LDA	Color pattern recognition of food spoilage markers (Image Classification)	Tryptamine 100% (LDA) 0.40 ppm Histidine 0.42 ppm Spermine 0.45 ppm Spermidine 0.66 ppm	Not reported	R ² = 0.96 (Trp), 0.97 (Spermine)
Bimodal Visual Sensors Based on Mechanoluminescence and Biosensing ³¹	Cariogenic bacteria	Oral swabs, in vitro culture	Bacterial acid production (colorimetric pH shift mechanoluminescence via anthocyanin) and tooth pressure via mechanoluminescence	Smartphone (dual-mode (colorimetric pH shift mechanoluminescence via anthocyanin) and tooth pressure via mechanoluminescence)	CNN-based model	Segmentation and bacterial profile analysis (Object Detection, Image Classification)	<1 mg/mL (estimated) accuracy in the precise decoupling of visual signals	97.7% accuracy in the precise decoupling of visual signals	Not reported
Heavy metal colorimetric sensor ³²	Cr ³⁺ , Fe ³⁺ , Al ³⁺ , Ni ²⁺ , Cu ²⁺ , Zn ²⁺	Water and serum samples	AChE inhibition by metal ions alters enzymatic reaction with chromogenic substrate, producing color shift patterns	UV-Vis spectrophotometer (absorbance scan of arrays)	PCA	Metal concentration regression using pixel intensity (Regression for Quantification)	0.81 µM, 0.75 µM, 1.06 µM	98% accuracy (blank) in p	0.95, 0.96, 0.99 respectively
Tea authentication array sensor ³³	Tea polyphenols, adulterants	Tea infusion samples	TMB-H ₂ O ₂ chromogenic system catalyzed by Bpy-Cu and Asp-Cu nanozymes; inhibition by polyphenols alters signal	Smartphone or scanner (nanozyme array image)	LDA, Decision Tree (DT), HCA	Classification of authentic vs adulterated tea via color (Image Classification)	Not reported	Discrimination accuracy was 100%.	Not reported

AFB1 detection in ground peanut samples ³⁴	Aflatoxin B1 (AFB1)	Peanut extract (ground sample)	Aflatoxin B1 (AFB1) in food (e.g., peanuts)	Smartphone (fluorescent + colorimetric microneedle patch image)	ANN	AFB1 concentration prediction from patch image (Regression for Quantification)	0.6845 ng (blank)	(blank)	R ² = 0.9974
CO ₂ strip colorimetric sensor ³⁵	CO ₂	Ambient air (gas sample)	Color change induced by CO ₂ -mediated pH shift, captured as RGB ΔE across a 6-receptor array	Robotic camera and RGB sensor (automated platform)	Multi-target Bayesian Optimization (BO) integrated with robotic plcaatform	CO ₂ level regression signal (Regression for Quantification)	400 ppm	(blank)	RMSE = 0.27% (blank)
Paper-based glucose sensor ³⁶	Glucose	Human plasma	Enzyme-catalyzed colorimetric reaction (flash/no-flash using glucose oxidase image pair) (Gox) and horseradish peroxidase (HRP), with TMB for low and KI for high glucose concentration detection	Smartphone (flash/no-flash using glucose oxidase image pair) (Gox) and horseradish peroxidase (HRP), with TMB for low and KI for high glucose concentration detection	Ensemble Bagging Classifier (EBC), Linear Regression	Glucose intensity prediction using Lab image values (Regression for Quantification, Classification)	Not reported	95% (TMB color indicator), 91% (KI color indicator)	R ² = 0.97 (high conc), R ² = 0.95 (low conc)
Urine neurotransmitter sensor ³⁷	dopamine (DA), epinephrine (EP), norepinephrine (NEP), and levodopa (LD)	Human urine	Aggregation-based LSPR shift from color shift image AuNP interactions at different pH conditions	Smartphone (LSPR LDA, PLSR under pH variation)	Catecholamine level estimation using feature-based models (Regression for Quantification, Classification)	0.3, 0.5, 0.2, and 1.9 mM for DA, EP, NEP, and LD,	100% (LDA)	(blank)	R ² = 0.99 for 4 analytes
Smart μPAD for pH and glucose ³⁸	pH, Glucose	Aqueous lab-prepared solutions	For pH: Pani-NP undergoes EB to ES state transition; For glucose: Gox generates H ₂ O ₂ , reducing Pani-NPs, causing color shift (blue→green)	Smartphone (dipstick color image under ambient light)	RFR (best), DTR, SVR	RGB analysis for pH/glucose detection in μPADs (Regression for Quantification)	None	(blank)	(blank) R ² = 0.96 (pH), 0.92 (glucose)

Milk β -lactoglobulin strip β -Lateral Flow ³⁹	Milk Lactoglobulin	Glucose-fueled EBFC Smartphone for electrochemical + (colorimetric + HRP/ABTS voltage strip colorimetric detection readout) using smartphone-assisted image processing	Decision Tree (DT), Random Forest (RF), (Regression for k-NN, SVM Quantification)	Grayscale intensity detection for β -Lactoglobulin	0.0081 ng/mL,	93%	Not reported	Not reported	
Albumin detection strip (Lateral Flow) ⁴⁰	Albumin	Urine	Protein concentration Smartphone triggers color change (dipstick image on dipstick; captured under varied by smartphone under lighting) varied lighting	KNN classifier (vs computation for RF, SVM)	Intensity ratio albumin strip (Regression for Quantification)	4 mg/L	96%	Not reported	Not reported
H ₂ O ₂ sensor (Spectrophotometric) ⁴¹	Hydrogen peroxide	Exhaled breath	RGB signal mapping via colorimetric dye response (Eosin blue, test strip) Kmno ₄ , Starch-Iodine)	Smartphone (RGB mapping of breath response (Eosin blue, test strip) Kmno ₄ , Starch-Iodine)	ANN Regression	Colorimetric pixel-based regression of H ₂ O ₂ (Regression for Quantification)	0.011 ppm	94% accuracy for quantification	0.941
Saliva uric acid μ PAD (Microfluidic) ⁴²	Uric Acid	Saliva	Prussian blue generation reaction with salivary UA forming blue complex	Smartphone (μ PAD salivary test image)	Decision Tree Regressor (ML); Multiple Polynomial Regressor	Color space regression for uric acid quantification (Regression for Quantification)	Not reported (blank)	MAE=4.2 ppm	Not reported

Table S2. Reported LOD values in AI-based studies, colorimetry only, colorimetry plus smartphone, and typical values in food, human, and environment samples

Analyte	LOD AI-based (μM)*	LOD colorimetry only*	LOD colorimetry plus smartphone (no AI)*	Typical values*
H2O2 in cells	0.000001 μM	10.24 μM ⁴³	0.24 μM ⁴⁴	0.01 μM ⁴⁵
VMA in urine	0.22 μM	0.340 μM	0.260 μM ⁴⁶	28.7 μM
HVA in urine	0.29 μM	0.313 μM	0.397 μM ⁴⁶	41 μM
COVID-19 antibody in human serum	1.07×10^{-6} (160 ng/mL)	6.00×10^{-5} μM ⁴⁷ (9 ng/uL)	2.11×10^{-10} uM	None
Cardiac troponin (cTnI) in human serum	5.06×10^{-10} (1.210×10^{-5} ug/mL)	5.44×10^{-16} μM (0.013 pg mL $^{-1}$)	1.63×10^{-8} μM 48 3.9×10^{-4} $\mu\text{g}/\text{ml}$	0.02 ng/L ⁴⁹
LDL in human serum	1.277×10^{-4} μM (383.127 ug/mL)	7.33×10^{-10} μM ⁵⁰ (2.1999 $\mu\text{g}/\text{mL}$)	1.77×10^{-8} ⁵¹ (5.31 mg/dl)	0.53 ⁵² (100 mg/dL)
HDL in human serum	1.09 μM (435.815 ug/mL)	2 mg/dL ⁵³ 5.00×10^{-8} μM	2.03×10^{-7} μM (8.10 mg/dl) ⁵¹	40 mg/dL
Glucose in tears	131 uM (23.61 mg/L)	0.32 μM ⁵⁴ 0.05765 mg/L	13.49 uM ⁵⁵	0.2 mM ⁵⁶ (360 mg/L)
Cholesterol in tears	217 uM (83.87 mg/L)	1.9 μM ⁵⁷ 0.7356 mg/L	0.00085 M	1.9 μM
Spermine in chicken meat	1.87 μM 0.378 ppm	0.57 uM ⁵⁸ 0.115 mg/L	0.4644 uM 0.094 ug/mL ⁵⁹	988.4 uM 200 ppm ⁶⁰
Cardiac troponin (cTnI) in human serum	10.8 picogram/mL 4.52×10^{-16} μM	5.44×10^{-16} μM (0.013 pg mL $^{-1}$)	$.63 \times 10^{-8}$ uM ⁴⁸ 3.9×10^{-4} $\mu\text{g}/\text{ml}$	0.02 ng/L ⁴⁹
Tryptamine in meat	2.50 μM 0.40 ppm	20 nM ⁶¹ 0.0032 mg/L	1.74 $\mu\text{g}/\text{L}$ ⁶² 1.086×10^{-5} uM	5 mg/kg meat ⁶³
Histidine in meat	2.71 μM 0.42 ppm	0.1 μM ⁶⁴	8 $\mu\text{g}/\text{L}$ ⁶⁵	9.0 μM ⁶⁶
Spermine in meat	2.22 μM 0.45 ppm	0.57 uM ⁵⁸ 0.115 mg/L	0.4644 uM 0.094 ug/mL ⁵⁹	988.4 uM 200 ppm ⁶⁰

*Values were converted using molar masses

Table S3. Reported R^2 values in AI-based studies, colorimetry only, and colorimetry plus smartphone

Analyte	LOD AI-based (μM)	LOD colorimetry only	LOD colorimetry plus smartphone (no AI)
H ₂ O ₂ in cells	0.998	0.9972	0.997
VMA in urine	0.999	0.996	0.997
HVA in urine	0.999	0.995	0.998
Cardiac troponin (cTnI) in human serum	0.999	0.990	0.981
LDL in human serum	0.999	0.9946	0.7917
HDL in human serum	0.999	0.9918	0.8018
Glucose in tears	0.996	0.994	0.995
Cholesterol in tears	0.997	0.993	0.993
Spermine in chicken meat	0.959	0.977	0.99209
Cardiac troponin (cTnI) in human serum	0.9999	0.990	0.981
Tryptamine in meat	0.9596	0.9969	0.987
Histidine in meat	0.952	0.9852	0.982
Spermine in meat	0.967	0.977	0.99209

*values correspond to cited studies in Table S2

Table S4. Statistical testing (Mann-Whitney U test) for LOD

Pair	p-value
AI-based vs Colorimetry + smartphone	p = 0.1610359
AI-based vs Colorimetry only	p = 0.3011529
AI-based vs Typical/Optimal	p = 0.2747575

*Statistical testing was conducted using R Studio's Wilcoxon rank-sum tests

Table S5. Statistical testing (Mann-Whitney U test) for R²

Pair	p-value
AI-based vs Colorimetry + smartphone	p = 0.07539264
AI-based vs Colorimetry only	p = 0.1422894

*Statistical testing was conducted using R Studio's Wilcoxon rank-sum tests

Table S6. Data for bubble plot analysis with information obtained from Table S5

AI Subgroup	Analyte	Classification Accuracy	Analyte Group	Sensor Type
Object Detection	Hyaluronidase (HAase)	92	Enzymes / Enzyme Activity	Tube- or Well-Based Sensors
Traditional Machine Learning	H ₂ O ₂	91	Small Molecule Metabolites	Tube- or Well-Based Sensors
Deep Learning	pH	92	Electrolytes / Ions	Wearable Patch Sensors
Ensemble / Hybrid Models	HVA	100	Tumor / Disease Biomarkers	Paper/Î¼PAD Sensors
Ensemble / Hybrid Models	VMA	100	Tumor / Disease Biomarkers	Paper/Î¼PAD Sensors
Transformer-based Models	SARS-CoV-2 RNA	100	Pathogen/Bacteria Detection	Tube- or Well-Based Sensors
Unspecified or Black-box	Cardiac and lipid biomarkers	75.2	Tumor / Disease Biomarkers	Paper/Î¼PAD Sensors
Traditional Machine Learning	Urinary disease markers	97	Tumor / Disease Biomarkers	Paper/Î¼PAD Sensors
Unspecified or Black-box	Glucose	87.6	Small Molecule Metabolites	Tube- or Well-Based Sensors
Deep Learning	Glucose	100	Small Molecule Metabolites	Tube- or Well-Based Sensors
Deep Learning	cholesterol	100	Small Molecule Metabolites	Tube- or Well-Based Sensors
Deep Learning	pH	100	Electrolytes / Ions	Tube- or Well-Based Sensors
Deep Learning	Glucose	100	Small Molecule Metabolites	Wearable Patch Sensors
Deep Learning	pH	100	Electrolytes / Ions	Wearable Patch Sensors
Deep Learning	lactate	100	Small Molecule Metabolites	Wearable Patch Sensors
Object Detection	Live HeLa cell viability	98	Tumor / Disease Biomarkers	Tube- or Well-Based Sensors
Dim. Reduction	Biogenic amines	100	Biogenic Amines / Spoilage Markers	Paper/Î¼PAD Sensors
Deep Learning	Na ⁺	100	Electrolytes / Ions	Wearable Patch Sensors
Deep Learning	K ⁺	100	Electrolytes / Ions	Wearable Patch Sensors
Deep Learning	pH	100	Electrolytes / Ions	Wearable Patch Sensors
Dim. Reduction	Thiols	100	Composite / Multiplexed Panels	Tube- or Well-Based Sensors
Dim. Reduction	Biogenic amines	100	Biogenic Amines / Spoilage Markers	Tube- or Well-Based Sensors
Object Detection	Cariogenic bacteria	97.7	Pathogen/Bacteria Detection	Paper/Î¼PAD Sensors
Dim. Reduction	Heavy metals	98	Heavy Metals / Inorganics	Tube- or Well-Based Sensors
Dim. Reduction	Tea polyphenols	100	Polyphenols / Adulterants	Tube- or Well-Based Sensors

Ensemble / Hybrid Models	Glucose	95	Small Molecule Metabolites	Paper/Î¼PAD Sensors
Dim. Reduction	Catecholamines	100	Hormones / Neurotransmitters	Tube- or Well-Based Sensors
Traditional Machine Learning	Î²-Lactoglobulin	93	Macromolecules / Proteins	Tube- or Well-Based Sensors
Traditional Machine Learning	Albumin	96	Macromolecules / Proteins	Tube- or Well-Based Sensors
Deep Learning	Hâ,,Oâ,,	94	Small Molecule Metabolites	Tube- or Well-Based Sensors

