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INTRODUCTION.

In the following papers the author studies the various
standard formule and gives some new curves which may be used
either for deducing data from breaking test results, or for the

design of columns.

The deductions are made on a basis of the author’s inter-
pretation of the Euler Value for a column, which is assumed
the maximum unit load; any other load is a fraction, and acts
with some eccentricity.

The striking fact will be shewn that the curves are to be
read to a scale according to the stress in the extreme fibre ; other-
wise stated—for analysing breaking test results over a certain range,
curves different to those for design purposes should be used. To
this are due most of the anomalies shewn by different formule
and the author believes that when the present curves* become

familiar the treatment of column analysis will be remodelled.

Though the present papers deal with the primary column
only, they should be of some assistance in the analysis of com-
pound columns and their details, such as the design of latticing
and joints, the proportion of thickness to length, and the effect
of partial fixing: even the reinforced column may have some
rational design. The problem is timeworn, yet the author trusts
that the present treatment, while it closes some old paths, opens
up others better and permanent.

* The drawings from which the diagrams have been prepared are on squared
paper of which each smallest sub-division is -1 inoch. Prints to full-size will be
prepared if enough demand arises to defray the expense.



A COMPARATIVE ANALYSIS OF COLUMN
FORMULAE.

In a paper and a supplementary paper* submitted to the Institution
of Civil Engineers, the author gave an investigation of the Column Problem
and curves showing how the results might be applied in the analysis of
column stresses and to the design of columns.

In this paper it is propdsed to analyse the various standard column
formulae in the light of the theory stated in the papers mentioned.
The notation to be used is endorsed on the diagram accompanying

called “* Column Design Curves’ (see Sheet No. 1), and will be stated
here also.

Note—Tables and Curves are printed at the end of the paper..

Notation.
E=Modulus of Elasticity of the material.

I =Moment of Inertia of the cross-section.
! =Length of pin-ended column.
72Kl

12

A=Area of cross section.

r =Radius of Gyration.
Q n2E

q = — =

e

P=Load on Column.

P

p=—
A

e =Eccentricity of loading

Q=Euler’s value=

f,,=Stress at Extreme Fibre due to bendmg only

*Attached as appendices B and C to this paper. These should be rcad before rea.dmg the

present paper.
tSee Appendix A.
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*y =Distance of extreme fibre from neutral axis
f,I
in formula M = — = P(e-a).
y
f — Total intensity of stress at extreme fibre — p+f
In this paper the upper sign only is used.

p =
a = Deflection due to loading, where (a-{-e) = e sec — v —
q 2
y
f=ptfy = ptp (ate) —
rt
4
I' = Virtual length = / (___) 1.
p
oy *
P = —
r?

In the papers mentioned,
n?KEl
IHQ=—

= Kuler’s value for any column

12
it was pointed out (1) that Q is a mathematical quantity, so that we may
gpeak of the Q of the column. :

(2) that for a column to bend under any load other than Q, there must
be some eccentricity of loading (whether due to curved neutral axis or to
a definite measurable eccentric loading the effect is similar), and that if
P is the load causing bending and ‘e’ the eccentricity and ‘I’ the
length, then ‘P’ is the “ Euler Load ” of a column of virtual length

q .
U, where l'’=,/—I and the column bends in a complete cosine curve of

p
length !’=unity, the actual column being the central portion occupying

l
length — of the cosine curve.

l
The curve of maximum deflection corresponding to this treatment is

£ P
Yy = sec y/ X — where x = —
2 q
(a+te) total max. deflection

and y =
e eccentricity
The diagram entitled *° Column Design Curves ’ (Sheet No. 1) has
been prepared, which shows these curves. In addition to the original
HIE
curves (No. 1 and No. 2), the curve y=sec ;/ — — has been drawn (No. 3),
q 2
which shows the maximum deflection of the column as the load varies (see
Sheet No. 1)7.
*A better symbol would be the Greck 9 which will be adopted in subsequent additions.
tTables and Curves are printed at the end of the paper.
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Then it has heen shown that

a-tey ey ey P T
f=p~‘—fb=p+p(—~) —=p+p—secv(—)

e r2 r2 q’/ 2
this does not allow of ‘p’ heing deduced in terms of ‘f’ and various
approximate formulae have been suggested to get an algebraic equation,
though the formulae as deduced empirically do not indicate this fact
directly. These sometimes take the form of deducing f,, in other cases
‘f’ is deduced directly. The approximate forms by easy transference
give quadratic equations in ‘ p,” no useful object is served by writing down
the solutions of the quadratics in general terms.

