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This has a semi-rational basis by analogy, thus,—

The deflection of a beam in terms of stress in the extreme fibre is
given by the formula,*—

£,0

where C; is a constant depending on method
C, Ey of loading in this case = mw2....,... (i)

£, 12

C: vy
In the present analysis

f
p=——"-—-— where (a--e)=total deflection........ (i)

Deflection =

y
1+ (a-+e)—

r2

putting (a-e) from (i)

f f
= e (iii)
£, 12y £, 1
14— — =~ 14— (2
02 y r2 Cz r
f
e AN (iv)
l
1+ C (92
T

This is the familiar Rankine formule. To examine the assumptions
made :—

f, 12
If the deflection = then in the case of a column

CEy

p (a+e) 12 £y

b=  —
r2 (a +e) CIE
CE
P = i it ittt i (v)

*c.f. ‘“Equating Internal Work and External Work ™ for * centrally ” loaded beam.

1 3 I
Internal work = 2 x f M2dx = after substituting 20 ... (1)
2FI ° 6Ey?
1 141
External work = -W ﬁ R L (ii)
2 2 yl
fi#
* Equating (i) and (ii) f# = —— for ‘centrally’ loaded beam. Under other method
12Ey

of loading the constant would be changed to Cj.
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n?E

Q)
where @' is the ““ virtual length ”’ and the Rankine formule is approximately

true to the extent that the virtual length may be written for the actual
length and f and f,, as constants.

Alternatively

It will be remembered from the previous reasoning that p =

f f
Sincef=p+f .. p=— =—-——
fy fy q
14— 14+ —-
Pf qp

fy fo (U
i 1 -
n2E p a’E \r

where I' as before is the virtual Jength.
Comparing (iii) and (iv) with (vi) we see (a) that I’ is written for [;
fy
(b) that —— is written as a constant.
Cy

It will thus be seen that the formula like that of Lilly (see below)
vonfuses p and ¢ and f and f,,.

For reading breaking test result where ! may approximate to !’ there
may be an approach to accuracy, but, since deflection does not vary as the
load nor the stress direct!y as the load (see Appendix C), for the purpose of
deducing working stresses for design there must be a very artificial choice of
constants. so much so that a simpler formula may be just as accurate.*

(8) Gordon Formula. The older form of Rankine has t116 lvast Qimension
‘d’ instead of the radius of gyration, in the denominator; for the same
type of section ‘r’ may vary as ‘d’ (least d mension) roughly: the
formula can only be used for a very small range.

(9) The Straight Line Formulae are merely straight line approximations
l

to the curve — plotted against an empirical °“p’ for centrally loaded
r
columns; used with discretion and especially in the modern form of

varying the constants according to — they are easy of appiication, and
r
when used within the range and conditions specified may be satisfactory.*

(10)  The Johnson Parabolic Formula. Like the Straight Line, which has
replaced it, is a rough approximation to the Rankine, than which it is a
little easier to use.

(11) Lsllyt deduces a modified Rankine formula. No mention is made
of any essential eccentricity, thus there appears a confusion of ‘p’ and
‘q’ and of fy, and ‘£

* That is, if the Statements of Appendix C., especially that under secondly, are kept in
mind. See also under ““More Column Design Curves,” Table vi, and Tables and Curves of
Sheet No. 7.

tDesigns of Columns and Struts, W. E. Lilly, M.A., M.E., D.Sc., Chapman and Hall,
8.
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Let 0 be the deflection (this is (ate) or ‘a’ or ‘e’ of the present
notation according to circumstance: the remainder will be put into the
notation of the present paper).

The equation numbers are those of the book.

fy | y '
Dr. Lilly deduces — = 0 — ... (3)
P r?
fb 1'2
and 0 =— — e (8)
qQ vy
substituting from (8) in (3)
he gets
P f
P = e (41
A f,,
14—
k]
putting f,==f
P f
P = ittt it (10}
A f
1+4+-
q
It will be seen that (3) and (8) each make
f, r2 f, 2
6:— _— = — — 'l:.e., P=
| qQ ¥ ‘
f
which is what (9) represents, since p = — —— is an identity ; evidently
14—

P

Dr. Lilly intended the & of (3) to be (a-f-e), then the Fidler amended
formula* would result. '

Dr. Lilly then deduces a variation

fy fy P
since — = — ... — +1 =1 +
P q f, fy,
p-+f f q f
— = 14 (10a)
f,, fy fy
14—
fy

*See 2 (a) of present paper.
7Not numbered in actual text.
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Now substitute the value of f;, from (10a) in equation (9)

f f
p = = T e s ssesssssssccse (11)
f 1 f 1
1+ - 1 -
: 94 q q
1 4 — 14—

P f
P == i (13)
A f 1
I+ - )
q q
1+-
f
q
Dr. Lilly elaborates this in the appendix putting w* =
f

P o (o*—1—1)
-— P (24)

fb w—1

The assumptions and substitutions seem to be somewhat sweeping.

1deal Column Analyses.

(12)- Chapmant gives the formula for an ideal column with the constant
' df
E (modulus of elasticity) replaced by the — the rate of change of s‘resses

with respect to the strain. This refinement will only apply beyond the
elastic limit, and for reading breaking test results.

(13) Hutt] assumes a neutral axis bent in a sine curve and thus the measure

1 1 1
of the curvature — — —instead of — and obtains a formula corres-
R Ry R
ponding to his assumption for a central load. Mr. Hutt has pointed out
the necessity of ‘e’ varying with the dimensions and length of the column
and the formula suggested on the diagram followed somewhat on the lines
of his remarks. As it is the bending moment at the centre that is the
main factor of failure, the author considers that the present treatment of
the ‘ intrinsic eccentricity ’ seems to be quite as correct as any more elaborate
assumption and is more useful in deductions to be made therefrom.

