THE USE OF INFLUENCE LINES IN THE DESIGNING
OF STRUCTURES.

By R. W. Hawken, B.E., B.A.

(A paper read before the Sydney Universily Engineering Sociely,
August 12¢h, 1908.)

HIS paper proposes to deal with a method, which has not hitherto

had extensive application, of finding stresses in structures. This

statement applies to works in English which have come under the
writer’s notice.

The use of Influence Lines in connection with various *structures
will be elaborated, some examples will be given of their application,
and their utility pointed out in comparison with other methods.

An Influence Line is a curve drawn such that its ordinate at any
point represents the value of some function (such asa Bending Moment,
Shear, or Reaction) when some unit load is in the position indicated by
the abscissa.

Put into mathematical language, an Influence Line is the curve
v = [ (x), where y represents the stress being investigated, and x the
position on the structure.

The above definitions apply to loads moving on the horizontal and
to a plane curve; this exists in the great majority of cases: however, it
will be seen that the method could also be used for curves traced on a
solid, where f(x, s, z) may stand for one or more equations, but for
the present we confine ourselves to plane curves, as in most cases it is
a plane section of the structure which is considered for the investi-
gation of stresses.

It will be seen how the Influence Line method may be applied.
For the investigation of maxima and minima effects we can find the
points by means of the Differential Calculus, and thus see where loads
have the greatest or least positive and negative values.

By drawing the curve we can see the effect of partial loading with
concentrated loads, as we need only multiply each load by the corres-
ponding ordinate in proper units to get the effect due to that load.
For distributed loads we can find the area of the curve between the
limits of loading by means of the Integral Calculus (or by the
planimeter or other approximate method) and thus deduce its effect.

The method may be used both for the discovery of the effects of
certain loading and for the plotting of results already found ; the two
processes may go on at the same time.

* “Structure” is used for truss, beam, arch, or whatever shape is under consideration.
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For structures where there are a few crucial points (c. /. an arch
without hinges) the method is particularly happy.

The writer hopes to illustrate these and other points during the
course of the paper, and will endeavour to shew that the investigator
has at his disposal an elegant method of considerable power.

In all cases, it is necessary, as is usual in tracing any curve, to note
positions of symmetry, also where sudden changes occur, and the
meaning of a negative sign.

The Influence Line curves must not be confused with ordinary
Bending Moment and.Shear diagrams, although in some cases they are
similar in shape.

Case 1.—CANTILEVER (Fic. 1).

Let x = distance of load from abutment.

x
i B. Mt. at Abut. = W where W is unity.
; Influence Line of B. Mt. at Abut. is y = a.
(Fig. 1a).

]
Fo/ Influence Line Shear at Abut. v = unity.
(Fig. 12).
Referring to Fig. la the B. Mt. due to a distributed load of w per
unit of length = area of triangle OPM = 1 wa®
Referring to Fig. 14 the Shear due to a distributed load of z per
unit of length = area of rectangle OP = wa.
These results agree with those found in any other way. If we
had a load W at the point M and a uniform load w per unit of length
from A to B then B. Mt. at Abut. due to these loadings.

={W x PM} + {Area AKLB) z, all in same units.
J

The influence line of B. Mt. at any other point is the straight line
drawn at an angle of 45° with the horizontal at the point.

Influence line of shear at any point is a horizontal line drawn at a
height unity above the point.

Case 2—BEAM SUPPORTED AT BOTH ENDS (Fic. 2).

Wl In the designing of a truss

:-_ _ _':u_ _’!_ L ___ —:‘L divided into panels, it is ne-

1 - 1 : | 4 cessary to know the bending

/f_ # P 2 ~moments and shears at the panel
*‘____'_,4_(___,,] points.

| F18. 2. Let P be point considered.

Let p = ratio of distance of point under consideration to total length
of beam. %/ = distance of unit load from 1.
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(a) Load on P1
B.Mt. =%k x (1 - p)l.
Shear looking to right of P = + 4.
wleftof P=—1+4+ (1 -k = -4

» ”»

(6) Load on P2
B.Mt. = (1 — k) x pl
Shear looking to right of P = — (1 - k).
”» " ,, left of P = + (] = k).

The sign of shear is taken positive when it has the same direction
as the reaction.

From the above it is clear that the influence line of B. Mt. at a
point P distant p/ from one end is two straight lines drawn to a point
at a vertical distance u (1 — p) ! above the point P. (Fig. 2a).
Influence line for shear at P is two straight lines drawn to points p
and (1 — p) above and below the horizontal at P or wice-versa.
(Fig. 20).