It is the purpose of this paper to compare and contrast the approxima-
tions involved. The results, as usually quoted, appear in various forms ;
the original form will be given where thought necessary.

(1)* Johnson’s Formula :—This appears as follows:—
1f M, =bending moment at point of maximum deflection, from cross-
bending external forces and from eccentricity of position of longitudinal
loading :—
vi=maximum deflection of member from all causes acting simul-
taneously.
M;=Dbending moment from the direct loading, P, into its arm, v, =Pv;.
P=total direct loading on member, tension or compression.
f;=unit stress on extreme fibre from bending alone at section of
maximum bending moment, or of maximum deflection, as the
case may be, in pounds per sq. in.
I =length of member.
yi=distance from centre of gravity axis to the extreme fibre under
consideration on which the stress from bending is f;.
I =moment of inertia of the cross-section.
b =breadth of a solid rectangular section.
b =height of section, out to out, in the plane in which bending occurs
=2y; for symmetrical sections .
fo=unit stress in member from the direct loading, supposed to be

P
uniformly distributed, = —.
A
f —=total maximum unit stress on extreme fibre—=f; -f,.
112
then vi==K ——— e (a)
Ey,

By approximating the condition of uniform loading we have the general
relation between the deflection of the beam and the stresses on its extreme
fibre.

£,12
25 T (b)
10Ey,
then
£,1
Mo = Z}Il :tPV]_ ...................................... (c)
Y1

*Theory and Practice of Modern Framed Structures, 7th Edition, 1903, pp. 154, 155,
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putting v, =value from (a)
My,

f, = .
' PIZ ot (d)

Is
10E

Putting this into the present notation this becomes,—

1
pey |————
fr=— 7w p

...................................... (1)
r2 Jl —_—
10 q
Johnson’s formula in the quadratic form appears thus:—
(a+-e)y
since f=p+-f,=p+p
F2
pey 1
=p+—
r2 w2 p
10 q
] 10, ey 10
then p2—pl[f4+q— 14+ D] +fq—=0 ... ... ....... (2)y
7n? r? 72

(2) *Fidler’s Formula—

After discussing the intrinsic eccentricity and assuming a central load
with a neutral axis following a °slight curve.” Calling A edeentricity of
loading, i.e., distance from curved line of neutral axis, and & the distance of
deflected curve from the original curve of neutral axis and resistant force of
the column, and P load of column assumed central (see Fig. 1).

If R is Euler's value

& P
) P=R—— and = A4——
l A4-6 R—-P
Putting this into the present notation, then—
/ a P
/ 1/1 P=Q ( ) and a=e
/ Badinay a-t-e Q—P
/ , P 1
1 g = AN i.e. a=e ( y=e ( )
byl q—p q
\ \ ‘ — — 1
{1 :
\ ' 1
that is (af-e)==e —— ... ..., (3y
[P P
Fra. 1. q

*A Practical Treatise on Bridge Construction, p. 162.
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In other words, that Q (a)=P (a--e) which means that when the load
P is applied with eccentricity ‘e’ and the column deflected amount ‘a’
from the original, then P (a+4-e) is the bending moment, and that this
bending moment is equal to Q.a; we may imagine that the eccentric
load P on lever arm (a--e) may be replaced by an axial load Q with lever
arm ‘a.’ This seems a fairly reasonable approximate assumption when
‘1t is understood that Q is Euler's Value, and is thus the only central load
that would keep the column bent, but it leads to a cul de sac for the reasons :—

Firstly : When we consider the fact that with Q on the column there
would be a bigger direct stress than with P on the column, so that it is not
correct to replace P eccentrically by Q centrally.

Secondly : By reference to our present assumption that with Q on
the column, the column would bend in a complete cosine curve. whereas
with P on column the actual column only occupies the central portion of
the cosine curve.

Thirdly : To exclude the direct compressive stress due to Q may be
a reasonable argument for very long columns, but with a short column
(the deflection being necessarily small for the total stress to rémain within
the elastic limit) the direct stress is the prepondera,tmg stress.