Focused Review of Recent Modelling Strategies in Power-to-X Systems for Renewable Energy Storage in Smart Grids

Christian Darwin Valencia¹, Gobinath Rajarathnam¹

¹ School of Chemical and Biomolecular Engineering, The University of Sydney, Australia

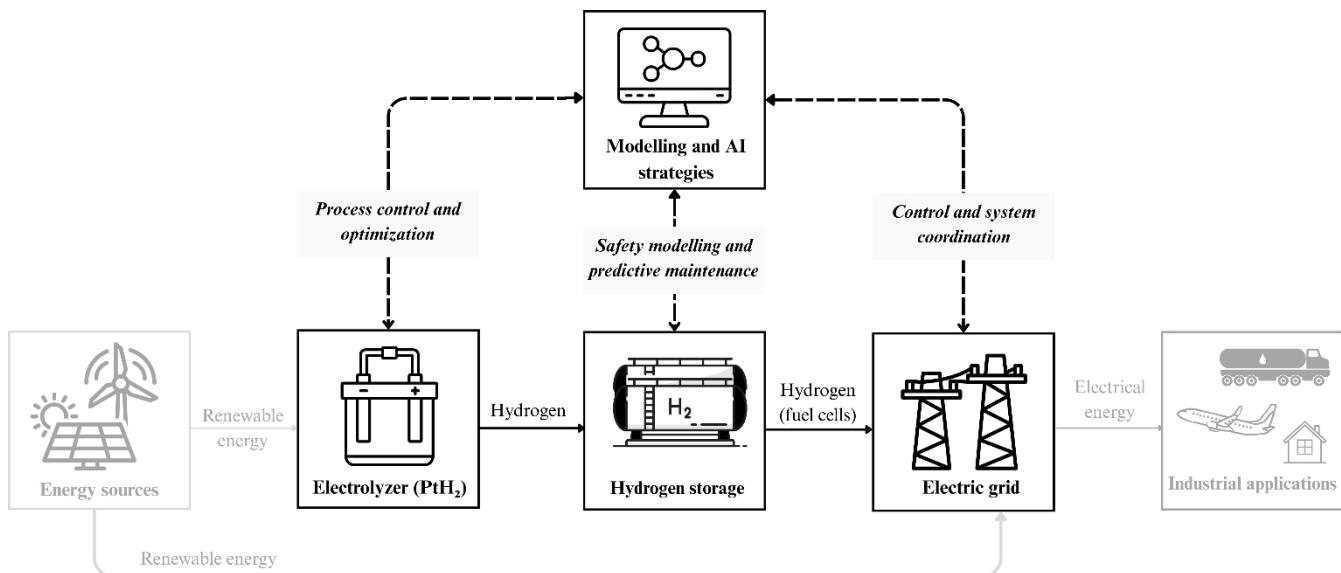
E-mail: eval0369@uni.sydney.edu.au

Received xxxxxx

Accepted for publication xxxxxx

Published xxxxxx

Graphical Abstract



Abstract

The variability of renewable energy sources presents a major challenge for maintaining power system stability and long-duration energy storage. Power-to-Hydrogen (PtH₂) systems provide a viable solution by converting surplus renewable into hydrogen, which can be stored and used across different sectors. This review focuses on modelling strategies applied to three core PtH₂ processes: hydrogen production via electrolysis, storage, and integration into smart grids. Traditional modelling approaches including computational fluid dynamics (CFD), techno-economic analysis (TEA), process simulation, and linear programming (LP) remain essential for system design but are limited in handling dynamic, real-time operations. In contrast, emerging methods including machine learning (ML), reinforcement learning (RL), surrogate modelling, digital twins, and augmented/virtual reality (AR/VR) platforms offer improved adaptability, predictive control, and operator interaction. However, these tools face limitations related to data availability, computational cost, model interpretability, and integration with existing simulation environments. The review identifies a growing shift toward hybrid modelling frameworks that

combine physical accuracy with data-driven adaptability. Future research should focus on building standardised datasets, developing interoperable modelling platforms, expanding the role of real-time visualisation technologies, and must be supported not only by technical innovation but also by evolving policy for scalable and resilient PtH₂-integrated smart grid.

Keywords: Power-to-X (P2X), Power-to-Hydrogen (PtH₂), renewable energy storage, smart-grids, advanced modelling, computer simulations, artificial intelligence, machine learning, AR/VR

1. Introduction

The global energy transition is accelerating the deployment of renewable energy sources such as solar and wind¹. However, their inherent variability introduces operational challenges to modern power systems, particularly in ensuring consistent supply and grid stability.¹ Energy storage technologies have become central to enabling reliable and flexible renewable integration.²

Power-to-Hydrogen (PtH₂) has emerged as a promising long-duration energy storage solution.³⁻⁵ By converting renewable energy into hydrogen via electrolysis, PtH₂ enables energy to be stored in chemical form and later utilised across sectors, including electricity, transport, and industrial applications⁵. Unlike conventional battery storage, hydrogen offers higher storage capacity over longer timescales, making it suitable for seasonal balancing and sector coupling.⁶

Recent research has increasingly focused on modelling strategies that support the deployment of PtH₂ systems. Advanced simulations and AI-augmented tools are now being used to enable dynamic integration with smart grid, optimise conversion efficiency and assess techno-economic viability, and enable dynamic integration with smart grids.⁷⁻⁸ Despite

increased attention, few reviews have synthesized the full modelling stack from electrolysis to grid-scale integration.⁷

This review aims to synthesise emerging modelling approaches applied to PtH₂ systems, with emphasis on processes involving energy conversion, compression and storage, and smart grid integration.

2. Modelling strategies across the PtH₂ system

PtH₂ systems core processes include hydrogen production, storage, and electric grid integration, each requires specialised modelling approaches to optimize performance, cost, and control. This section reviews emerging modelling strategies applied at each stage, with particular emphasis on process-level simulations, safety and reliability, and system coordination models. Comparative summaries and case studies are provided to illustrate how these methods are applied in practice and to highlight their respective advantages and limitations.

2.1 Electrolysis process control and optimization

Hydrogen production via electrolysis is the foundational process in PtH₂ systems. Electrolysis enables the conversion of electrical energy typically from renewable energy sources

Table 1 | Traditional and emerging models used in electrolysis systems control and optimization

Type	Approach	Strengths	Limitations	Tools	Ref.
Traditional	Computational Fluid Dynamics (CFD)	High spatial detail; flow and heat analysis	Computationally expensive	COMSOL, ANSYS	[12,18]
	Process Simulation + Techno-economic assessment (TEA)	System-wide modelling; cost-analysis	Rigid to variable input; limited real-time use	Aspen Plus	[13,19]
	Numerical optimization	Effective for tuning and design refinement	Requires well-defined objectives	MATLAB	[13,20]
	Monte Carlo simulation	Captures uncertainty	Requires many runs; less mechanistic	Python, MATLAB	[14,20]
Emerging	Machine Learning (ML)	Fast and adaptive forecasting	Needs large, quality datasets	TensorFlow	[15,21]
	Reinforcement Learning (RL)	Real-time adaptive control under fluctuating inputs	Complex training and policy validation	OpenAI Gym, Stable Baselines	[15,22]
	Surrogate models	Reduces simulation time; enables real-time control	Accuracy limited to trained domain	GPFlow, surrogateML	[12,15]
	AR/VR + Digital twins	Visual diagnostics and operator training	High development cost	Unity	[16,17]

into chemical energy by splitting water into hydrogen and oxygen⁹. The most common types of water electrolysis technologies include Alkaline Water Electrolysis (AEL), Proton Exchange Membrane Electrolysis (PEM), Solid Oxide Electrolyser Cell (SOEC), Anion Exchange Membrane Electrolysis (AEM).¹⁰ These technologies differ in terms of operating temperature, response time, system complexity, and integration potential with variable power inputs.¹⁰⁻¹¹ These factors influence the selection and design of appropriate modelling strategies for control and optimization.

[Table 1](#) outlines different modelling approaches applied to electrolysis system control and optimisation. Traditional methods such as CFD are used to analyze thermal gradients, flow behaviour, and gas evolution in electrolyser cells¹². These models provide high physical accuracy but are computationally intensive and limited to offline analysis. At the system level, process simulation combined with TEA supports performance evaluation and cost estimation under different scenarios.¹³ However, these models assume fixed input profiles and are not suited for dynamic control. Numerical optimization is used to refine design and operating parameters but requires well-defined objectives and may converge to local minima.¹³ Monte Carlo simulations quantify uncertainties in cost drivers or input variability, though they do not capture time-dependent system dynamics.¹⁴

To address the limitations of static modelling approaches, recent studies have adopted data-driven methods. ML methods such as Artificial Neural Networks (ANN) was used for predicting stack performance and hydrogen output using operational or simulation data.^{15,21} These models improve prediction speed but require large, well-labelled datasets. Reinforcement learning (RL) has also been applied for adaptive electrolyser control under fluctuating power inputs, though it demands complex training environments.¹⁵ Surrogate models, derived from CFD or system simulations, are employed for fast approximation in control applications¹². These are often integrated into digital twins, which combine physical models with real-time data to support diagnostics and

optimisation. Moreover, emerging AR and digital twin platforms provide visual interfaces for system monitoring and operator support. While still limited in deployment, these tools have shown potential for training and real-time fault identification.¹⁶

A recent study¹² integrated CFD and AI and ML-based modeling for enhanced alkaline water electrolysis cell performance for hydrogen production. CFD was coupled with an ANN surrogate model to predict current density in an alkaline electrolyser, reducing simulation time by over 90% while maintaining accuracy demonstrating the advantage of combining physical and data-driven methodologies.

Traditional models remain essential for system design and validation, while emerging approaches improve adaptability and control. Integrating both supports more efficient and robust electrolysis under variable operating conditions.

2.2 Hydrogen storage safety and reliability

Hydrogen storage refers to the containment of hydrogen following its production, through electrolysis, for later use in

Table 2 | Traditional and emerging models used in PtH₂ hydrogen storage safety and reliability

Type	Approach	Strengths	Limitations	Tools	Ref.
Traditional	Finite Element Modelling (FEM)	Structural stress, fatigue, and failure analysis	High setup time, not real-time	ANSYS, Abaqus	[27]
	CFD	Thermal gradient and gas flow simulation	Computationally intensive	COMSOL Multiphysics	[27,28]
	Thermodynamic modelling	Pressure-temperature relationships	Oversimplifies dynamic system behaviour	MATLAB	[29]
Emerging	ML (SVM, ANN)	Fault and anomaly detection	Data quality and availability	MATLAB, Scikit-learn	[23,30]
	Digital twins	Integrated real-time monitoring and simulation	Complex integration, early-stage adoption	Unity, TensorFlow	[31]
	IoT-based monitoring and predictive analytics	Real-time condition tracking and decision support	Sensor dependency; integration complexity	IoT sensors, predictive algorithms	[32]

energy conversion, industrial processes, or transport.²³ Hydrogen produced via electrolysis is commonly stored as compressed gas in tanks or vessels.^{24,26} These systems operate under conditions involving high pressure, temperature gradients, and cyclic loading, which introduce risks related to leakage, structural fatigue, and material degradation. While modelling of electrolysis systems often prioritises process optimisation, modelling of storage primarily addresses structural integrity, safety, and system reliability.²³ Predictive modelling supports the identification of failure modes and degradation trends, informing maintenance schedules and Table 3 | Traditional and emerging models used for hydrogen storage control and integration with smart grids system design. As such, current modelling approaches for

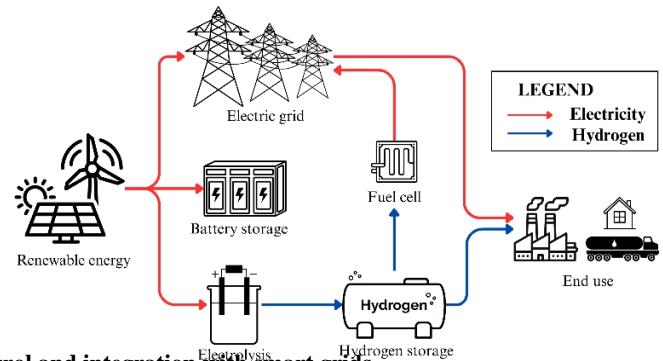


Figure 1 | Simplified schematic of electricity and hydrogen

Type	Approach	Strengths	Limitations	Tools	Ref.
Traditional variable operating conditions ²⁵	Rule-based dispatch	Easy setup for fixed hydrogen dispatch routines	Can't adapt to real-life events. The hydrogen produced is stored and later used in end-use applications or converted to electricity via fuel cells, which are reintegrated into the electric grid during peak demand periods. Figure by	Excel-based solver	[44]
Traditional techniques such as FEM, CFD, and Deep RL	Generates optimal hydrogen operation approaches applied to hydrogen storage with a focus on safety, structural reliability, and modelled hydrogen reconversion accuracy	Modelled to improve hydrogen distribution, fatigue, thermal behaviour, and pressure-temperature relationships	Limited for fast, multi-energy coordination	MATLAB	[43]
Emerging thermodynamic analysis are widely used to assess stress distribution, fatigue, thermal behaviour, and pressure-temperature relationships	Adapts hydrogen control to real-time grid conditions	Aligns physical and virtual hydrogen storage systems ^{27,29}	Needs large training data and careful tuning	Custom RL framework	[44,45]
FEM provides a detailed insight into structural integrity under cyclic loading, while CFD enables thermal and flow field simulation	Visualisation and enables thermal and fault scenarios for operator training	High setup cost; integration remains complex	MATLAB, LabView	[46]	
Although physically robust, these models are computationally intensive and are not well suited to dynamic or real-time applications. Thermodynamic models offer simplified assessments but may fail to capture transient behaviour under variable conditions. On the other hand, emerging approaches integrate data-driven and system-level methods to improve adaptability and fault prediction. ML algorithms, including support vector machines (SVM) and ANN, have been used for anomaly detection, failure classification, and degradation forecasting from operational sensor data. ^{23,30} Digital twins extend these capabilities by linking virtual models with live input data to enable real-time condition monitoring and diagnostics. Moreover, IoT-based platforms further support storage reliability by enabling continuous sensor-driven tracking and data-informed decision support. While these methods offer greater responsiveness, they depend on stable data infrastructure and integration with physical systems. ³²		Not embedded in real-time control; interface dependent	Custom VR platforms	[47,48]	

An example of integrating traditional and emerging methods is presented by El-Amin et al.³⁷, who combined CFD-generated hydrogen dispersion data with machine learning models, specifically Random Forest and SVM, to predict concentration profiles in turbulent buoyant jets. The framework reduced computational load while maintaining prediction accuracy, enabling real-time inference for leak detection and storage safety. The system demonstrated predictive capabilities that enhanced operational safety and informed timely maintenance decisions.