We can tabulate p (1 — p); on account of symmetry, it is not
necessary to go beyond p = 4. (Table is for / = unity). When p
does not reduce to a decimal the second part of table is to be used.

*TABLE 2qa.—Values of p (1 — p).
(1) p in decimals (Tenths in column, hundredths in row).

@ 0 ‘ 1 ! 2 ‘ 3| 4| 5] s ’ 7 ! 8 ’ 9

0| 010 | 020 | -029 | -038 | -048 | 056 | -065 | -074 |-082
‘090 | -098 | <106 | 113 | -120 | 128 | 134 | -141 | -148 [-154
'160 | -166 | 172 | -177 | -182 | -188 | -193 | -197 | -202 | -206
210 | .214 | -218 | -221 | -224 | 227 | -230 | -233 | -236 |-238
240 | 0242 | 244 | 245 | -246 | 247 | 248 | 249 | -250 | -250

ot S

(2) p in fraction (Numerator in column. Denominator in row).

—

-950-222|-188|-160(-139|-122|-109|-099[-090|-083|-076|-071-066 |-062|-059/-055|-052-050
0(-222(-250{-240(-222 |-204 | 188 [173|-160 |-149 |-139/-130|-122|*116|-109|104 |-099|-094
0/-188(-240(-250 |-245|-234[-222-210|-198 |-188(-178|-168|-160|-152|-145|-139|-133
4 01-160(-222|-245|-250|-247(-240|-231 [-222|-213 -204|-196|-188|-180 173|166
‘ 0-139|-204|-234 |-247[-250 |-248 |-243|-237|-230(-222|-215 |-208| 201 |-194

’ -245(-240(-234|-228|-222-216
0[-109(-173[-210|-231|-243|-248|-250|-248|-246|-242|-238|-233
0[+099|-160|-198 |-222|-237|-245 |248|-250|-249 | -247 |-244
| 0/-090|-149|-188|-213[-230|-240|-246|-249|-250|-249
01-083(-139|-1781-204|-222/+934|-242|-247|-249

::-.asww—-IT
(=]

SO Pv~1D

—

234|567 8|91l ]12]13]14]15] 16] 17 | 18

0[-122|-188|-222(-240|-248 |-250 |-249 |

19

(S S 1O NN, U S N M—

20

<048
+090
127
160
188
210
227
240
"247
250

Some examples will be given of the use of these diagrams.

(@) Taking the case of a hog-backed girder as a general case. Fig. Ze.

Let M; = B. Mt. at P,
S; = Shear at P,

* Tables are numbered to agree with the Diagrams.
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Assume B. Mt. as positive when in same direction as the B. Mt.
caused by the reactions at the abutment.

Stress in Q,Q, = M1

1
where M, is got from influence lines.
Stress in Py Py M,

2
Stress in Q, P, = B Mt at D of loads and reactions to left of P,,

divided by p,.

M, — (8 % )

d cos 6

. M, - S/ M
. Stress in Q, P, = _’;To‘ = {d_‘
This is suitable for the use of inlluence lines, the distance ¢ being
scaled or taken = E’_‘ and # = cot™! &P,
= Pl PP,

all data being obtained from the known dimensions of the girder

and p,

-5 } sec 6.

*(0) @irder with parallel top and bottom chords. Fig. 2d.

Stress in Q, Q, = \)v[, Stress in Q, P, = S, sec 6

Stress in Q; P, = 8,

where M, and S, are as before. See example (a).

(¢) Maximum Position of
tances apart (c. f. an engine.)

(1) Bending moment at point P.  Fig. 2e.

Ordinate at distance o from abutment

a series of concentrated loads at fixed dis-

= _;_ (1) (1 = p).  Where A = distauce of P from abutment.

Total B M6 M =3 W, ¥ () (1 - p) + T W, {~
.

| 4
X »)
Foe & max, S8 —
ax
and ., = » + constants .. (‘//'J = 1.
.
*. For maximum position
« W Wi,
A N
CEW, A
TIW, TN

Ze. when sum of loads to right of point P bears the same ratio to
sum of loads to left of point P, as the distance of P from right abut-
ment, bears to the distance of P from the left abutment. This is the

*For fnrthcr applications, graphically and otherwise, see paper by l’rof G. . Swi ain, Trans. Am.
Soc. C.E., Vol. 17, quoted in Johnson’s * Framed Structure.’
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well-known relation, but the above way of deducing it is short and
clear. Of course as many loads must be on the structure as will fit in,
and this relation approximated to as nearly as possible with one load
over the point P to be counted with the W, or W, loads as preferred.