The portion of the curve p=0 to p="5¢, Sheet No. 2. shows the fairly close

P\ 7
approximation to the curve of sec ,/ (-) — of the ‘“ Johnson ” curve

1 1
and ‘“Fidler”’ curve .
72 p p
1l —— - 1 — —
10 q o q

For this reason may they be used profitably for some investigations, but
it does not seem to have been realised that Johnson’s formula and Fidler’s
first assumption are almost the same. (72=9.87 and would be assumed 10).

Fidler’s Second Assumption is, that Bending Moment=P (a) and since

from his first assumption a=e in the present notation he gets

—p

f—p+fb=p+p " ( )

and a quadratic writing ——(p— ‘4 as an average safe value.
2
r

(6) p2—p (f+q)+fq=0 ... (4)
The solution is known as Fidler’s Formula and used in tables of sections.

(f+q)— V(f+q)*—2.4 iq
thati sp=——mm—o—————— L (4a)
1-2

In his first assumption, Fidler assumes Q.a=P (a+-e), that is that
bending moment due to P is P.(a-+e). Why he should now write Bending
wowment as P (a) is not clear.
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P
Looking at curve 3 (Sheet No. 1), we see how ‘a’ varies with ratio —

When p is about -3q .. a=}e 1
When p is about *6q e a=2e

after this ‘a’ gets relatively large,

from p="+9q - . a=12e

to  p=nearly 1 .. o a=nearly infinity.

As in practice it is with the former limits that the column would be
designed, to neglect ‘e’ is quite inaccurate.

Perhaps Mr. Fidler considered that, as in his analysis, it was a central
load with a bent neutral axis that was assumed, the lever arm of the load
was the distance from the neutral axis, but if this is so, it can hardly be
reconciled with his primary assumption that Q.a=P (a--e).

It would seem that Fidler's formula gives a rough approximation to
a breaking stress, but if applied with a factor of safety to deduce working
stresses it is inaccurate.

The author some time ago, came to what is Fidler’s first assump-
tion, as follows:—

Assuming,

(1) That the load P with original eccentricity ‘e’ causes a
bending moment P.e.

(2) That the couple P.e. deducts a certain amount of resisting
power from the column which may be expressed as causing
a negative moment of inertia, leaving a net moment of inertia
and a central load P.

Then if I is moment of Inertia of the Column and I, is the ‘ net moment
of inertia.’

Our original column may now be considered to be equivalent to a
centrally loaded column of moment of inertia I, and P is the Euler value
of the net column, i.e. :—

72El,
P o= e
- " ..(a)
n? q
Now ——=— and
2 g2
1 =°E
From (a) —=——
I, P2
P Pay P =x2E P qay
Again f =—+ =t Pay = —f—
A I, A P2 A 2
qay (f—p) r?
(f—p)= A e PO N A A AR LA (b)

re qy
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3 L]

and substituting for ‘a

Now f,=p (a+te)

9

12
(f—p r* l y
=p {— —+e} —
(q y o
p pey
=—(f—p)+—
q r2
P pey
==(tn) + —
q r-
pey 1
fh - > e T R R I T T T T S T I R R (6)
r- P
1——
q

This, as pointed out by Mr. Ross, and shown above, is equivalent to
the result got by equating Q.a.=P (a+e). It may also be obtained by
assuming the curve 3 of sheet No. 1 as a rectangular hyperbola.

From this the quadratic would be
e

p>—p (f-{-q—i—q—;)—{—fq:O, .............................. (7
r

which is what Fidler's analysis would give if the Bending moment were
assumed =P (a--e) instead of P (a), as he assumes. This has been tabulated
under the name ‘ Fidler (amended).”

Of the quadratic* forms this, being of maximum simplicity, is probably
as good as any other for rough approximations for °centrally’ loaded
columns, as in any case it is necessary for ° centrally’ loaded columns to

ey
assume an empirical value of — (Fidler gives .4 and Monecrieff .15 to .6).
r2

/ith *f° in units of 1000 lbs. and ¢g=.4 we get
p>—p (f4+14q)+fq=0 ... ... (8)

which would be easily solved by using Curve 1 and a slide rule*. A better
quadratic is given later (see No. 17).

(3) Andrews’ Formula. This appears as a modification of Johnson’s
Formula, the coefficient 10 is replaced by 8, giving,

M.y M,y
fp=— Let M, = Pe £ —
Wiz 1
I— My
8E M =P (a-te) f, =

*See P.LC.E., 1916, for slide rule solution of quadratic.
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It is deduced thus* :—Deflection of beam with uniform B.mt.