The integration of hydrogen storage into smart grids is a complex process that requires a multi-faceted approach. One key challenge is the safe and reliable operation of hydrogen storage systems, which must be designed to withstand various operating conditions and potential hazards. Another challenge is the integration of hydrogen storage with other energy sources and loads, such as wind and solar power, to ensure a stable and reliable energy supply. The development of advanced modeling and control algorithms is essential for optimizing the performance and efficiency of hydrogen storage systems in smart grids. The use of machine learning and data analytics can help to predict and prevent potential issues, such as leaks or equipment failure, and to optimize the use of hydrogen storage to support the grid's overall performance.

The integration of hydrogen storage into smart grids is a complex process that requires a multi-faceted approach. One key challenge is the safe and reliable operation of hydrogen storage systems, which must be designed to withstand various operating conditions and potential hazards. Another challenge is the integration of hydrogen storage with other energy sources and loads, such as wind and solar power, to ensure a stable and reliable energy supply. The development of advanced modeling and control algorithms is essential for optimizing the performance and efficiency of hydrogen storage systems in smart grids. The use of machine learning and data analytics can help to predict and prevent potential issues, such as leaks or equipment failure, and to optimize the use of hydrogen storage to support the grid's overall performance.

The complexity of the process coupled with the challenges of integrating variable renewable generation makes modelling techniques indispensable⁶. Accurate and dynamic modelling is essential to characterize efficiency, analyse dynamic behaviour, perform complex optimizations, capture real-world complexities, and manage real-time energy flows.^{7,13} This necessitates advanced control and coordination strategies for optimal operation.³⁹ Modelling serves as a tool to support the design and evaluation of these control and coordination systems¹³ and addressing these challenges effectively requires the application of both traditional and emerging methods.^{7,16}

Table 3 summarizes representative traditional and emerging modelling approaches applied in the coordination and control of hydrogen storage systems within smart grid environments. These models vary in computational complexity, real-time adaptability, and integration capacity.

Conventional modelling approaches such as rule-based scheduling, mixed-integer linear programming (MILP) and linear programming (LP), and deterministic grid simulation have historically formed the basis of hydrogen dispatch and grid interaction modelling.⁴¹⁻⁴³ These techniques are deterministic in structure and generally assume perfect foresight, static grid inputs, and isolated sub-system control. For example, MILP has been used to compute optimal hydrogen operation plans based on pre-defined load forecasts and tariff structures, but lacks responsiveness under real-time fluctuations or market variability.⁴² Similarly, deterministic simulation models accurately compute hydrogen reconversion impacts on power system stability and power flow (e.g., voltage deviations), yet are limited in resolving multi-energy coordination or stochastic influences.⁴³ Furthermore, rule-based dispatch, often implemented in Excel-based methods which provides operational simplicity but cannot adapt to dynamic system feedback or uncertainty.⁴¹ These methods are computationally efficient for system sizing and offline planning but insufficient for online scheduling or integrated sector coupling.

To address these constraints, data-driven and adaptive control methods have been increasingly adopted. Deep RL enable model-free learning of control strategies through interaction with dynamic environments.^{44,45} These methods have been shown to optimise hydrogen system dispatch under variable renewable input, demand response signals, and multi-layer objectives (e.g., thermal, electrical, storage). However, effective deployment requires large-scale training data, hyperparameter tuning, and convergence stability management, as seen in the development of actor-critic architectures and dual-network stabilisation.⁴⁵ Digital twin frameworks integrates physical system models with real-time sensor data, predictive analytics, and control feedback mechanisms.⁴⁶ These systems simulate, monitor, and optimise hydrogen production, storage, and fuel cell systems simultaneously. Although promising, their implementation is

constrained by high setup costs, model-data synchronisation issues, and computational overhead—especially in real-time grid-connected applications.⁴⁶ On the other hand, AR/VR technologies offer additional operational value by supporting operator situational awareness, particularly during dispatch decision-making and fault management.⁴⁷ Platforms such as Verciti provide immersive visualisations of hydrogen operations and enhance safety training for decentralised system operators.⁴⁸

Traditional methods provide guarantees in optimization and deterministic planning, but fail to handle uncertainty, dynamic control, or sector integration. In contrast, AI-driven and hybrid frameworks support adaptable, real-time scheduling but require extensive training, are less interpretable, and lack standardisation for industrial deployment.⁴¹⁻⁴⁸ Hybrid models are gaining traction for balancing computational efficiency with physical consistency.^{6,44} Recent applications illustrate how traditional modelling can be operationalised through interactive digital environments. For example, Folgado et al.⁴⁹ developed a digital twin of a proton exchange membrane (PEM) electrolyser embedded within a MATLAB-based graphical user interface, deployed in a photovoltaic-powered smart grid. The digital twin is based on a deterministic equivalent electrical model and communicates with a PLC via Modbus TCP/IP in real time. This setup enables operators to monitor hydrogen production metrics, assess deviations between simulated and measured performance, and support control decisions. The study highlights how traditional physics-based models can be integrated into real-time, user-interactive systems improving the coordination between hydrogen systems and smart grid operation.

Modelling strategies are shifting from deterministic formulations toward adaptive, interactive frameworks. Case studies such as Folgado et al.⁴⁹ demonstrate how equation-based electrolyser models can be embedded in digital twin systems for real-time monitoring within smart microgrids. Future modelling platforms must integrate real-time control logic, data feedback, and intuitive human interfaces to enable scalable hydrogen storage coordination in complex energy systems.

3. Challenges and Future Perspective

Emerging modelling and AI-based approaches offer significant advantages over traditional methods in PtH₂ systems but remains constrained by several technical and operational challenges. These limitations currently hinder the scalability, real-time deployment, and integration of advanced tools within smart grid environments.

The strong dependence on high-quality data is a primary limitation. ML and RL models require large volumes of well-labelled, high-frequency datasets to train predictive or control agents. In PtH₂ applications, this type of data is often

unavailable due to limited sensor coverage, proprietary system architectures, or inconsistencies in temporal resolution. As a result, data-driven models risk overfitting or underperforming in real-world settings, particularly when transferred between systems with differing configurations.^{44,45}

Another challenge lies in the computational complexity and training overhead of these models. RL, surrogate model development, and real-time digital twins require significant computing resources for convergence and deployment. For example, actor-critic RL algorithms and physics-informed neural networks (PINNs) demand extended training cycles and often rely on specialised hardware. These resource demands limit the feasibility of deploying such models in real-time, safety-critical environments like hydrogen storage and dispatch control.^{45,46}

Model transparency and interpretability also present a barrier to adoption. While AI-based models are effective at pattern recognition and dynamic optimisation, their internal decision logic is often non-transparent. This “black-box” nature makes it difficult for operators and engineers to understand, validate, or troubleshoot behaviour during abnormal conditions. In PtH₂ systems, which involve high pressures, thermal gradients, and interdependent components, lack of interpretability can reduce stakeholder trust and pose regulatory challenges.⁴⁴

The integration of AI with traditional physics-based models is another challenge. Hybrid systems that couple data-driven modules with deterministic simulations promise the best of both domains, but remain difficult to implement. Challenges include synchronising time scales, reconciling different data formats, and managing error propagation between subsystems. Few frameworks exist to seamlessly integrate CFD, process simulation, and RL agents within a unified control or optimisation environment.^{12,49}

Additionally, operator readiness and system maturity limit the deployment of immersive technologies such as AR/VR and digital twins. These platforms are increasingly used for simulation and training, but rarely serve in active control environments. Visualisation tools and human-in-the-loop interfaces hold promise for enhancing fault awareness and decision support, yet their development is fragmented and lacks standardisation for PtH₂-specific applications.^{47,48}

Future research must focus on bridging these limitations. First, hybrid models that embed physical laws into learning architectures could improve adaptability without sacrificing interpretability.⁶ Second, developing open-source, interoperable frameworks for co-simulation would facilitate integration between AI and physics-based tools. Third, investment in high-resolution, standardised datasets from operational PtH₂ systems will be essential to unlock the full potential of machine learning. Fourth, AR/VR platforms and digital twins should be developed with greater emphasis on system interoperability and real-time responsiveness, making

them viable for not just training but also active supervision. Lastly, regulatory frameworks must evolve in parallel with modelling innovations. For example, Australia’s National Hydrogen Strategy and Guarantee of Origin Scheme are advancing hydrogen certification, dedicated AI governance remains underdeveloped.⁵³⁻⁵⁵ Future modelling research should align with emerging standards for transparency, auditability, and validation.

Emerging modelling technologies can evolve from experimental tools into operational enablers for real-time, adaptive, and resilient PtH₂ smart grid coordination by addressing these challenges.

3. Conclusion

This review examined modelling strategies for PtH₂ systems, focusing on three core processes: production, storage, and grid integration, as a response to renewable energy intermittency. While traditional methods remain essential for system design and optimisation, they lack the adaptability required for real-time coordination and multi-vector control. Emerging strategies offer greater responsiveness but are constrained by data requirements, computational demands, limited interpretability, and challenges in integration with existing physical models.

Future researches should prioritise hybrid frameworks that combine physical accuracy with data-driven adaptability by combining traditional with emerging modelling and AI-based strategies across the PtH₂-integrated smart grid system. Moreover, future researches should focus on building standardised datasets, developing interoperable modelling platforms and expanding the role of real-time visualisation technologies. Lastly, modelling must be supported not only by technical innovation but also by regulatory frameworks to promote transparency, auditability, and certification for enabling safe, scalable PtH₂ deployment within smart grid.

Acknowledgements

The author acknowledges The University of Sydney for institutional support provided through the CHNG5603 – Advanced Industrial Modelling and Analysis unit. The author also extends gratitude to Dr. Gobinath Rajarathnam, unit coordinator and lecturer, and Dr. Aoni Xu, co-lecturer, for their guidance throughout the development of this review.

Canva was used for visual editing and layout incorporating elements from free-license image resources. Generative AI tools were used under the author’s supervision solely for manuscript editing and language refinement. All content was critically reviewed to ensure technical accuracy.

This research did not receive any external funding.

References

[1] Hassan, Q. *et al.* The renewable energy role in the global energy Transformations. *Renewable Energy Focus* **48**, (2024).

[2] Prisca, N. & Extension, Kiu Publication. Renewable Energy Storage Solutions: Innovations and Challenges. **3**, 45–48 (2024).

[3] Rezk, H. *et al.* Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system. *Energy* **175**, (2019).

[4] Nur, G., Ozgur, C. C. & Devrim, Y. A review on the development of the electrochemical hydrogen compressors. *Journal of Power Sources* **494**, 229743 (2021).

[5] Genovese, M. *et al.* Power-to-hydrogen and hydrogentoX energy systems for the industry of the future in Europe. *International Journal of Hydrogen Energy* **48**, 16545–16568 (2023).

[6] Petkov, I. & Gabrielli, P. Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of lowcarbon multienergy systems. *Applied Energy* **274**, 115197 (2020).

[7] Mukelabai, M. D., Barbour, E. R. & Blanchard, R. E. Modeling and optimization of renewable hydrogen systems: A systematic methodological review and machine learning integration. *Energy and AI* **18**, 100455 (2024).

[8] Hovsapian, R., Chanda, S., Panwar, M., Agalgaonkar, Y., Sprik, S., Nagasawa, K., Leighton, D. *Power Electronics for Electrolyzer Applications to Enable Grid Services*. National Renewable Energy Laboratory (2023).

[9] Kumar, S. & Lim, H. An overview of water electrolysis technologies for green hydrogen production. *Energy Reports* **8**, 13793–13813 (2022).

[10] Hu, K. *et al.* Comparative study of alkaline water electrolysis, proton exchange membrane water electrolysis and solid oxide electrolysis through multiphysics modeling. *Applied Energy* **312**, 118788 (2022).

[11] Hu, K. *et al.* Grid-Oriented multiphysics model of PowertoHydrogen electrolyzers. *Energy Conversion and Management* **270**, 116264 (2022).

[12] Sirat, A., Ahmad, S., Ahmad, I., Ahmed, N. & Ahsan, M. Integrative CFD and AI/ML-based modeling for enhanced alkaline water electrolysis cell performance for hydrogen production. *International Journal of Hydrogen Energy* **83**, 1120–1131 (2024).

[13] Olivier, P., Bourasseau, C. & Bouamama, B. Modelling, simulation and analysis of a PEM electrolysis system. *8th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2016* **49**, 1014–1019 (2016).

[14] Jang, D., Kim, J., Kim, D., Han, W. & Kang, S. Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies. *Energy Conversion and Management* **258**, 115499 (2022).

[15] Allal, Z., Noura, H. N., Salman, O., Vernier, F. & Chahine, K. A review on machine learning applications in hydrogen energy systems. *International Journal of Thermofluids* **26**, 101119 (2025).

[16] Monopoli, D. *et al.* How to build a Digital Twin for operating PEM-Electrolyser system – A reference approach. *Annual Reviews in Control* **57**, 100943 (2024).

[17] Macharia, S. Harnessing the Power of Virtual Reality for Hydrogen Production and Utilization. *LinkedIn.com* <https://www.linkedin.com/pulse/harnessing-power-virtual-reality-hydrogen-production-stephen-macharia-jstue> (2024AD).

[18] CFD LAND. ANSYS Fluent vs COMSOL. <https://cfdlab.com/ansys-fluent-vs-comsol/> (2024).

[19] Sánchez, M., Amores, E., Abad, D., Rodríguez, L. & ClementeJul, C. Aspen Plus model of an alkaline electrolysis system for hydrogen production. *International Journal of Hydrogen Energy* **45**, 3916–3929 (2020).

[20] Järvinen, L. *et al.* Automated parametrization of PEM and alkaline water electrolyzer polarisation curves. *International Journal of Hydrogen Energy* **47**, 31985–32003 (2022).

[21] Géron, A. Handson machine learning with ScikitLearn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. (" O'Reilly Media, Inc.", 2022).

[22] Agos Jawaddi, Siti Nuraishah & Ismail, A. Integrating OpenAI Gym and CloudSim Plus: A simulation environment for DRL Agent training in energydriven cloud scaling. *Simulation Modelling Practice and Theory* **130**, 102858 (2024).

[23] Allal, Z., Noura, H., Salman, O., Vernier, F. & Chahine, K. A Review on Machine Learning Applications in Hydrogen Energy Systems. *International Journal of Thermofluids* (2025) doi:<https://doi.org/10.1016/j.ijft.2025.101119>.