(2) Maximum shear positive or negative. Fig. 24.

It is easily seen that the maximum shear at any point occurs when
the beam is loaded only from one abutment to that point.

(4) Maximum reaction on cross girders.

The question often arises in connection with cross girders, as to
the maximum effects of an engine load as transferred by stringers on
the cross girders. To make the case more general we will take one
span on either side, the spans not being equal. Fig. 2/

(Continuity is neglected ; for continuous action see Cases 5, dc.)

. . . > x Y

Referring to Fig. 2/.  Reaction at P = 2W, X + W, —__ “r
- /\r )\1

dvy

i

Here i, = @ + constants

. P
For a maximum - = O.

i

SW,_ o Wi SW, _ A

A Y SW, N

‘When spans are equal W, = W

This result might have been observed from the similarity of
Fig. 2/ and 2¢ as regards a point P.

In practice we approximate as nearly as possible to this relation
by having one load at P, and the loads to right and left have relation
W, A .

= —""as nearly as possible.
SW, T N yampe

For equal spans the loads are placed so that the load at point P
when added to ZW, makes the sum = W,  Here SW; is assumed
<2W, but W, and W, may be interchanged in this rule.

Take the case of loco. loads. Figs. 2¢ and 24.
It will be seen in Fig. 24 (which is the maximum position).

Loads to right = (20 4 11) = 31 units.
Loads to left = (20 + 20) = 40 units.

Adding the central load to either side makes the side to which it
is added greater than the other side. This follows from the fact that

. . dM .
at the maximum point T changes sign.
dx :
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Case 3.—BEAM SUPPORTED AT TWO POINTS, BUT WITH AN
OVERHANG AT EACH END. (Fi. 3.)

N—h/—ﬂ(—-— ——-[— _— ——N(——za—h

: ! ad L 1

| ] { : 1
74 27 4.

Fig.3

As an extension of Case 2 we could combine the curves of Cases
1 and 2 to treat a beam supported at two points with overhanging
ends. (Fig. 3.) .
Influence line B. Mt. at point P.
Within the supports :—same as Fig. 2u.
Outside the supports :—Let 4/ = distance from support.
B. Mt.at P = — &7 (i) for loads on right overhang.
= — K (1 — p) for loads on left overhang.

» »
The lines are shewn Fig. 3a.

Influence lines Shear at point P.
Within supports :—same as Fig. 24.
Outside the supports:—-Shear at P = /.

The lines are shewn Fig. 34.

Cases 4—9.—CONTINUOUS GIRDERS. (Fic. 4a).

/Z e Z
k“——/——’f" 2 ____ _,a__..}
i - B2 L

A 2 B s 18 ¢

Notek.—In all cases of continuous girders “ /% is the distance per
unit of length, from the nearest abutment on the left.

K, is written for { (k) — () } for sake of brevity.
K, is written for {(1 — k=01 - K‘)’*} for same reason.

This is an important case as the stringers of a long bridge come
under this heading, and the effect of continuity is usually allowed to
give extra safety ; but the stresses occur in a different manner to
ordinary beams, and as in most cases continuity is practically effected,
it would seem in accordance with scientific design to know the true
value of the stresses, and so have the minimum of material in
accordance with the working stresses specified. In this paper the
effect of yielding supports will not be investigated, as is well-known
this affects the equations considerably.
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The girders are assumed continuous over three supports on the
same level ; and the equations as deduced below are got from the
equation of three moments, proofs of which are given in many
text-books. 1

The equation of three moments (see Fig. 4a) is
M, 7, 4+ 2My (L, + 1) + M, Iy = — P, 1, (h—F)— Py 1,2 2k — 3k2 4 %),
In this the last term is got from the last but one by putting (1 —£) for
% as is apparent from the figure, so that for our purposes we may
consider only the equations in the form

Myl +2M (1, + 1)+ M}, =—P, 1* K¥
where / may be 7, /, or /, according to the position of load and K may
be K, or K, for the same reason.

For the purpose of getting influence lines, P, is to be taken unity.