M2
= 6 ==
8EI
My .
andf, = — then if ‘ x’ is eccentricity (‘e of present notation).
W(x+d)y Wxy W2
fb = = -L
1 1 8EI
My My
Assuming M, = M, 1e. — = — or f =fy
I I
My
Wi Wxy I
then f,, (1 — = —— .. t = ————— 1.e,, in the present
SEI I Wiz
1 — —
8EI
) pey 1
notationfy, = —— ————— L 9
ré n*p
5 q

The deduction given assumes as an approximation that M =Pe=
original bending moment, and that this is equal to M;=P (a-e)=subse-
quent bending moment. This as shown by the curve is only approximately

P

true when — is small, and is quite wrong for large values of P.

Q
. : a* p_ pey
Without these assumptions the method gives f=(1+ — —) ——

q r*
P\ 7
these bracketed being the first two terms of the expansion of sec \/’(‘—l) - or
2
the expression may be got as the value of the fractionf. These are not

P
approximately true unless — is small.
q

* “ Further Problems in the and Design of Structures.” (E. Andrews) p, 217.
“There is a misprint in the book which is here corrected. The method is somewhat open to
objeouo:\,;irm if the approximations are made less rough, the results are further from the
exact v 3

12 M W(x+0 ) 12
Phos 8 = andfp = —> — ‘T”-“"'Q”U_’.
8EI I I I SEI I
My w2 n?
= e () = 1 +-—-)
SEI r2 8 gq
pey
pey xp f,xfy 2 pey ne p
alternatively fy = = . fp = -— (14— =)
r 8q fo = P pey r 8§ q
1 — — - f,/——/ete.
8 q 2
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It thus represents a rough approximation of the result got b
assuming the deflection on reaching only the first stage (see under 5 for result
got by successive deflections to the limit). This rough approximation,

P
however, follows closely the correct curve up to —=about .3.

q
From this the quadratic would be,
' 8q 8q ey 8
pP—pt+—4+——) - fq—=0 ... (10)
% m? oyt pe
1
The objection to a formula of type ——————— when the constant
p
1 — constant —

q
18 greater than unity is that it reaches infinity before x=1 and thus is
ansuitable for explaining effects when P is nearly equal to Q.
What would apparently be safe approximations in ordinary mathe-
matics are misleading in the case of columns when the load P approximates
to the Q of the column.

(4) Perry’s Approximation.*

pey 1.2*
This is given as —— —— ... i (11)
E= p
1——
q
This curve is plotted, and shows 20 %, more than the Fidler Curve,
1)
it has a close agreement in the higher values of — with the second curve,
Q

and gives a good approximation for reading breaking tests, but as
it is in the lower values that we are usually working, it is probably
not so useful for design as those given above,
The quadratic corresponding to Perry’s approximation is
ey
pi—p (f4+q+1.2q.—) + fq=0 ... ...l (12)

r=

{5) Moncrieft’s Formula—

That .0 (i.e.. "a’ of present notation)=

PI2E

5Pl
8SEI —

6
Which may be deduced as follows :—

On the assumption that the curve of deflections is a parabola.
From properties of a parabola,
9

Area of half parabola = - height X length.
3

*Moriley strength of Materials, p. 263.
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=

5
Distance of c.g. = — length.
8

Let e —original eccentricity.
A, A, ete. =induced deflections.
pP:

Then A, = .e = ke* say, then assuming this as the B. Mt. curve
8EL and as a parabola. .
5 I 1P 5
Ao= (ke x-) +ke=( — k2e+ke), and again assuming a parabola.
6 2 4EI 6
55 5 5 )
Ay = — (-k2e+-ke) k+ke=ke 91+4-k -+ (—k)‘-’ 4+ ... '\
6 6 6 6 )
and so on as a geometrical progression to infinity.
Pl
e
ke 8EI Pi= e
o Final 4 = = =
5 5 P12 5
1—-k 1— S8El—-PI*
6 6 S8EI 6

which is the form in which it is quoted.{
Using our present notation,

1
this reduces to a=e —
8 q O
a=p 6
1.2
. lat-e) =e (1--——-—)
48 q
—
5% p
512 p
142 — -
48 q
(A4€)=€ ———————— e (13)
57% p
| [
48 g
Looking at the curve No. 5 of Sheet No. 2, we see that it is a
pr
fairly close approximation to the sec /- — curve. The error in assuming
q 2

p
a parabola instead of a sine curve gets serious as — approaches unity,

. .
and thus for very small eccentricities may be unsuitable for reading breaking
results. The quadratic corresponding is,
57 57
2

p* (I—"2¢) —p | — f+q(1+¢p)] +q=1q =0 ....(14)
48 48

* Andrews’ formula stops at this stage.

tProceedings of American Soc. C.E., 1902, quoted in * Engineering Construction im
Steel and Timber,” Warren. page 267.
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(6) Author’s suggested approximation.