[24] Züttel, A. Materials for hydrogen storage. *Materials Today* **6**, 24–33 (2003).

[25] Nguyen, B., Roh, H. S., Merkel, D. & Simmons, K. A predictive modeling tool for damage analysis and design of hydrogen storage composite pressure vessels. *International Journal of Hydrogen Energy* **46**, 20573–20585 (2021).

[26] Rezk, H. *et al.* Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system. *Energy* **175**, (2019).

[27] Wang, L., Zheng, C., Wei, S., Wang, B. & Wei, Z. Thermomechanical investigation of composite highpressure hydrogen storage cylinder during fast filling. *International Journal of Hydrogen Energy* **40**, 6853–6859 (2015).

[28] Melideo, D., Ferrari, L. & Taddei, P. P. CFD simulation of hydrogen storage: Adsorption dynamics and thermal management in cryogenic tanks. *International Journal of Hydrogen Energy* (2025) doi:<https://doi.org/10.1016/j.ijhydene.2025.04.426>.

[29] Hu, H. *et al.* Thermodynamic modeling and analysis of hydrogen storage systems in hydrogen refueling stations. *International Journal of Hydrogen Energy* **57**, 1101–1110 (2024).

[30] Yang, W., Dong, J. & Ren, Y. Hydrogen Safety Prediction and Analysis of Hydrogen Refueling Station Leakage Accidents and Process Using MultiRelevance Machine Learning. *World Electric Vehicle Journal* **12**, (2021).

[31] Naanani, H., Nachtane, M. & Faik, A. Advancing hydrogen safety and reliability through digital twins: Applications, models, and future prospects. *International Journal of Hydrogen Energy* **115**, 344–360 (2025).

[32] Benson, C., Subbiah, A., Izuchukwu, O., Kamara, S. & Musa. Realtime monitoring using digital platforms for enhanced safety in hydrogen facilitiesCurrent perspectives and future directions. **98**, 487–499 (2025).

[33] Shash, A. Y., Abdeltawab, Noha M., Hassan, D. M., Darweesh, M. & G, H. Y. Computational Methods, Artificial Intelligence, Modeling, and Simulation Applications in Green Hydrogen

Production Through Water Electrolysis: A Review. *Hydrogen* **6**, (2025).

[34]Jarbion, A., Khajavi, S., Öhman, M., Knapen, A. & Holmström, J. A Digital Twin for Safety and Risk Management: A Prototype for a Hydrogen High-Pressure Vessel. in 369–375 (2020). doi:https://doi.org/10.1007/9783030648237_34.

[35]Patil, R. R., Calay, Rajnish K., Mustafa, M. Y. & Thakur, S. Artificial IntelligenceDriven Innovations in Hydrogen Safety. *Hydrogen* **5**, 312–326 (2024).

[36]Motiramani, M. *et al.* AIML techniques for green hydrogen: A comprehensive review. *Next Energy* **8**, 100252 (2025).

[37]El-Amin, M. F. & A. Subasi. Forecasting a SmallScale Hydrogen Leakage in Air using Machine Learning Techniques. in 2020 2nd International Conference on Computer and Information Sciences (ICCIS) 1–5 (). doi:<https://doi.org/10.1109/ICCIS49240.2020.9257718>.

[38]Lin, R., Zhao, Y. & Wu, B. Toward a hydrogen society: Hydrogen and smart grid integration. *The 7th International Conference on Energy, Engineering and Environmental Engineering* **45**, 20164–20175 (2020).

[39]AlOthman, A. *et al.* Artificial intelligence and numerical models in hybrid renewable energy systems with fuel cells: Advances and prospects. *Energy Conversion and Management* **253**, 115154 (2022).

[40]Dai, S., Shen, P., Deng, W. & Yu, Q. Hydrogen Energy in Electrical Power Systems: A Review and Future Outlook. *Electronics* **13**, (2024).

[41]Huang, C. *et al.* Economic and resilient operation of hydrogenbased microgrids: An improved MPCbased optimal scheduling scheme considering security constraints of hydrogen facilities. *Applied Energy* **335**, 120762 (2023).

[42]Superchi, F., Giovannini, N., Moustakis, A., Pechlivanoglou, G. & Bianchini, A. Optimization of the power output scheduling of a renewablesbased hybrid power station using MILP approach: The case of Tilos island. *Renewable Energy* **220**, 119685 (2024).

[43]Selim, A. *et al.* Hybrid off-grid energy systems optimal sizing with integrated hydrogen storage based on deterministic balance approach. *Scientific Reports* **14**, (2024).

[44]Zhu, W. *et al.* Deep Reinforcement Learning Based Optimal Operation of LowCarbon Island Microgrid with High Renewables and Hybrid Hydrogen–Energy Storage System. *Journal of Marine Science and Engineering* **13**, (2025).

[45]Ye, J., Wang, X., Hua, Q. & Sun, L. Deep reinforcement learning based energy management of a hybrid electricity/heaydrogen energy system with demand response. *Energy* **305**, 131874 (2024).

[46]Feng, Z., Eiubovi, I., Shao, Y., Fan, Z. & Tan, R. Review of Digital Twin Technology Applications in Hydrogen Energy. *CHAIN* **1**, 54–74 (2024).

[47]Scheffer, S. E. S., Alberto, M. A., Roy, D. R. G. J. & Dongen, van. Supporting maintenance operators using augmented reality decisionmaking: visualize, guide, decide & track. *The 33rd CIRP Design Conference* **119**, 782–787 (2023).

[48]Verciti. Immersive Net Zero Skills Training for Hydrogen. *Verciti.com* <https://www.verciti.com/> (2025).

[49]Gaspar, F., González, I. & Calderón, A. *PEM Electrolyser Digital Twin Embedded within MATLABBased Graphical User Interface*. *Interface*. 21 (2022). doi:<https://doi.org/10.3390/ECP202212676>.

[50]Godfrey, N. S., Udemu, C., Hamzat, Abdulhammed K., Darko, C. K. & Quainoo, Kwamena Ato. Smart monitoring and control systems for hydrogen fuel cells using AI. *International Journal of Hydrogen Energy* **110**, 704–726 (2024).

[51]Zhang, T. *et al.* A systematic review of modelling methods for studying the integration of hydrogen into energy systems. *Renewable and Sustainable Energy Reviews* **208**, 114964 (2025).

[52]Prina, M. G., Dallapiccola, M., Moser, D. & Sparber, W. Machine learning as a surrogate model for EnergyPLAN: Speeding up energy system optimization at the country level. *Energy* **307**, 132735 (2024).

[53]Department of Climate Change, Energy, the Environment and Water. Australia’s National Hydrogen Strategy. *Dcceew.gov.au* <https://www.dcceew.gov.au/energy/publications/australias-national-hydrogen-strategy> (2024).

[54]Department of Climate Change, Energy, the Environment and Water. Guarantee of Origin scheme - DCCEEW. *Dcceew.gov.au* <https://www.dcceew.gov.au/energy/renewable/guarantee-of-origin-scheme> (2022).

[55]Department of Industry, Science and Resources. *Safe and responsible AI in Australia Discussion paper*. https://storage.googleapis.com/converlens-au-industry/industry/p/prj2452c8e24d7a400c72429/public_assets/Safe-and-responsible-AI-in-Australia-discussion-paper.pdf (2023).

A Focused Review of Modelling and Technological Advances in Organ-on-a-Chip Systems

Isabel Iris Claro¹, Gobinath Pillai Rajarathnam¹, Aoni Xu¹

¹ School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, Australia

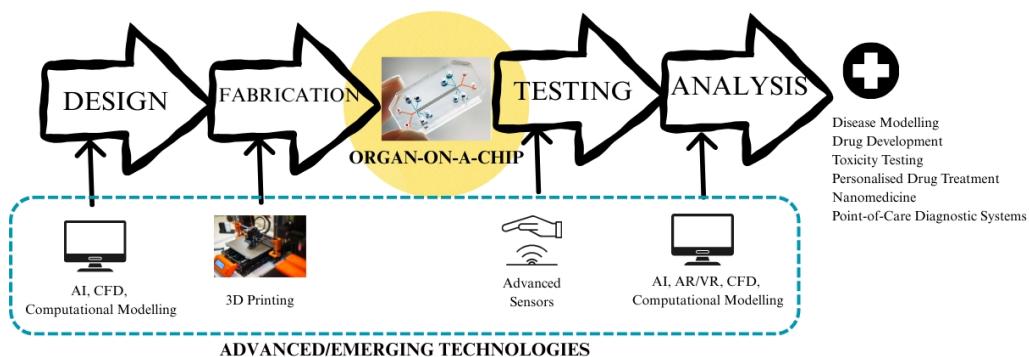
E-mail: icla8773@uni.sydney.edu.au

Received xxxxxx

Accepted for publication xxxxxx

Published xxxxxx

Graphical Abstract



Abstract

Organ-on-a-Chip (OoC) technology offers a promising alternative to traditional *in vitro* and animal models by replicating key physiological features of human organs within microfluidic platforms. These systems are increasingly used in drug development, toxicity testing, and disease modelling. However, widespread adoption is limited by challenges such as complex design requirements, scalability issues, data interpretation difficulties, and the integration of diverse technologies. This review explores the role of advanced modelling approaches, such as computational fluid dynamics (CFD), finite element analysis (FEA), pharmacokinetic/pharmacodynamic (PK/PD) models, and artificial intelligence (AI), in addressing these barriers. These tools enable precise simulation, optimization, and data analysis of OoC systems, supporting their design and predictive capabilities. Key challenges identified include limited data quality, computational complexity, organ scaling, and system integration. Modelling solutions, including explainable AI and multiscale simulation, offer pathways to overcome these issues. The integration of emerging technologies like 3D printing, real-time sensing, and automation is also discussed. The review concludes with recommendations for refining existing modelling techniques, improving transparency in AI applications, and supporting interdisciplinary collaboration to drive standardization and regulatory acceptance. These efforts are essential for realizing the full potential of OoCs in biomedical research and preclinical drug development.

Keywords: organ-on-a-chip, OoC, microfluidic, artificial intelligence, AI, machine learning, 3D printing, simulation, computational fluid dynamics, CFD.

1. Introduction

The development of sophisticated *in vitro* models has become increasingly important in life science and industry, particularly for applications in medicine, biology, and chemistry.¹ Traditional two-dimensional (2D) cell cultures and animal models struggle to replicate human physiology, hindering data translation and contributing to high drug failure rates.²⁻⁵ This has spurred the evolution of new technologies aimed at creating more biologically relevant systems.^{5,6}

Notably selected as one of the "Top Ten Emerging Technologies" by the World Economic Forum⁷, the development of organ-on-a-chip (OoC) technology is driven by these limitations of traditional preclinical models.^{4,8} OoCs address these limitations by combining advances in microfabrication, tissue engineering, biomaterials, and stem cell engineering to reconstruct key structural, functional, and physiological aspects of human tissues and organs on a chip.^{7,9-11} Miniature tissues, cells, or organoids are cultured within the channels and compartments of a microfluidic device.^{3,7,11-13} This device, often made of materials like polydimethylsiloxane (PDMS), is engineered with structures such as tiny channels, chambers, and sometimes porous membranes to recreate the organ's microarchitecture.^{3,4,7,11,14} The cells may also be embedded within an extracellular matrix analogue or hydrogel inside these compartments. OoC platforms hold promise for various applications, including enhancing our understanding of tissue and organ physiology, modelling diseases (such as cancer), developing and screening drugs, evaluating drug toxicity and efficacy, and facilitating personalized medicine by using patient-derived cells.^{3,4,8-11,15,16}

Building upon the foundation of microfluidics, the OoC system has emerged as a biomimetic system.¹⁷ Microfluidics, refers to technologies that manipulate small fluid volumes (mL, nL, pL) within fabricated channels.^{1,18} Microfluidic approaches allow for constant miniaturization, automation, and parallelization of processes¹, offering advantages such as low dose requirements, improved sensitivity, efficient processing, great spatial accuracy, good integration, and straightforward control for biological studies.¹⁹ These microfluidic systems can perform several functions, including sample pretreatment, separation, dilution, mixing, chemical reaction, detection, and product extraction, all potentially on a single chip.¹⁸ The precise control offered by microfluidics allows for the emulation of dynamic conditions, such as blood flow, mechanical forces, and concentration gradients, which are crucial for maintaining tissue-specific functions and mimicking the cellular microenvironment.^{8,10,11,16}

OoCs are essentially microfluidic cell culture systems designed to precisely replicate the structure and function of a living organ or functional unit *in vitro*.^{5,20,21} They can stimulate the tissue or cell microenvironment and regulate crucial parameters like concentration gradients, shear stress,

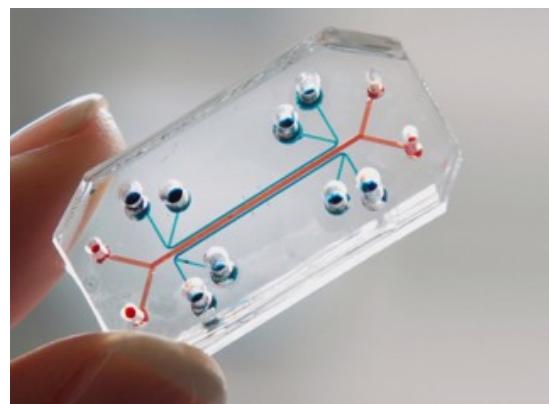


Figure 1. A lung-on-a-chip. Image by [허동은 교수](#), licensed under CC BY-SA 4.0. Source: [Link](#)

^{5,17} These platforms integrate microfluidic networks with three-dimensional (3D) tissue-engineered models to recapitulate physiological conditions.⁵

The applications of organ-on-a-chip platforms are diverse and rapidly expanding. They are used as models for studying development and diseases, such as Alzheimer's and schizophrenia, particularly through brain-on-chip models. OoCs play a significant role in drug development, including drug screening and assessing drug release.^{2,5,6,18,22,23} They are particularly valuable for toxicity testing, such as evaluating hepatotoxicity, and nephrotoxicity.^{5,18} Furthermore, OoCs contribute to personalized medicine by offering functional testing for precision medicine and personalized drug development. They are also explored in the context of nanomedicine for validating the performance and biotoxicity of nanomaterials.⁵ Beyond these, OoCs are used to study vascularization of organoids, drug delivery systems, host-microbial interactions, inflammatory processes, and cancer growth and metastasis.^{6,23} The technology is even being applied to create point-of-care (POC) diagnostic systems.¹⁸

The significance of organ-on-a-chip platforms lies in their potential to serve as robust alternatives to animal models, addressing many challenges associated with *in vivo* studies.^{2,5} By providing a controlled and realistic environment that mimics human physiology and pathology, OoCs can help reduce the discrepancies observed between preclinical findings and clinical outcomes.^{5,18,21} This capability positions them as a fast track for the use of engineered human tissues in drug development and can potentially revolutionize disease modelling and drug testing towards more accurate and personalized healthcare approaches.¹⁸

Despite the significant progress, the translation of these advanced microfluidic platforms into widespread use, particularly in preclinical validation for clinical applications, still faces limitations and challenges.⁵ A critical challenge is the successful integration of biosensor modules into OoCs for automated, continual, and long-term monitoring of various physicochemical and biochemical parameters.^{5,18} For complex

applications like pharmacology studies, the development of multiorgan or body-on-a-chip systems is necessary to replicate the interconnections and communication between different organs. However, achieving accurate body scaling and maintaining functional activity across multiple integrated organs is extremely complex.⁵ Other challenges include optimizing the design of suitable biomodels, overcoming fabrication complexities associated with microfluidic devices and integrating components like valves and pumps¹⁹, managing potential contamination issues⁵, establishing physiologically relevant conditions like oxygen gradients, and bridging the gap between academic research and industrial adoption. Overcoming these challenges is key to unlocking the potential of OoC technology.