The following table will be often used.
T Table of (& — 7’) and (24 — 34* + 1*) i.e. K, and K, *

k 0 1 2 3 4 5 6 7 8 9
0 [ -0000 | 0100 | -0200 | 0300 | *0399 | 0499 | 0598 | -0697 | *0795 | *0893 | 0990 | -9
*1 {0990 | ~1087 | "1183 | -1278 | -1373 | *1466 | *1559 | *1651 | -1742 | "1831 | -1920 | -8
2 | -1920 | 2007 | *2094 | 2178 | -2262 | *2344 | *2424 | -2503 | -2580 | *2656 | -2730 | *7
3| *2730 | -2802 | 2872 | -2941 | -3007 | *3071 | *3133 | -3193 | -3251 | 3307 | -3360 | 6
4 [ 3360 | -3411 | -3459 | -3505 | -3548 | -3589 | +3627 | +3662 | -3694 | *3724 | -3750 | 5
5| 3750 | -3773 | -3794 | 13811 | *3825 | -3836 | 3844 | 3848 | -3849 | -3846 | -3840 | -4
6| *3840 | -3830 | 3817 | *3800 | -3779 | -3754 | -3725 | *3692 | 3656 | *3615 | 3570 | -3
7| 3570 | -3521 | -3468 | -3410 | *3348 | -3281 | -3210 | *3135 | -3054 | -2970 | *2880 | -2
*§ | *2880 | -2786 | *2686 | *2582 | 2473 | -2359 | *2239 | -2115 | 1985 | -1850 | 1710 | -1
9 | -1710 | -1564 | “1413 | *1256 | 1094 | -0926 | 0753 | -0573 | *0388 | -0197 | -0000 | -0
9 8 7 6 5 4 3 2 1 0 k

Case 4.—CONTINUOUS GIRDER, TWO SPANS AND THREE
SUPPORTS, SPANS EQUAL TO ONE ANOTHER. (Fic. 4.)

I !
S - ‘5_{__34 o4

(a) Bending Moment at 3.
Since /, = /, = [/ say.

M,/ + 4 M,/ 4+ M,/ = —/*(K,), for load on 23.
M, 4+ 4M, 4 M, —— K,

M2:M4:0.

sS4 M= —/K;and M3 =—} /K,

* For meaning of K, and K, see above, page 55, under ‘‘continuous girders.” K may be K, or K,
as required by the position of load.

t Merriman and Jacoby, ‘ Higher Structures,” part IV., p. 35.

‘zy 40} dn peay
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This is a maximum when 1—3/*=0; z'.e.k:vl—h
- V3
The figures tabulated are M,//. P 1
*Table 4a of B. Mts. at 3. My =—4/(k — %) [ M, = — & W/
E=0
See Fig. 4a.

k 0 1 2 3 4 5 6 7 8 9

“0 | -0000 | -0025 | 0050 | -0075 | ©0100 | 0125 | 0150 | -0174 | -0199  -0223
‘1 [ +0247 | -0272 | <0296 | <0319 | <0343 | <0367 | 0390 | 0413 | 0436 0458
*2 | -0480 | 10502 | 10524 | *0545 | *0566 | 0586 | “0606 | -0626 | -0645 0664
*3 [ -0683 | -0701 | -0718 | -0735 | 0752 | -0768 | -0783 | -0798 | -0813 -0827
4 | *0840 | -0853 | -0865 | 0876 | 0887 | *0897 | -0907 | -0916 | -0924 -0931
*5 | *0938 | 0943 | -0949 | <0953 | -0956 | -0959 | *0961 | <0962 | <0962 0962
-6 | 10960 | -0958 | -0954 | -095C | -0945 | *0939 | -0931 | -0923 | <0914 090+
-7 | 0893 | -0880 | <0867 | -0853 | 0837 | 10820 | -0803 | 0784 | 0764 0743
-8 | *0720 | -0697 | -0672 | -0646 | -0618 | -0590 | -0560 | 10529 | 10496 0463
‘9 | 10428 | 0391 | -0353 | ‘0314 | 0274 | -0232 '01881'0143 0097 -0049

Maximum when £ = LB M, = — 0962/
v
When load is on 34 My = — }/ K;; for arithmetical values, see

Table 44 (B).

(%) Reactions
A+

Take reactions upwards | positive and downwards ' negative.

Load on span 23. Moments about 3.
Re="% 4 (1—h. R =M,

Moments about 4. Ry — } [—R, x 20+ (20— A1)]

9
:—2R2+(2—k):—"1\115 +

Load on span 34.

R; =R, of above with (1 —£) put for %; and R, is found by
symmetry by putting (1 — £) for % in above.

INFLUENCE LINE oF R,. (See Fig. 4/).