When studying the various curves of approximation, that of the form

1+ ax p
where a and f are constants, and x = — seemed to lead to the most
1—px q
14--25x
suitable solution ; the author after many trials adopted ————— as the
‘ l1—x

best on the whole. It has the advantage of,
(1) A simple fractional coefficient in the numerator, viz., -25=}
and of unity in the denominator.

Up to x=.5 it appears accurate to 1 in 500, at x=.5 to 1 in 1000,
thence the accuracy diminishes somewhat, but even at -9 the
accuracy is 1 in 70.

(2) It does not run out to infinity until x=1, thus has not the

1
disadvantage of the type where j is greater than unity.
1—px
P
1425 -
q
We would have then (at+e) =——e€ ... ... ........... (15)
P
1 — —
q
and the quadratic corresponding and endorsed on the diagram, viz..
ey ey
p2(1—.25—) —plf +a(l + —)] + fqg=0 ... ... .. ..., (16)
r2 r2
ey
writing — = -4. with Fidler*, this would be,
r2
Op2—p (f + 1.4q) +fqg =0 ... (17)
which, if the assumption of a constant — is justified, gives a valve of ‘ p’
r2

to an accuracy of 1 in 500 up to p=14q. which is the ordinary range of design.
A tablet showing the results of various approximations is appended,

and the curves are also shown, see Sheet No. 2.

Summary. ey

Summarising the results deduced, and writing — =¢ for clearness
r? '

we have as

[ Py 7\
tApprozimations of exact form f=p-1+4¢ sec | (_)_ J'
( q/ 2

*Probably the values of @ given by Moncrieff and Fidler would be modified if deduced
from the correct formula.
fTables are printed on page opposite curves at end.
fy, 1
$S2e Table 2 and Sheet No. 2. A curve of — — has been also plotted : this shows directly
q
how the bending stress varies with the load. 4
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In the quadratic form,

10 10

Johnson p2—p[f + —q (1+¢)] + fq —=0 ... ... ... (1
72 w2 .

Fidler (1—¢) p%2—p (f-rq) + fg=0 ... ..o 2y

Fidler (Amended) p%—p[f-+q (1+¢)]+fq=0  ....... (2a)
8 8

Andrews p2—p [f-+ — q(14+¢)]+fq.— =0 ... ... ... (3)
w2 A

Perry p?—p[f+q (14+1.2¢)] + fq=0 ... ... ... ...... (4)

572 572
Moncrieff p2 (1—*2¢)

48

Hawken (L —.25¢) p2—p[f+q (1+¢)]+fq=0  ......

—P |——ft+q l+¢]+fq 0....06)
48

Of the formule tabulated above the correct secant curve is as easy
of application as any of the others, and (it is thought) in every way the-

most satisfactory.

Of the others,

No. 1 (Johnson) is a rough approximation, and becomes
inaccurate for high values of the load.

No. 2 (Fidler) would approximate to Johnson’s if the B. Mt. were-
taken similarly ; the existing formula is inaccurate.

No. 2a (Fidler Amended). The amended form 2a is an easily:
remembered rough approximation.

No. 3 (Andrews) is accurate for low values of the load, but.is
very inaccurate fo: high values and quite misleading for-
reading breaking test results.

No. 4 (Perry) is inaccurate at low values of the load, but accurate
at high wvalues, it is thus unsuitable for design purposes,
as it is lower values of the load that one designs for.

No. 5 (Moncrieff) is a fair approximation and almost as easily
used as the others; to some degree the remarks on (3)

apply.
No. 6'(Ha,wken) is suggested as a very close approximation
throughout, besides being fairly simple to handle. For-

p
all practical purposes it is exact up to — = .9.

q

Central Loading Formulze. These are attempts to allow for the-
intrinsic eccentricity by formule connecting p, £, / and r.

f

—where C is a constant..

l
1+ 02
x

(7). Rankine quoted in form p =