Interest in OoC has intensified due to its potential to create more physiologically relevant microenvironments for cell culture, thereby bridging the gap between simplified planar cell cultures and complex human systems.^{8,11,16}

Recent breakthroughs and emerging trends are pushing the boundaries of OoC technology, some of which are compared in Table 1 below. A key trend is the move towards integrating multiple individual organ chips into multiorgan-on-a-chip or

body-on-a-chip systems, mimicking the physiological coupling and interactions between different organs in the human body.^{4,8,16,24} This is particularly beneficial for studying systemic responses, drug metabolism, and complex diseases.²⁵ Furthermore, there is increasing emphasis on incorporating integrated sensors (mechanical, electrochemical, optical) into OoC platforms for real-time monitoring of cellular behaviors and tissue functions.^{8,24,26} Automation and the development of high-throughput systems are also critical for making OoCs more viable for industrial applications like drug screening.^{24,26,27} Advances in 3D printing and bioprinting techniques are enabling the rapid fabrication of complex OoC structures and the precise deposition of cells within biomaterial-based scaffolds, creating more realistic three-dimensional tissue architectures.²⁶ The integration of artificial intelligence (AI), particularly in areas like organoid imaging and data analysis, is enhancing the efficiency and accuracy of OoC-based research, especially for high-throughput drug screening.^{9,24} These advancements collectively demonstrate the rapid evolution of OoC technology and its potential to revolutionize biomedical research and drug development.

Table 1. Comparative Table of Different Modelling Approaches Applied to OoCs.

Modelling Approach	Scale	Input	Use	Limitations
Computational Fluid Dynamics (CFD)	Microfluidic channels/devices ²⁸⁻³⁰	Geometry, fluid properties, flow rate, solute and solvent parameters, boundary conditions ^{29,30}	Simulates fluid flow, shear stress, and concentration gradients ²⁸⁻³¹	Complex multiphysics, time-consuming meshing, sensitivity to surface tension and viscosity ²⁹
Finite Element Analysis (FEA) / Finite Element Method (FEM)	Microfluidic devices, bioreactors ^{29,31,32}	Geometry, material properties, physics modules (e.g., CFD), solute parameters ^{29,32}	Models mechanical stress, strain, gradient formation, and device refinement ^{29,31,32}	Requires detailed meshing, complex physics coupling, geometric/parameter coherence ²⁹
Pharmacokinetic/ Pharmacodynamic (PK/PD) & Physiologically-Based Pharmacokinetic (PBPK)	Multi-organ systems (e.g., gut-liver, whole-body) ^{11,25,28,33-35}	<i>In vitro</i> /OoC data (volumes, ADME, flow rates, drug properties) ^{25,28,33,35}	Predicts drug distribution, toxicity, and human PK/PD profiles; supports <i>In Vitro-In Vivo</i> Extrapolation (IVIVE) ^{11,25,33-35}	Difficult organ scaling, biological/analytical uncertainty, complex model integration ^{25,33}
Artificial Intelligence (AI) / Machine Learning (ML)	Variable (e.g., single-cell to system-level) ^{5,9,34,36}	Experimental features (e.g., contractility, solubility, oxygen), labeled/unlabeled data ^{9,34,36,37}	Classifies cells, predicts outcomes, supports toxicology and experimental design ^{9,25,34,36,37}	Performance depends on data size/quality, model choice, and validation strategy ⁹

This review aims to present the different advanced modelling and analysis techniques that are currently applied and can be applied to OoCs. Section 2 will discuss the current

strategies (Section 2.1), and emerging OoC technologies (Section 2.2) with an analysis comparing the technologies (Section 2.3). Section 3 discusses the challenges in OoC

technology (Section 3.1) and how emerging or advanced techniques can help address these challenges (Section 3.2). Finally, Section 3.3 discusses the potential future directions for OoC technology.

2. State-of-the-Art in Advanced Modelling Strategies

2.1. Current Methodologies

Current OoC methodologies are grounded in microfluidic platforms, allowing precise control of microscale fluids to mimic physiological conditions.¹⁶ Device fabrication primarily utilizes soft lithography, often with PDMS, known for its biocompatibility and gas permeability.³⁸ However, alternatives like thermoplastics and natural materials are gaining prominence to address PDMS limitations such as drug absorption.¹² 3D printing and bioprinting are increasingly used for rapid prototyping and creating complex 3D tissue scaffolds.¹¹

A key methodology involves reconstituting functional tissues by culturing cells (primary, cell lines, or induced pluripotent stem cells, iPSCs) within the microfluidic chips, often in 3D structures.¹⁰ This requires maintaining a physiologically relevant cellular microenvironment by controlling factors like fluid shear stress, soluble factor concentrations, and cell-matrix interactions.³⁹

To capture systemic complexity, multiorgan-on-a-chip systems are developed by connecting multiple organ models, essential for studying drug Absorption, Distribution, Metabolism, Excretion, and Toxicology (ADME-Tox) and inter-organ communication.^{4,11,33} These often incorporate vascular networks to simulate blood flow and interactions.⁴

Sensors are being integrated into platforms for real-time monitoring of tissue function and microenvironmental parameters. This facilitates feedback control systems essential for automating high-throughput drug screening.^{4,10,11,24,26,39} This drive towards automation and high-throughput screening is critical for the industrial adoption of OoC technology, particularly in drug development.^{11,35}

Finally, computational modelling, including fluid dynamics and pharmacokinetic and pharmacodynamic (PK/PD) simulations, plays a vital role in optimizing chip design, predicting parameters, and interpreting experimental data.^{33,35,39} Computational platforms such as COMSOL Multiphysics and ANSYS Fluent are commonly used for the design and analysis of microfluidic organ-on-a-chip systems. These *in silico* tools allow for simulations of critical fluid dynamics and transport phenomena necessary for device optimization.^{29,30,35} AI is being integrated for enhanced data analysis and image processing. These diverse methodologies collectively contribute to creating and analyzing more physiologically relevant *in vitro* models.³⁷

2.2. Integration of Emerging Technologies

OoC technology is a rapidly evolving field that is being significantly advanced by the integration of several emerging technologies with established microfluidic and tissue engineering methodologies.^{9,10} This convergence aims to enhance the physiological relevance, functionality, and scalability of OoC systems to better recapitulate human biology and meet the demands of applications such as drug discovery and disease modelling.^{4,10}

A prominent area of integration is the development of multiorgan-on-a-chip systems, also referred to as body-on-a-chip, which connect multiple individual organ models using vascular networks within a single microfluidic platform.^{4,16,24,35} This mimics the physiological coupling and interactions between different organs in the human body.³⁵ Such integrated systems are particularly valuable for studying systemic responses, such as drug absorption, distribution, metabolism, and excretion (ADME), as well as complex inter-organ disease mechanisms.^{4,16}

Another critical integration involves incorporating integrated sensors directly within OoC platforms.^{10,24} Integrated sensors (e.g., mechanical, optical, electrochemical) enable real-time, noninvasive monitoring of tissue function and microenvironmental conditions.^{10,24} Examples include electrochemical sensors for detecting relevant biological processes and optical oxygen sensors.

To facilitate the widespread adoption of OoC technology, particularly in pharmaceutical research, there is a significant push towards automation and the development of high-throughput systems. Systemized experimental procedures are being developed to minimize user dependency and improve reproducibility, which are crucial for applications like drug screening.^{10,16}

Advances in manufacturing techniques are also being integrated. 3D printing and bioprinting are increasingly used for fabricating complex OoC structures and creating more realistic three-dimensional tissue architectures.^{26,40} These methods allow for the precise deposition of cells within biomaterial-based scaffolds and the rapid construction of intricate channel geometries.²⁶ 3D printing techniques are considered potentially more cost-efficient for OoC fabrication.

Furthermore, AI and computational modelling are being integrated to enhance both the design and analysis phases of OoC research.^{9,24,32,35} Computational fluid dynamics (CFD) is used to design optimal microfluidic channel geometries and understand fluid flow patterns.³⁵ PK/PD modelling helps predict drug behavior and optimize experimental design and sampling.³² AI is particularly beneficial for tasks such as organoid imaging analysis and processing complex datasets, significantly enhancing the efficiency and accuracy of studies, especially in high-throughput drug screening.²⁴ Numerical simulation is also used to predict parameters like oxygen concentration and distribution within the devices.³⁵

These integrations of multiorgan systems, advanced sensors, automation, 3D printing, and computational approaches are collectively driving OoC technology towards becoming more sophisticated, predictive, and applicable tools for biomedical research and drug development.^{9,10}

2.3. Comparative Analysis

OoC technologies offer a valuable step towards more physiologically relevant *in vitro* models, providing precise control over the cellular microenvironment and enabling real-time monitoring.^{11,41} However, relying solely on traditional experimental methods encounters significant limitations including challenges in achieving industrial scalability, ensuring high reproducibility, accurately replicating complex tissue structures, addressing material compatibility issues, and a lack of widespread standardization.^{11,12,42,43} Data acquisition can also be limited by reliance on endpoint assays.¹¹ The integration of advanced computational modelling and AI is crucial for overcoming these bottlenecks. These *in silico* approaches enable rapid simulation and analysis, providing insights into device design, optimizing parameters for fluid dynamics and transport, and supporting complex analyses like PK/PD modelling.^{33,35,38,41}

Table 2. Major Challenges in OoC Systems.

Challenge	Source	Impact	Modelling Solution
Data Availability & Quality	Data often comes from endpoint assays; lacks spatio-temporal resolution. Validation is hard due to low robustness and missing standards. Sampling is limited. ^{9,11,33,42}	Reduces reproducibility and hinders dynamic analysis. ^{11,42}	Use of AI/big data analytics for interpretation; optimization of sampling; push for standardized reporting ^{9,11,33}
Computational Complexity	Models are essential but hard to apply; 3D tracking is complex. Analysis must match biology. ^{9,12,25,41}	Limits predictive accuracy and optimization. ²⁵	Custom numerical and PK/PD models handle complexity. Tailored analysis improves relevance. ^{12,25,41}
Scalability Issues	Scaling organs and translating data is difficult. Industrial scale-up is limited. ^{10-12,15,16,25,43}	Affects <i>in vivo</i> relevance and slows commercialization. ²⁵	Use of PBPK scaling models; development of high-throughput and modular system designs. ^{16,25}
Integration of Multiple Technologies	Combines microfluidics, biomaterials, and sensors. Multi-organ signals and system miniaturization are complex. ^{7,9,10,13,15,26,31,45}	Increases system complexity; hinders functional replication and commercial viability. ^{9,16,26,42}	Modular design frameworks; collaboration-driven system modelling; incorporation of real-time sensor data into simulations. ^{9,13,26}

In addition to these, other challenges include the need for model validation with existing platforms^{11,42}, the lack of standardization in design, manufacturing, and operating procedures^{11,42,43}, the requirement for technical skills and user dependency leading to low reproducibility^{10,13}, limitations of current biomaterials^{3,13,15,24}, difficulties with sensor integration and data acquisition^{9,11,26,42}, and the overall

AI and machine learning algorithms further enhance the field by facilitating automated image analysis, cell classification, and predictive modelling based on complex cellular data from OoC systems.^{34,44} In the study by Carvalho, et al.⁴¹, a numerical model capable of reproducing the fluid flow behavior within an OoC device was developed and validated. By comparing the model's predictions to experimental results, including qualitative particle paths and quantitative particle velocities, they demonstrated its accuracy and reliability.⁴¹ This synergistic combination of experimental OoC development with advanced computational tools is essential for improving the predictive power and robustness of these platforms.³⁴

3. Challenges and Future Perspectives

3.1. Identified Challenges

Applying advanced modelling techniques, such as numerical simulation and mathematical modelling, to OoC platforms presents several key challenges, summarized in Table 2. These challenges arise from the complexity of replicating human physiology in microfluidic devices and the early stage of standardizing the technology.

engineering limitations in recreating the full physiological complexity of human organs.^{9,11,24,42}

3.2. Role of Modelling in Addressing Challenges

Advanced modelling techniques are critical for overcoming many of the challenges associated with OoC technology.^{25,35} Mathematical and computational models are essential tools for

quantitatively analysing OoC systems and predicting their complex responses.¹² They offer significant advantages over purely experimental approaches, providing insights into fluid flow physics with good precision and accuracy in a rapid and cost-effective manner.^{30,41} Computational tools can be used alongside theoretical and experimental methods in microfluidics research.⁴¹ Integrating computational models with OoC experiments provides more quantitative, mechanistic, and physiologically relevant insights than experiments alone.²⁵ Numerical studies and simulations are performed for optimization purposes, helping to expedite the OoC design process by reducing the need for fabricating numerous prototypes and conducting costly laboratory experiments.^{30,41}