Load on span 23. R, — ¥’+(l—k)=—%(k—k5)+(l—k)
=1
/Rz:+ iZGW
B=0

* See footnote on page 51.
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Load on span 34.
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1(1—3k2)—1=

Max. or min. when £t =1 +

<]H°'°|

Ose b=+ 1.

R, is same as R, when reckoned rom other end support.

Table 4b.—Reactions at 2.

(a) Load on 23. R, = — 1 K; + (1 —£). All figures positive.
k 0 1 2 3 4 5 6 7 8 9
.0 | +1-0000 | -9875 | -9750 | "9625 | 19500 | 9375 | -9250 | -9126 | -9001 | -8877
-1 +-8753 | *8628 | -8504 | *8381 | *8257 | -8133 | 8010 | *7887 | 7764 | *7642
2 +:7520 | -7398 | *7276 | -T155 | -7034 | *6914 | -6794 | -6674 | 6555 | *6436
-3 +:6317 | 6199 | <6082 | -5965 | -5848 | -5732 | *5617 | -5502 | 5387 | 5273
4| +-5160 | -5047 | -4935 | -4824 | “4713 | 4603 | 4493 | 4384 | 4276 | *4169
-5 +-4062 | -3957 | -3851 | -3747 | 3644 | -3541 | -3439 | -3338 | -3238 | *3138
6 | +-3040 | -2942 | -2846 | -2750 | -2655 | -2561 | -2469 | -2377 | 2286 | -2196
7| +-2107 | -2020 | -1933 | -1847 | -1763 | 11680 | *1597 | *1516 | -1436 | -1357
-8 +-1280 | -1203 | 1128 | -1054 | -0982 | -0910 | -0840 | -0771 | -0704 | -0637
9 +:0572 | -0509 | -0447 | -0386 | -0326 | -0268 | -0212 | -0157 | -0103 | -0051

(B) Load on 34. R, = — 1 K,. All figures negative.

B0l } 3 4 |5 | w | 1| 8 |9
“0 | *0000 | -0049 | *0097 | 10143 | -0188 | 0232 | -0274 | -0314 | *0353 | 0391
“1 (0428 | 0463 | *0496 | <0529 | *0560 | 10590 | *0618 | -0646 | “0672 | 0697
2 | +0720 | *0743 | -0764 | -0784 | <0803 | -0820 | -0837 | -0853 | <0867 | -0880
*3 | 0893 | <0904 | *0914 | -0923 | 0931 | 0939 | 0945 | 10950 | -0954 | 0958
4 | -0960 | -0962 | -0962 | 0962 | -0961 | 10959 | *0936 | 10953 | 0949 | -0943
-5 | -0938 | 10931 | -0924 | <0916 | 0907 | -0897 | -0887 | 0876 | <0865 | <0853
6 | "0840 | -0827 '0813 0798 | -0783 [ 0768 | -0752 | -0735 | -0718 | 0701
7 10683 | 0664 ‘0640 0626 | *0606 | -0586 | “0566 | 0545 | 0524 | -0502
‘8 | 10480 | -0458 | 0436 | 0413 | *0390 | *0367 | -0343 | -0319 | -0296 | -0272
9 | +0247 | -0223 | -0199 ' -0174 | *0150 | -0125 | 0100 | -0075 | 0050 | -0025
Max. when 2 = 1—-1/4/3. R, = — -0962.
INFLUENCE LINE oF R,. (See Fig. 4¢).
k=1
2M
Load on 23. R, = — 13-{-7»':%(3,%-—,%3).

Maximum when 3 =

Jr =
k=0

3k2, 1e. k= + 1_
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Table 4c.—Reactions at 3.

k 0 1 2 3 l 4 5 6 7 l 8 9
|
-0 | 0000 | *0150 | 0300 | 0450 | -0600 | 0750 | -0899 | 0949 | -1198 | *1347
‘1 |+1495 | -1644 | -1792 | -1939 | 2087 | -2233 | 2380 | -2526 | -2671 | -2816
2 | -2960 | -3104 | *3247 | -3389 | -3531 | -3672 | -3812 | -3952 | -4090 | -4228
-3 | *4365 | -4501 | -4636 | 4771 | ~4904 | -5036 | 5167 | -5297 | -5426 | 5554
4 | -5680 | -5806 | -5930 | ‘6053 | 6174 | -6295 | -6414 | -6531 | -6647 | 6762
5 | *6875 | <6987 | 7097 | -7206 i *7313 | -T418 | -7522 | <7624 | 7725 | ~7823
6 | *7920 | *8015 | *8109 | -8200 | *8290 8377 | '8463 | -8546 | 8628 | ‘8708
7 | *8785 | 8861 | 8934 | 9005 | -9074 | -9141 | 9205 | <9268 | -9327 | 19385
8 | -9440 | -9493 | <9543 | *9591 | *9637 | “9680 | -9720 | -9758 | *9793 | -9825
*9 | 19855 | +9882 | <9907 | -9928 | 19947 | 19963 | <9977 | -9987 | 19994 | -9999
Load on 34.

