ANALYZING INFLUENCE OF INFORMAL STEM EDUCATION ON RURAL CHILDREN'S SELF-EFFICACY AND COMPUTATION THINKING

Xiaojing Shang ^a, Zhujun Jiang^a, Jie Chen ^b, Feng-Kuang Chiang ^{ac}

Contact Author: Feng-Kuang Chiang (fkchiang@sjtu. edu.cn)

^a Department of Educational Technology, School of Education, Shanghai Normal University, 200234, China

^b School of Languages and Communication Studies, Beijing Jiaotong University, 100044, China

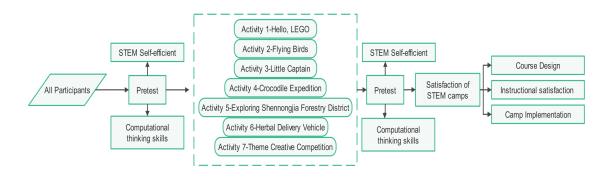
° School of Education, Shanghai Jiao Tong University, 200240, China

THEME:

STEM education in diverse contexts

BACKGROUND AND AIMS

STEM Camp, as a short-term informal STEM learning project, has been demonstrated that positively impacts students' academic achievement and knowledge skills. However, few studies concerning whether informal STEM learning is appropriate for rural youth. This research aimed to investigate the impacts of STEM education on rural students with different levels (high, medium and low) of self-efficacy and computational thinking skills.


METHODOLOGY

A total of 133 3rd or 4th-grade students participated in the STEM camp from three rural elementary schools in Shanghai (Table 1).

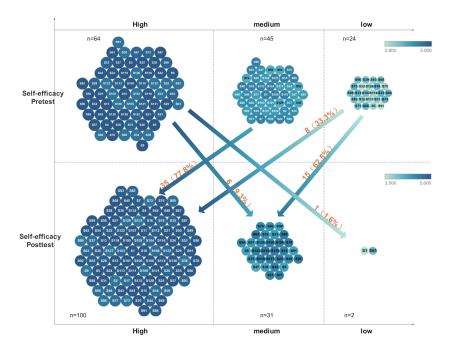
participants	Analytic sample	SchoolA	School B	School C
Boys	85(63.9%)	34	27	24
Girls	48(36.1%)	13	18	17
Total students	133	47	45	41

Table 1 Number of students in research

The research adopts one-group pretest-posttest quasi experimental design (as figure 1) and the questionnaire adapted from the measure developed by Luo et al. (2021) and Korkmaz et al. (2017).

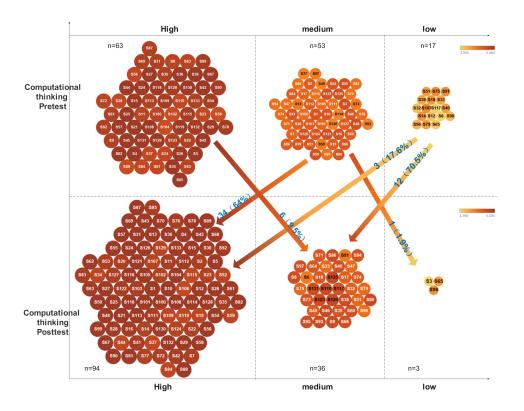
Fig. 1 Research Procedure

RESULTS AND CONCLUSIONS


The paired-t test show that students' self-efficacy and computational thinking skills significantly increase after the camp (as table 2).

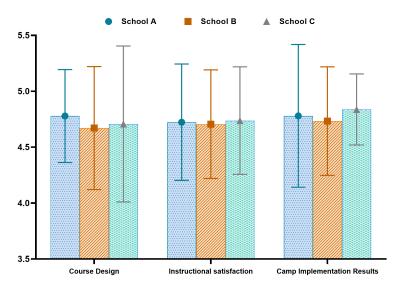
	Pre-test		Post	-test	Comparison	
	Mean	SD	Mean	SD	t	p
STEM Self-efficient	21.70	3.08	22.33	3.47	-2.110	0.037*
Computational thinking skills	48.46	5.80	49.71	6.97	-2.403	0.018*

 Table 2
 Pre- and post- impact of STEM camps on students (n=133)


*Significant at the p < 0.05 level.

To further investigate the effect on students of different levels, we use K-means clustering (K = 3) in SPSS to divide students into three levels: *high, medium and low,* based on their self-efficacy and computational thinking skills results before and after the camp. With respect to self-efficacy, most of the students switch from low (95.8%) and medium (77.8%) to higher level after the camp (as figure 2).

Fig. 2 Pre- and post- Self-efficacy


As to the computational skills, students switch from low (88.1%) and medium (64%) to higher level (as figure 3).

According to one-way ANOVA results, there is no significant difference in the satisfaction dimension of students from three rural schools (as figure 4).

2022. J. Bobis & C. Preston (Eds.), Proceedings of the 7th International STEM in Education Conference (STEM 2022), University of Sydney, Sydney, Australia, November 23-26. University of Sydney.

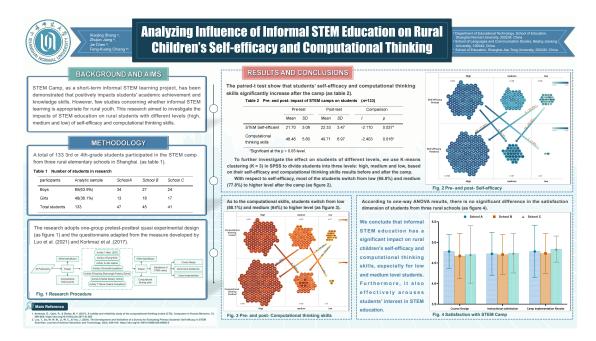


Fig. 4 Satisfaction with STEM Camp

We conclude that informal STEM education has a significant impact on rural children's self-efficacy and computational thinking skills, especially for low and medium level students. Furthermore, it also effectively arouses students' interest in STEM education.

REFERENCES

- Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the computational thinking scales (CTS). *Computers in Human Behavior,* 72, 558–569. https://doi.org/10.1016/j.chb.2017.01.005
- Luo, T., So, W. W. M., Li, W. C., & Yao, J. (2021). The Development and Validation of a Survey for Evaluating Primary Students' Self-efficacy in STEM Activities. *Journal* of Science Education and Technology, 30(3), 408–419. https://doi.org/10.1007/s10956-020-09882-0

2022. J. Bobis & C. Preston (Eds.), Proceedings of the 7th International STEM in Education Conference (STEM 2022), University of Sydney, Sydney, Australia, November 23-26. University of Sydney.