Examples from past and current studies demonstrate the impact of these strategies. In the study done by Jeong, et al.³⁰, numerical approach-based simulation models have been developed to accurately predict *in vivo* levels of shear stress in microfluidic Blood-Brain Barrier (BBB)-on-a-chip models. This prediction, which showed a low error rate compared to experimental results, helps to mimic *in vivo* conditions and establish parameters for successful cell culture, such as tight junction formation. The shear stress model was validated by comparing numerical simulation results with experimental data, achieving a <3% error rate, and demonstrating its reliability in mimicking *in vivo* conditions.³⁰ CFD and Finite Element Analysis (FEA) are important tools for characterizing biological microflows, predicting biofluid dynamics, and even solid biomechanics.²⁵ In another study done by Zheng, et al.³⁵, numerical simulations can also assess the feasibility and efficiency of a microfluidic design before fabrication, reducing experimental trial and error and speeding up the development process. Beyond optimizing design and flow, modelling is used to simulate complex biological behaviors in multicellular constructs, providing critical insights for improving reproducibility or guiding the achievement of desired form and function.³⁵ Multiscale models for multi-organ or human-on-a-chip systems are more suitable for modelling long-term drug transport and PK/PD effects.^{12,34,35} Computational modelling can assist in analyzing, optimizing, and revising the design of 3D culture microfluidic chips, significantly reducing cost and time compared to repetitive experimental measurements.³⁵ For instance, mathematical models have been used to predict tumor angiogenesis by integrating quantitative experimental data in the study done by Phillips, et al.³⁷ Furthermore, the integration of machine learning algorithms can accelerate data analysis and image classification in OoC systems, enabling real-time monitoring and automated decision-making in cell culture.^{11,34,46} This helps to accelerate preclinical drug screening and disease modelling.³⁴

3.3. Future Directions

Advanced modelling techniques are already critical for the quantitative analysis and prediction capabilities of OoC systems, offering speed and cost advantages over purely experimental methods.^{28,33,37} Incremental advancements in these methodologies, particularly through enhanced integration of AI and improved visualization, hold significant potential for further progress. Enhanced AI integration, utilizing algorithms like machine learning and deep learning^{34,37,44}, can accelerate data analysis and interpretation, such as automated image classification and quantitative assessment of cellular responses^{34,37}, while also refining predictions in areas like drug efficacy and toxicity by improving the estimation of PK/PD parameters from complex data.^{33,35,37} The design and optimization of microfluidic devices and experimental protocols can be streamlined by more tightly coupling simulation techniques (e.g., CFD⁴) with AI, allowing for rapid exploration of design parameters, prediction of optimal configurations, and optimization of aspects like sampling times.^{14,33,37} Additionally, making AI models more transparent through explainable AI is important for gaining regulatory trust and improving their use in OoC platforms, especially since some deep learning methods are difficult to interpret and can limit understanding in drug development.⁴⁷

Improved visualization techniques, such as layering simulation data onto experimental images or potentially exploring 3D renderings (with techniques like those used for segmented medical images), can enhance researchers' understanding of complex, dynamic processes within the chip, making data interpretation more intuitive and potentially improving reproducibility.^{37,44} Projects like ARinBIO explore Augmented Reality/ Virtual Reality (AR/VR) to improve data visualization and collaboration. This initiative seeks to streamline laboratory workflows, reduce errors, and facilitate personalized medicine by providing real-time data visualization and interaction within augmented environments.⁴⁸

Regulation and standardization are crucial for the wider adoption and implementation of OoC technology, as a lack of regulatory consensus on acceptance criteria currently presents a significant hurdle to their use by end-users.⁴² International efforts are underway by regulatory agencies and organizations, including the International Organization for Standardization (ISO), which is developing the ISO/AWI 25693 standard.^{49,50} This standard, currently under development, specifies requirements for the development process of OoC used for the evaluation of substances, aiming to ensure fitness for purpose and support broader regulatory acceptance.⁴⁹

4. Conclusion and Recommendations

This review highlights the critical role of advanced modelling techniques, such as computational fluid dynamics, finite element analysis, PK/PD simulations, and artificial intelligence, in enhancing the design, function, and analysis of OoC systems. These tools enable the replication of complex physiological environments, support data interpretation, and improve predictive modelling for drug development. However, key challenges remain, including limited data quality, computational complexity, scaling issues, and the integration of multidisciplinary technologies. Addressing these barriers is essential for advancing OoC adoption in both research and industrial settings.

Future research should focus on the following priorities to advance Organ-on-a-Chip (OoC) technology:

- Refine current modelling techniques to enhance physiological accuracy and predictive power, especially for multiorgan and systemic models.
- Develop explainable AI frameworks to improve model transparency and build trust for regulatory approval and clinical integration.
- Integrate emerging technologies cautiously, including:
 - Real-time sensor data for continuous monitoring
 - 3D bioprinting for replicating complex tissue structures
 - Augmented and virtual reality tools for enhanced visualization and collaboration
- Ensure compatibility and usability of integrated technologies with biological systems to facilitate practical adoption.
- Promote interdisciplinary collaboration among biologists, engineers, data scientists, and regulators to standardize platforms and accelerate their application in personalized medicine and drug development.

Acknowledgements

The author would like to thank her unit coordinators and the University of Sydney for institutional support and access to technical resources through CHNG5603 - Advanced Industrial Modelling and Analysis. The author would also like to thank her friends for their patience and understanding. This study also acknowledges the use of publicly available data and generative AI tools under author supervision to assist in writing this paper.

This research received no external funding.

References

- 1 Ali, A. *et al.* in *Human Organs-on-a-Chip Technology* (ed P. V. Mohanan) 1-18 (Academic Press, 2024).
- 2 Amir, S. *et al.* in *Human Organs-on-a-Chip Technology* (ed P. V. Mohanan) 149-174 (Academic Press, 2024).
- 3 Farhang Doost, N. & Srivastava, S. K. A Comprehensive Review of Organ-on-a-Chip Technology and Its Applications. *Biosensors* **14** (2024).
- 4 Driver, R. & Mishra, S. Organ-On-A-Chip Technology: An In-depth Review of Recent Advancements and Future of Whole Body-on-chip. *BioChip Journal* **17**, 1-23 (2023). <https://doi.org/10.1007/s13206-022-00087-8>
- 5 Rodrigues, R. O. *et al.* Organ-on-a-Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine. *Small* **16**, 2003517 (2020). <https://doi.org/https://doi.org/10.1002/smll.202003517>
- 6 Grace Raji, R., Anjali, K. & Kumar, V. B. S. in *Human Organs-on-a-Chip Technology* (ed P. V. Mohanan) 199-213 (Academic Press, 2024).
- 7 Wu, Q. *et al.* Organ-on-a-chip: recent breakthroughs and future prospects. *BioMedical Engineering OnLine* **19**, 9 (2020). <https://doi.org/10.1186/s12938-020-0752-0>
- 8 Ferreira, G. M. *et al.* Numerical simulation, fabrication, and characterization of a heating system for integration into an Organ-on-a-Chip. *Sensors and Actuators A: Physical* **363**, 114699 (2023). <https://doi.org/https://doi.org/10.1016/j.sna.2023.114699>
- 9 Koyilot, M. C. *et al.* Breakthroughs and Applications of Organ-on-a-Chip Technology. *Cells* **11** (2022).
- 10 Cho, S., Lee, S. & Ahn, S. I. Design and engineering of organ-on-a-chip. *Biomedical Engineering Letters* **13**, 97-109 (2023). <https://doi.org/10.1007/s13534-022-00258-4>
- 11 Leung, C. M. *et al.* A guide to the organ-on-a-chip. *Nature Reviews Methods Primers* **2**, 33 (2022). <https://doi.org/10.1038/s43586-022-00118-6>
- 12 Nahak, B. K., Mishra, A., Preetam, S. & Tiwari, A. Advances in Organ-on-a-Chip Materials and Devices. *ACS Applied Bio Materials* **5**, 3576-3607 (2022). <https://doi.org/10.1021/acsabm.2c00041>
- 13 Liu, X. *et al.* Recent Advances of Organ-on-a-Chip in Cancer Modeling Research. *Biosensors* **12** (2022).
- 14 Grant, J. *et al.* Simulating drug concentrations in PDMS microfluidic organ chips. *Lab on a Chip* **21**, 3509-3519 (2021). <https://doi.org/10.1039/D1LC00348H>
- 15 Wang, Y. *et al.* Emerging trends in organ-on-a-chip systems for drug screening. *Acta Pharmaceutica Sinica B* **13**, 2483-2509 (2023). <https://doi.org/https://doi.org/10.1016/j.apsb.2023.02.006>
- 16 Azizipour, N., Avazpour, R., Rosenzweig, D. H., Sawan, M. & Ajji, A. Evolution of Biochip Technology: A Review from Lab-on-a-Chip to Organ-on-a-Chip. *Micromachines* **11** (2020).
- 17 Jacob, S., Kaushik, P. & Parvez, S. in *Human Organs-on-a-Chip Technology* (ed P. V. Mohanan) 309-325 (Academic Press, 2024).
- 18 Vishwakarma, N. & Singh, S. in *Human Organs-on-a-Chip Technology* (ed P. V. Mohanan) 75-90 (Academic Press, 2024).
- 19 Shah, M., Prakashan, D. & Gandhi, S. in *Human Organs-on-a-Chip Technology* (ed P. V. Mohanan) 91-112 (Academic Press, 2024).
- 20 Gupta, V. *et al.* in *Human Organs-on-a-Chip Technology* (ed P. V. Mohanan) 233-249 (Academic Press, 2024).

21 Poojary, B. in *Human Organs-on-a-Chip Technology* (ed P. V. Mohanan) 251-259 (Academic Press, 2024). 36

22 Mukherjee, A. G. *et al.* in *Human Organs-on-a-Chip Technology* (ed P. V. Mohanan) 411-424 (Academic Press, 2024). 36

23 Chowdary, P., Yadav, D. N., Pogu, S. V. & Rengan, A. K. in *Human Organs-on-a-Chip Technology* (ed P. V. Mohanan) 439-457 (Academic Press, 2024). 37

24 Huang, Y., Liu, T., Huang, Q. & Wang, Y. From Organ-on-a-Chip to Human-on-a-Chip: A Review of Research Progress and Latest Applications. *ACS Sensors* **9**, 3466-3488 (2024). <https://doi.org/10.1021/acssensors.4c00004>

25 Sung, B. In silico modeling of endocrine organ-on-a-chip systems. *Mathematical Biosciences* **352**, 108900 (2022). <https://doi.org/https://doi.org/10.1016/j.mbs.2022.108900>

26 Carvalho, V. *et al.* 3D Printing Techniques and Their Applications to Organ-on-a-Chip Platforms: A Systematic Review. *Sensors* **21** (2021).

27 Ma, C., Peng, Y., Li, H. & Chen, W. Organ-on-a-Chip: A New Paradigm for Drug Development. *Trends in Pharmacological Sciences* **42**, 119-133 (2021). <https://doi.org/10.1016/j.tips.2020.11.009>

28 Prot, J. M. *et al.* First pass intestinal and liver metabolism of paracetamol in a microfluidic platform coupled with a mathematical modeling as a means of evaluating ADME processes in humans. *Biotechnology and Bioengineering* **111**, 2027-2040 (2014). <https://doi.org/https://doi.org/10.1002/bit.25232>

29 Menezes, P. D., Gadegaard, N., Natal Jorge, R. M. & Pinto, S. I. S. Modelling human liver microphysiology on a chip through a finite element based design approach. *International Journal for Numerical Methods in Biomedical Engineering* **37**, e3445 (2021). <https://doi.org/https://doi.org/10.1002/cnm.3445>

30 Jeong, S., Seo, J.-H., Garud, K. S., Park, S. W. & Lee, M.-Y. Numerical approach-based simulation to predict cerebrovascular shear stress in a blood-brain barrier organ-on-a-chip. *Biosensors and Bioelectronics* **183**, 113197 (2021). <https://doi.org/https://doi.org/10.1016/j.bios.2021.113197>

31 Wang, L. *et al.* A new approach of using organ-on-a-chip and fluid-structure interaction modeling to investigate biomechanical characteristics in tissue-engineered blood vessels. *Frontiers in Physiology* **Volume 14 - 2023** (2023).

32 Filipovic, N., Nikolic, M. & Sustersic, T. in *Biomaterials for Organ and Tissue Regeneration* (eds Nihal Engin Vrana, Helena Knopf-Marques, & Julien Barthes) 753-790 (Woodhead Publishing, 2020).

33 Milani, N., Parrott, N., Galetin, A., Fowler, S. & Gertz, M. In silico modeling and simulation of organ-on-a-chip systems to support data analysis and a priori experimental design. *CPT: Pharmacometrics & Systems Pharmacology* **13**, 524-543 (2024). <https://doi.org/https://doi.org/10.1002/psp4.13110>

34 da Silva Pereira, J. D. T. *Machine Learning Algorithms and Organs-on-Chips as New Technologies for the Modeling of Human Cardiac Toxicity and Disease*, Universidade do Minho (Portugal), (2022).

35 Zheng, F., Xiao, Y., Liu, H., Fan, Y. & Dao, M. Patient-Specific Organoid and Organ-on-a-Chip: 3D Cell-Culture Meets 3D Printing and Numerical Simulation. *Adv Biol (Weinh)* **5**, e2000024 (2021). <https://doi.org/10.1002/adbi.202000024>

36 Ibrahim, M., Chakrabarty, K. & Schlichtmann, U. Synthesis of a Cyberphysical Hybrid Microfluidic Platform for Single-Cell Analysis. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems* **38**, 1237-1250 (2019). <https://doi.org/10.1109/tcad.2018.2846662>

37 Phillips, C. M. *et al.* Towards integration of time-resolved confocal microscopy of a 3D in vitro microfluidic platform with a hybrid multiscale model of tumor angiogenesis. *PLoS Computational Biology* **19**, e1009499 (2023).

38 Silva, D. F. C. *et al.* Design of a microfluidic platform for monoclonal antibody extraction using an aqueous two-phase system. *Journal of Chromatography A* **1249**, 1-7 (2012). <https://doi.org/https://doi.org/10.1016/j.chroma.2012.05.089>

39 Pisapia, F., Balachandran, W. & Rasekh, M. Organ-on-a-Chip: Design and Simulation of Various Microfluidic Channel Geometries for the Influence of Fluid Dynamic Parameters. *Applied Sciences* **12** (2022).

40 Seyed Zolfaghari, S. H., Pourmand, A. & Kiyomarsioskouei, A. A low-cost 3D-printing based rapid fabrication procedure for modular microfluidic platform. *Journal of Micromechanics and Microengineering* **35**, 045013 (2025). <https://doi.org/10.1088/1361-6439/adc313>

41 Carvalho, V. *et al.* Numerical evaluation and experimental validation of fluid flow behavior within an organ-on-a-chip model. *Computer Methods and Programs in Biomedicine* **243**, 107883 (2024). <https://doi.org/https://doi.org/10.1016/j.cmpb.2023.107883>

42 Teixeira, S. G. *et al.* National reflection on organs-on-chip for drug development: New regulatory challenges. *Toxicology Letters* **388**, 1-12 (2023). <https://doi.org/https://doi.org/10.1016/j.toxlet.2023.09.011>

43 Candarlioglu, P. L. *et al.* Organ-on-a-chip: current gaps and future directions. *Biochemical Society Transactions* **50**, 665-673 (2022). <https://doi.org/10.1042/BST20200661>

44 Oliver, C. R., Westerhof, T. M., Castro, M. G. & Merajver, S. D. Quantifying the Brain Metastatic Tumor Micro-Environment using an Organ-On-A Chip 3D Model, Machine Learning, and Confocal Tomography. *J Vis Exp* (2020). <https://doi.org/10.3791/61654>

45 R, N., Aggarwal, A., Srivani, A. B., Mallya, P. & Lewis, S. Organ-On-A-Chip: An Emerging Research Platform. *Organogenesis* **19**, 2278236 (2023). <https://doi.org/10.1080/15476278.2023.2278236>

46 Movčana, V. *et al.* Organ-On-A-Chip (OOC) Image Dataset for Machine Learning and Tissue Model Evaluation. *Data* **9** (2024).