R, by symmetry has same values if we measure distances from
centre abutment 3, 7.e. if we read from right end for % instead of
from left end.

By referring to Fig. 4a it will be seen that the B. Mt. at 3 is a
maximum when the load is at a distance -58 / from the end.

Having drawn the curve to scale, by placing a diagram of the
loading on the horizontal, we get the B. Mt. at 3 by multiplying the
loads by the corresponding ordinates, similarly for reactions; e. g,
suppose the continuous span to consist of stringers each 12 ft. 6 in.
long, and the live load to be a loco. with axles 5 ft. apart and loads
20,000 1bs. on each wheel. (See Fig. 4¢).

Putting wheels over points 4 = ‘2 and 2 = 6, B. Mt. at 3 =
(048 4 +096) x 12 ft. 6 in. x 20,000 lbs. = 36,000 ft. Ibs. nearly.

Taking depth 15 in.

Tension on upper rivets = 3(15’320 = 29,000 Ibs.

‘With a joint as shewn in Fig. 4/ some such action exists. This
might be provided for by putting plates at top and bottom (as dotted).
The example given shews that the action is considerable. In practice
such stiffness in the cross girder as would produce the figures shewn
is not obtained in small bridges; but may be taken as existing in
very large bridges. The figures would be increased by putting loads
on the other span, and it would seem necessary to make provision for
this action, as the joint cannot be made non-continuous without con-
siderable trouble, nor in fact ought it to be, as continuity reduces the
B. Mt. at the centre.

Referring to Figs. 40 and 4¢, we can at once calculate the reactions
at each support by putting the loading over the influence line diagram.

Having got R,, R, R,, the values of B. Mts. and shears at any
point can be readily deduced.

For instance in Fig. 44.
Shear at any point F is required.
Scale off P, M, &c. on 23 and 34;
take algebraical sum, this gives R,.
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The shear at F = E{(P1 M,) x load at M1}
— 3{load at M, &c.} on left of F.

Looking at Fig. 44 we get a geometrical representation of the effect
of continuity in creating a B. Mt. at 3.

B. Mt. at 3 for a load at M, =P, M, x 23 — BM, x 3M,.
‘Where H2 represents the load to some scale.
= rectang. C3 — rectang. B3.
= rectang. CM, — rectang. P, A.
This vanishes when influence line H P, 3 is a straight line, 7..
when there is no continuity.

Case 5.—THREE SUPPORTS AND TWO UNEQUAL SPANS. (Fic. 5.)

ytisf g

= f * i
fmﬁvg t_/zﬂzs_,l,g
fig 5.

Here My /5 + 2M; (b + 75) + My s = — 12K, for load on /4.
M, = M, = zero.
-')IVI* ([z + [4) = —1k? KI-

Let /3/ls = r to keep the case general.

Bending Moment M;. (Fig. 5a).

. — I
Loadon /. My= — = K,
oad on /. M; T +7) L
k e
and f M, . — Lk 2
8 + 7
k=
— I3r _
Toadon/, M,=___ "3 K.
’ ' 21 + 7)
k=1
. la7 .
and /A\L‘ ST+ 7 3
h=C
See Fig. ba.
As an example the figures are given for 4, = 12, /, = 15.

Reaction Ry (see Fig. 50).

Load on left span 23.

Ry — *“/IH + (1= k)




— b

WK1+(1—LQ)

“raEn B aoh
F=1

1 1 i
/{;R;: 7o)

Load on right span 34.

The curve for this reaction is shewn in Fig. 54.

Reaction R, (see Fig. 5¢).
Load on left span 23.

M. — 1
R, =3 =
T dr(1+r)
k=
-1
R, — .
-/'“1 87(1+r) -
k=0
Load on right span 34.
1\13 -_—
= l.: 9 0
/3+s ’(1+r)K“+L;
k=1
_ (1
-/.R4 %? 8(1+r)§
k=0

Reaction R; (see Fig. 5d).

Load on left span.
Ry =4 — Ry (1 + 7).

1 .

=k — K
+2’_ 1
k=1

=y b

k=0

2