47 Gangwal, A. & Lavecchia, A. Artificial intelligence in preclinical research: enhancing digital twins and organ-on-chip to reduce animal testing. *Drug Discovery Today* **30**, 104360 (2025). <https://doi.org/https://doi.org/10.1016/j.drudis.2025.104360>

48 Augmented Reality Solutions for Organ-on-Chip applications, <<https://www.gobiond.com/2021/05/01/interview-with-emanuele-borasio-ceo-and-founder-wear-srl/>> (2021).

49 *ISO/AWI 25693: Biotechnology - Developing process of
Organ-on-Chip using for evaluation of substances,
<<https://www.iso.org/standard/91185.html>>* (

50 Centre, J. R. *Setting out a roadmap for standardisation of
organ-on-chip technology, <[https://joint-research-
centre.ec.europa.eu/jrc-news-and-updates/setting-out-
roadmap-standardisation-organ-chip-technology-2025-01-
13_en](https://joint-research-
centre.ec.europa.eu/jrc-news-and-updates/setting-out-
roadmap-standardisation-organ-chip-technology-2025-01-
13_en)>* (2025).

Focussed Review of Modelling-Driven Innovations in Organ-on-a-Chip Platforms using CFD, AI, and AR/VR

Jingyi Yao¹

¹ Faculty of Engineering, University of Sydney, Sydney, Australia

E-mail: jyao0006@uni.sydney.edu.au

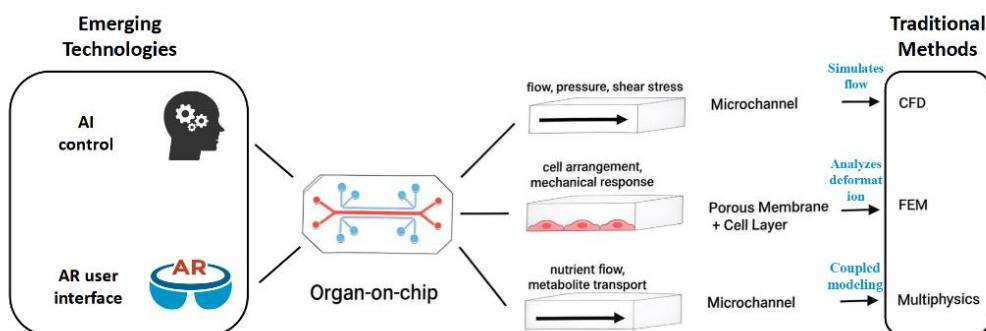
Received xxxxxx

Accepted for publication xxxxxx

Published xxxxxx

Graphical Abstract

Abstract



Organ-on-a-chip (OOC) is an emerging microfluidic platform that mimics key physiological functions of the human body, offering promising tools for drug screening, disease modeling, and personalized medicine (context). This review highlights recent advances in OOC modeling, with a focus on Computational Fluid Dynamics (CFD), Finite Element Analysis (FEM), multiphysics simulation, artificial intelligence (AI), and augmented/virtual reality (AR/VR) (key advance). We summarize the applications of these approaches in fluid dynamics, mechanical responses, chemical transport, and system visualization, explicitly addressing their roles at different modeling layers relevant to chip performance (scope). Finally, we discuss current challenges, including organ complexity, multi-organ integration, validation, and standardization, and propose that future progress will rely on interdisciplinary collaboration, hybrid modeling strategies, and real-time AI integration to accelerate biomedical translation (outlook).

Keywords: Organ-on-a-Chip, Microfluidics, Artificial Intelligence, Biomedical Applications

1. Introduction

Organ-on-a-Chip (OoC) is a cutting-edge technology that combines biology and microtechnology, capable of simulating key physiological functions of the human body on microfluidic chips^{1,2}. It exactly controls trace amounts of fluid through the use of microchannels to supply cells and tissue structures with a close-to-physiological microenvironment³. OoC employs chip-based regulated device systems to supply cells and tissue structures with biochemical and physical environments close to in vivo conditions to allow scientists to experiment on these systems in vitro⁴. This allows scientists to more accurately control the microenvironment in which the cells reside and directly view the reaction of the cells and tissues⁵.

In comparison to conventional two-dimensional cell culturing, the scale of the channels in microfluidic systems is comparable to that of cells and more effectively replicates the extracellular microenvironment and the three-dimensional tissue structure^{6,7}. It is able to perform precise regulation of mechanical stimulation to the cells, delivery of nutrients and chemical gradients. With these technologies, it is possible to create miniature cavities of precise structures and accurately regulate the molecules and the cells within the microfluidic system to accurately duplicate the organs' microenvironment and replicate the physiological and disease conditions in the body⁸. With this technology, it offers a highly bionic and high-throughput new experimental system for drug screening, disease studies and personalized medicine.

But in order to fully tap the potential of OoC, advanced modeling techniques assume key significance⁹. Modeling not only allows for chip design to be optimized, fluid and cell behavior to be predicted, and the trial-and-error experiment to be minimized but also enhances the reproducibility of the system. CFD, FEM as well as multi-physics field simulation provide valuable information on the flow field distribution, the mechanical stress, the nutrient gradient and the response of the cell within the chip. Meanwhile, recent emerging technologies including AI and AR/VR have continuously improved the precision of designs, data analysis functions, and visual interaction to further enhance the accuracy of modeling.

In the past few years, scientists have constructed various types of organ chips, e.g., the brain¹⁰, heart¹¹, lung¹² and cancer models¹³, and made good performance in various applications. Organ-on-a-chip has become a valuable tool for the academia and industry to study the functions of organs and discover new medicines. For example, the bionic lung chip has effectively duplicated the relationship between human alveoli and capillary structures, offering a new way for drug screening¹⁴.

However, despite the fact that OoC technology is extremely innovative, there are still many challenges¹⁵. One of the primary challenges is standardization in the process of manufacturing¹⁶. Up to now, due to the lack of a uniform

system of material and techniques, not only does it hinder the reproducibility of experiments but also the mass production and low-cost process. Second, the cooperation and coupling between different chip organs have not yet been effectively integrated, and as a result, it becomes challenging to simulate comprehensive multiple-organ interaction. Likewise, OoC also encounters the problem of medical verification and regulation: how to undergo medical verification and be certified by the US FDA is a primary challenge for the transition of OoC toward application¹⁷.

The aim of this paper is to comprehensively review the modelling approaches for microfluidic platforms in Organ-on-a-Chip (OoC), assess the role of traditional techniques such as Computational Fluid Dynamics (CFD), Finite Element Analysis (FEA), and Multi-Physics Field Simulation (MFSS) in the design and optimisation of OoCs, and explore the innovative breakthroughs brought by the emerging technologies such as Artificial Intelligence (AI), Machine Learning (ML) and Augmented/Virtual Reality (AR/VR). However, existing reviews mostly focus on chip fabrication or biological applications, with less systematic summaries of the synergies of these modelling strategies and their challenges, such as multi-scale coupling, data integration and standardisation issues. By filling this gap, this paper provides ideas and references for the development of OoC in biomedical engineering.

2. Modelling and Intelligent Technologies

With the rapid development of organ-on-a-chip (OoC) technology, advanced modeling methods and intelligent technologies are playing an increasingly important role in it. Modeling tools such as Computational Fluid Dynamics (CFD)¹⁸, Finite Element Analysis (FEM), and multiphysics simulation provide reliable theoretical support for chip design, fluid control, and physiological process prediction. Meanwhile, the introduction of emerging technologies such as artificial intelligence (AI), machine learning, and augmented/virtual reality (AR/VR) has greatly enhanced the efficiency of data analysis, design optimization, and visualization. Figure 1 shows how CFD, FEM, and multiphysics relate to key OoC components.

2.1 Traditional computational modeling methods

2.1.1 CFD

Computational Fluid Dynamics (CFD) is a method based on numerical analysis, which is used to simulate and predict the flow, pressure, velocity, temperature and material transport behavior of fluids (liquids or gases) under different conditions¹⁸.

Hydrodynamic parameters such as shear force, pressure and flow rate can significantly affect the morphology, proliferation, function and survival rate of cells, and thereby

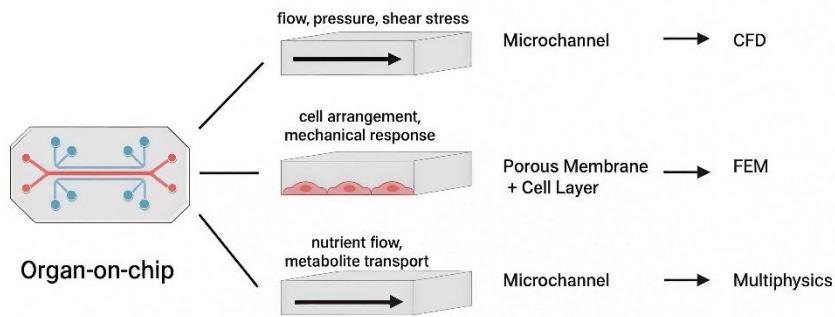


Figure 1. Schematic of Organ-on-a-Chip and modelling methods

play a key role in the overall function and activity of tissues¹⁹. Microfluidic devices provide a highly promising method for studying these parameters and the fluid behavior in different microchannel structures²⁰. Microfluidic devices (MFDS) are made of biocompatible materials and contain tiny channels²¹. Organ-on-a-chip (OOC) utilizes this technology to simulate the microenvironment of specific tissues or organs²².

Green et al. investigated the influence of channel geometry on cell adhesion by designing microchannels with sharp turns and curved turns and combining them with fluid dynamics simulations. Their results show that the flow velocity and shear stress distribution in the curved and turning microchannels are more uniform, which helps to improve the cell adhesion effect²³.

Bakuova et al. demonstrated through CFD analysis and experiments based on Huh7 cells that the elliptical cavity liver chip has superior flow and filling characteristics compared to the circular cavity chip, and successfully verified the adhesion and continuous growth of cells²⁴.

However, CFD mainly focuses on fluid systems and is difficult to directly handle the solid deformation of chips or multi-physics field coupling. Moreover, its mesh division and boundary condition setting are complex, the calculation time is long, and it requires powerful computing resources²⁵.

2.1.2 Finite Element Analysis (FEM)

Finite element Analysis (FEM) is a numerical tool used to predict the mechanical properties in organ-on-a-chip (OOC), capable of simulating the deformation, stress distribution and fluid-structure coupling effects of chip materials. The application of FEM is conducive to optimizing chip design, improving durability and security. However, its modeling is complex and the parameter setting is cumbersome, and it needs to be combined with experimental verification to ensure the reliability of the simulation. Furthermore, at present, many designs still mainly rely on trial-and-error experiments and have not fully utilized the advantages of FEM²⁶.

2.1.3 Multi-physics field simulation

Multiphysics simulation is an integrated approach used to simultaneously study the interactions among various physical processes such as fluids, mechanics, chemistry, and heat conduction, and is particularly suitable for complex organ-on-a-chip (OOC) systems. Multiphysics simulation not only helps optimize chip design and enhance the physiological relevance of experiments but also provides a powerful tool for the prediction of complex systems.

Jeon et al. utilized multi-physics field simulation combined with experiments to study the effects of fluid flow in the intestinal-liver microarray on intestinal cells and liver cells, optimized the flow velocity and shear force parameters, and explored the effects of fatty acid transport, liver lipid accumulation, and anti-fatty liver drugs²⁷.

2.2 The Application of AI in OOC

AI, especially machine learning algorithms, can be used to automate chip design and parameter optimization. By training algorithms, researchers can predict in advance which design is the most suitable for a specific biological application, significantly reducing the cost of trial and error. Machine learning is a common method for achieving artificial intelligence, and deep learning is one of the important algorithms among them.

The research by Li et al. indicates that organ-on-a-chip (OOC) systems based on deep learning have demonstrated great potential at multiple levels²⁸. Through algorithms such as convolutional Neural networks (CNN) and recurrent neural networks (RNN), image analysis, cell recognition, dynamic tracking, segmentation and functional prediction in the chip can be efficiently achieved, greatly improving the automation level of data processing. In addition, deep learning has also demonstrated significant value in aspects such as the design optimization of microfluidic chips, fluid dynamics analysis, and cell behaviour prediction. This study points out that by integrating deep learning technology, OOC is expected to achieve higher accuracy and efficiency in drug screening, disease modelling, personalized medicine, and multi-organ

Table 1. Summary of modelling tools, applications, advantages, and challenges in Organ-on-a-Chip research

Tool	Application	Advantage	Challenge	Recent Example
CFD	Simulate fluid flow, shear stress, nutrient transport in microchannels	High accuracy, clear physical principles	Complex setup, high computational cost	Barbosa et al. (2024), thermal and fluid flow modeling in OoC ²⁹ .
FEM	Analyze mechanical deformation, stress distribution, fluid–structure interaction	Accurate mechanical predictions, good for membrane deformation	Complex meshing, needs precise material data	de Menezes (2020), finite element approach for OoC design ²⁶ .
Multiphysics Simulation	Combine fluid, mechanical, thermal, chemical effects	Comprehensive system analysis	High modeling difficulty, long computation time	Jeon et al. (2021), gut–liver-on-a-chip for hepatic steatosis modeling ²⁷ .
AI	Optimize design, predict behavior, analyze images	Fast data processing, automated optimization	Needs large, high-quality datasets; limited interpretability	Isozaki et al. (2020), AI integration in lab-on-a-chip systems ³⁰ .
AR/VR	Visualization, training, remote collaboration	Improved visualization and interactivity	Limited integration with physical systems	Broek (2025), visualization tool for OoC fibrotic disease model ³¹ .

system research, bringing new opportunities for in vitro alternative experiments and precision medicine²⁸.

Isozaki et al. reviewed the combined application of artificial intelligence (AI) and Lab-on-a-Chip, pointing out that machine learning and deep learning have significantly improved the analytical efficiency and accuracy in aspects such as high-throughput imaging, cell classification, and drug screening³⁰. The article also mentioned that algorithms such as Support Vector Machine (SVM) and Convolutional Neural Network (CNN) have been successfully applied in cell cycle analysis and blood cell detection. At the same time, it emphasized future challenges such as model interpretability and data quality.

Lightweight models such as decision trees and embedded machine learning can also be introduced in for real-time control and adaptive tuning³². Such methods are faster in computation, consume less power and are more suitable for integration with portable and miniaturised devices.

2.3 The Application of AR/VR in OOC

Augmented Reality (AR) and virtual reality (VR) are visualization and interaction technologies that have developed rapidly in recent years. These two technologies have the advantages of being intuitive, dynamic and highly interactive, which makes them show wide application potential in many scientific research and engineering fields.

Recent works have demonstrated the growing significance of AR and VR in medical applications, including their application in organ-on-a-chip (OOC) studies. For example, VR associated with Computer-aided Modeling (CAM) has

been used in tele-surgery to increase the accuracy of operations and collaborative planning^{33,34}. In the study of OOC, the use of AR/VR technology can project the Body-on-a-Chip (BOC) system and combine several OOC units to model a whole organism^{35,36}. By fusing real-time data and immersive visualization, the use of AR/VR increases the capacity of researchers to track dynamic processes, study drug effects, and tune up experimental protocols without the need for direct physical manipulation. Further, AR/VR also enhances inter-team communications³⁷.

Although AR/VR has shown great potential in aspects such as visualization, simulation and training, the integration with actual OOC systems still faces some obstacles. Including the limitations of hardware miniaturization and the challenge of real-time data synchronization between virtual and physical systems.

2.4 Comprehensive evaluation

Advanced technologies such as Computational Fluid Dynamics (CFD), Finite Element Analysis (FEM), multiphysics simulation, artificial intelligence (AI), and augmented/virtual reality (AR/VR) are instrumental in the enhanced design and application of organ-on-a-chip (OOC). CFD and FEM offer high accuracy but need complex setup and heavy computing. Multiphysics simulation captures system interactions but is even more demanding. AI brings efficiency and flexibility to design and data analysis but depends on large, quality datasets and often lacks interpretability. AR/VR improves visualization and user

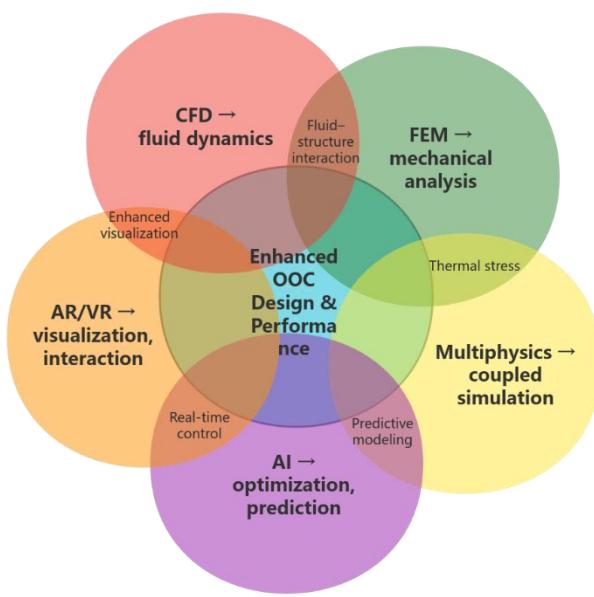


Figure 2. Complementary Modelling Methods in Organ-on-a-Chip

interaction but is still mainly used as a support tool, with limited integration into chip systems.

Table 1 summarizes the main tools, their typical applications in organ-on-chip systems, as well as their respective main advantages and challenges.

To illustrate the complementarity and integration of various modelling approaches in Organ-on-a-Chip systems, Figure 2 presents a schematic Venn diagram highlighting the overlaps and shared roles of CFD, FEM, multiphysics simulation, AI, and AR/VR technologies.

Overall, each technology has its own focus and complementary advantages in OOC. In the future, it is necessary to promote cross-disciplinary integration, combining the rigor of traditional modeling with the predictive ability of AI and the intuitiveness of AR/VR, to achieve a more efficient, intelligent and reliable OOC system, opening up broader prospects for biomedical research and precision medicine.

2.5 Validation

Verification is a key step to ensure that the modeling results accurately reflect the biological performance in the OOC system. For instance, the fluid flow and shear force obtained from CFD simulation can be verified through microparticle imaging velocity measurement (μ PIV) or tracer dye experiments³⁸. The results predicted by FEM can be compared by observation with a high-resolution microscope or traction microscopy³⁹. The prediction of cell behavior or drug response by AI needs to be verified through means such as time series imaging, molecular analysis or histological analysis⁴⁰. Effective verification can not only

enhance the credibility of the model, but also identify the deficiencies that need improvement in the model.

Meinicke et al. combined μ PIV measurement and CFD simulation to study the single-phase fluid dynamics in porous SiO_2 glass foam. In the study, μ PIV was used to observe the flow of DMSO in porous structures, and the experimental data were compared with the CFD model reconstructed by X-rays. The research shows that the experimental results are highly consistent with the numerical results, effectively verifying the CFD prediction⁴¹.

3 Challenges and Future Perspectives

Although organ-on-a-chip (OOC) technology has made many advancements, it still faces many challenges in practical applications. How to accurately restore the complex structures of human organs and biological interfaces remains difficult⁴².

Although traditional modeling methods (such as CFD, FEM, and multiphysics simulation) are accurate in calculation, they are complex in operation and time-consuming. AI offers new approaches to design optimization and data analysis, but it relies on a large amount of high-quality data and has limited model interpretability. AR/VR has improved visualization and interaction, but the deep integration with OOC is still insufficient.

Furthermore, OOC lacks a unified platform and standards, resulting in the difficulty of repeating experiments and integrating and analyzing data. The stable supply of human cells and the development of multi-organ shared culture media are also key bottlenecks for promotion.

Interdisciplinary cooperation among biology, engineering and computational science needs to be strengthened in the future. By integrating modeling, AI and AR/VR, drive OOC to achieve more intelligent and efficient applications. And accelerate its clinical transformation in drug screening, disease research and precision medicine.

4 Conclusion and Recommendations

As the core technology of organ-on-a-chip (OOC), the microfluidic platform provides a solid foundation for its application in biomedical engineering. The combination of traditional modelling methods, artificial intelligence (AI), and augmented/virtual reality (AR/VR) has jointly promoted the design optimization, data analysis, and functional expansion of OOC, opening new avenues for fields such as drug screening, disease research, and personalized medicine.

In the future, the development of organ-on-a-chip (OOC) will increasingly rely on close collaboration in the fields of engineering, computing and biology. Hybrid digital twins are expected to combine sensors and AI to achieve real-time monitoring and regulation of OOC for personalized drug screening and disease prediction. Through the real-time feedback system embedded in machine learning (embedded

ML), researchers can adjust the fluid parameters, drug concentrations, etc. of the chip based on real-time data in the experiment, improving the flexibility and physiological relevance of the experiment. These advancements are expected to shorten the transition from the laboratory to clinical practice and promote the wide application of OOC in drug development and personalized medicine.

Acknowledgements

The design of figures was inspired by AI-assisted suggestions, while all illustrations were created independently by the author.

References

- [1] Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. *Nature biotechnology* **32**, 760-772 (2014).
- [2] Joseph, X., Akhil, V., Arathi, A. & Mohanan, P. Comprehensive development in organ-on-a-chip technology. *Journal of Pharmaceutical Sciences* **111**, 18-31 (2022).
- [3] Whitesides, G. M. The origins and the future of microfluidics. *nature* **442**, 368-373 (2006).
- [4] Ronaldson-Bouchard, K. & Vunjak-Novakovic, G. Organs-on-a-chip: a fast track for engineered human tissues in drug development. *Cell stem cell* **22**, 310-324 (2018).
- [5] Leung, C. M. et al. A guide to the organ-on-a-chip. *Nature Reviews Methods Primers* **2**, 33 (2022).
- [6] Halldorsson, S., Lucumi, E., Gómez-Sjöberg, R. & Fleming, R. M. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. *Biosensors and Bioelectronics* **63**, 218-231 (2015).
- [7] McLean, I. C., Schwerdtfeger, L. A., Tobet, S. A. & Henry, C. S. Powering ex vivo tissue models in microfluidic systems. *Lab on a Chip* **18**, 1399-1410 (2018).
- [8] Tian, C., Tu, Q., Liu, W. & Wang, J. Recent advances in microfluidic technologies for organ-on-a-chip. *TrAC Trends in Analytical Chemistry* **117**, 146-156 (2019).
- [9] Low, L. A., Mummary, C., Berridge, B. R., Austin, C. P. & Tagle, D. A. Organs-on-chips: into the next decade. *Nature Reviews Drug Discovery* **20**, 345-361 (2021).
- [10] Park, J. W., Vahidi, B., Taylor, A. M., Rhee, S. W. & Jeon, N. L. Microfluidic culture platform for neuroscience research. *Nature protocols* **1**, 2128-2136 (2006).
- [11] Lind, J. U. et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. *Nature materials* **16**, 303-308 (2017).
- [12] Domansky, K. et al. Perfused multiwell plate for 3D liver tissue engineering. *Lab on a Chip* **10**, 51-58 (2010).
- [13] Bischel, L. L., Beebe, D. J. & Sung, K. E. Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure. *BMC cancer* **15**, 1-10 (2015).
- [14] Lee, S. H. & Jun, B.-H. Advances in dynamic microphysiological organ-on-a-chip: Design principle and its biomedical application. *Journal of industrial and engineering chemistry* **71**, 65-77 (2019).
- [15] Tajeddin, A. & Mustafaoglu, N. Design and fabrication of organ-on-chips: promises and challenges. *Micromachines* **12**, 1443 (2021).
- [16] Ma, C., Peng, Y., Li, H. & Chen, W. Organ-on-a-chip: a new paradigm for drug development. *Trends in pharmacological sciences* **42**, 119-133 (2021).
- [17] Allwardt, V. et al. Translational roadmap for the organs-on-a-chip industry toward broad adoption. *Bioengineering* **7**, 112 (2020).
- [18] Kamyar, A., Saidur, R. & Hasanuzzaman, M. Application of computational fluid dynamics (CFD) for nanofluids. *International Journal of Heat and Mass Transfer* **55**, 4104-4115 (2012).
- [19] Chabanon, M. et al. Histological method to study the effect of shear stress on cell proliferation and tissue morphology in a bioreactor. *Tissue Engineering and Regenerative Medicine* **16**, 225-235 (2019).
- [20] Pisapia, F., Balachandran, W. & Rasekh, M. Organ-on-a-Chip: Design and simulation of various microfluidic channel geometries for the influence of fluid dynamic parameters. *Applied Sciences* **12**, 3829 (2022).
- [21] Solanki, S., Pandey, C. M., Gupta, R. K. & Malhotra, B. D. Emerging trends in microfluidics based devices. *Biotechnology journal* **15**, 1900279 (2020).
- [22] Farhang Doost, N. & Srivastava, S. K. A comprehensive review of organ-on-a-chip technology and its applications. *Biosensors* **14**, 225 (2024).
- [23] Green, J. V. et al. Effect of channel geometry on cell adhesion in microfluidic devices. *Lab on a Chip* **9**, 677-685 (2009).
- [24] Bakuova, N. et al. Design, simulation, and evaluation of polymer-based microfluidic devices via computational fluid dynamics and cell culture "on-chip". *Biosensors* **13**, 754 (2023).
- [25] Tu, J., Yeoh, G. H., Liu, C. & Tao, Y. *Computational fluid dynamics: a practical approach*. (Elsevier, 2023).
- [26] de Menezes, P. D. C. C. *A Finite Element Approach to Design Organ-on-a-Chip Devices*, Universidade do Porto (Portugal), (2020).
- [27] Jeon, J. w., Lee, S. H., Kim, D. & Sung, J. H. In vitro hepatic steatosis model based on gut-liver - on - a - chip. *Biotechnology Progress* **37**, e3121 (2021).
- [28] Li, J. et al. An overview of organs-on-chips based on deep learning. *Research* (2022).
- [29] Barbosa, F. et al. in *International Conference on Micro/Nanoscale Heat Transfer*. V001T004A014 (American Society of Mechanical Engineers).
- [30] Isozaki, A. et al. AI on a chip. *Lab on a Chip* **20**, 3074-3090 (2020).
- [31] Broek, E. *Building a visualisation tool for an organ-on-a-chip model of fibrotic diseases*, University of Twente, (2025).
- [32] Zhao, X., Sun, Y., Li, Y., Jia, N. & Xu, J. Applications of machine learning in real-time control systems: a review. *Measurement Science and Technology* (2024).
- [33] Jimenez, J. I., Jahankhani, H. & Kendzierskyj, S. Health care in the cyberspace: Medical cyber-physical system and digital twin challenges. *Digital twin technologies and smart cities*, 79-92 (2020).
- [34] Lee, I. et al. Challenges and research directions in medical cyber-physical systems. *Proceedings of the IEEE* **100**, 75-90 (2011).
- [35] Zhang, B., Korolj, A., Lai, B. F. L. & Radisic, M. Advances in organ-on-a-chip engineering. *Nature Reviews Materials* **3**, 257-278 (2018).

[36] Skardal, A., Shupe, T. & Atala, A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. *Drug discovery today* **21**, 1399-1411 (2016).

[37] Rasheed, A., San, O. & Kvamsdal, T. Digital twin: Values, challenges and enablers from a modeling perspective. *IEEE access* **8**, 21980-22012 (2020).

[38] Lindken, R., Rossi, M., Große, S. & Westerweel, J. Micro-particle image velocimetry (μ PIV): recent developments, applications, and guidelines. *Lab on a Chip* **9**, 2551-2567 (2009).

[39] Zielinski, R., Mihai, C., Kniss, D. & Ghadiali, S. N. Finite element analysis of traction force microscopy: influence of cell mechanics, adhesion, and morphology. *Journal of biomechanical engineering* **135**, 071009 (2013).

[40] Panayides, A. S. et al. AI in medical imaging informatics: current challenges and future directions. *IEEE journal of biomedical and health informatics* **24**, 1837-1857 (2020).

[41] Meinicke, S., Möller, C.-O., Dietrich, B., Schlüter, M. & Wetzel, T. Experimental and numerical investigation of single-phase hydrodynamics in glass sponges by means of combined μ PIV measurements and CFD simulation. *Chemical engineering science* **160**, 131-143 (2017).

[42] Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. *Nature biotechnology* **32**, 773-785 (2014).