*Called ‘““a” in the book.
1P.LC.E., 1912.
i‘“ Engineering, ”” 1914.
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{14) Burgess* has solved the exact differential equation

d?y S dyy 2 i M '
—_— =1+ (—) — and proves that the correct curve
dx2. { dx EI

of deflection differs materially fiom the cosine curve which neglects

dyy 2
(—), also that each load causes, or will withstand, a definite deflection
dx

which is greater than that given by the Cosine curve, though the length
of the curve is less than the Cosine curve.

The author interprets Mr. Burgess’ results as follows :—

His figures and results are for central loads greater than Q, conse-
quently for columns of sufficient length to be able to withstand such loads
the central breaking load may be deduced exactly.

The following figures are calculated from his table:—

H=Central load on column.
A=Curved length of column.
I=Length of straight column.

Load.
H Deflection
— Ratio. This shows that when the load
Q is near Q the deflection increases very
fast as compared with the value of the
1| 2 increase in load.
1.0002 L03999 (_)
1.0020 . 1263 A As an increase of .2 Y, in the load
1.0201 .3915 causes an increase in the deflection of
1.2100 1.0340 300%, it would seem that assuming

Q as the limiting value of the load is
justified, since if Q is infinitesimally increased the deflection increases enough
to probably cause failure in any column of engineering proportions.

For loads less than Q on a column there can only be bending when
there is some eccentricity of loading, consequently the virtual length must
be for the minimum load which will keep it bent, which is the Q of the
Column. The figures show that the deflection for an increase of .29,
in Q is approximately % length : this is beyond any probable value for
(a—+e) in Engineering Practice. '

So far as the primary approximate equation
2
2y M

dx2 EI
in Engineering Practice), the deductions of the present paper are justified.

is true (which it is, to well over any deflections allowable

The analysis of Burgess clarifies the various readings of Euler’s valuet,
we see that Q is the least value that will bend the ideal column, that each
load greater than Q gives a definite deflection, so that Q is, strictly speaking,
neither a collapsing load (except from failure of the material) nor the
only load that will keep the ideal column bent.

. *Physical Review, March, 1917. The author’s attention has bee.n drawn to this very
important paper while the present paper was in proof form by Prof. Chapman, of Adelaide.

TAn exact analysis for eceentric loads has been deduced by Prof. Chapman, and semnt
to the author, who trusts that it will appear in the correspondence.



MORE COLUMN DESIGN CURVES.

Design of Columns. All experimental work appears to show that ‘e’*
varies with the length and dimensions.

Consequently it is considered better to assume ‘e’ with a suitable
factor of safety and by trial (using a straight line formula or other empirical
formulat to give a first trial) to arrive at the load that would cause the
allowable stress in the extreme fibre. Using curve 3 of Sheet No. 1 would
enable this to be done quickly and with an accuracy well within the
limits of the assumptions that must be made.

)
A curve of p against — could be plotted as has been done for various
7 .
ey
formule, but as such a curve necessarily assumes a constant — or ¢
r2
(¢.e., a separate curve is required for each value of ¢), a mean result can be
only roughly approximate, probably no better than that given by a straight
line formula. However, as the analyses of Fidler and Moncrieff state ¢
to vary from .15 to .6, tables and curves have been prepared for values
of ¢ rising by .05 between the limits mentioned].

|[Table IlI. and curves of Sheet No. 3 show “f’ in terms of ‘p’ for
. p ey

various values of - and —

q 2

[Table IV. and curves of Sheet No. 4 show “p’in terms of ‘f’ for

: i ey
various values of - and —
q r2
f p
|[Table V. and curves of Sheet No. 5 show — against — ¢.e., variations
9 q

of stress as the load varies,

Table IV. (Sheet No. 4), gives at once the unit stress allowable for an
assumed safe fibre stress, and is thus perhaps the more suitable for designing
purposes.

A study cof these tables and curves show factors of safety under various
assumptions.

*With a horizontal member there is an eccentricity due to the deflection due to the weight
of the member. Advantage could be taken of this by making the connection eccentric on the
same side of the deflection thus tending to elminate the effect of the eccentricity.—(Fidler.)

1The quadratic endorsed on the diagram is for all practical purposes exact. Graphical
solutions of the quadratic are eusily evolved.

jFurther experiment will probably give other values for @, as apparently those mentioned
were deduced from incorrect formule.

|{Printed opposite the curves at the back,of the paper.
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To investigate effects of changes in various terms (which may be
desirable to guide one’s judgment) the quadratic form* may be used, but
its solution may be cumbersome; the curve 3 of Sheet No. 1 is for this
purpose well within the accuracy of the rest of the investigation.f

From the primary tables and curves shown, various other curves and
relations may be deduced : some examples will be given of this.
P 1
(@) Table 3 (Sheet No. 3). Up to — = —, which is perhaps the
q 2
limit ot safety, the curves may be approximated by the straight line (within
49, error).

f P
—=(14+@)+2.5¢. — I
P q
p 1
If ¢ = 4 and —=— f roughly = -95q=1-9p
q 2
l
if £=16,000lbs. per sq. in. then —=135
r

This is the condition of maximum economy for the constants taken,
as the stress in the extreme fibre is thelimit and the load is the safe limiting
proportion of the Q of the column.

(b) A typical straight line formula is here tabulated on the basis of the
present deductions; the results are instructive and suggestive.
{
The straight line formula shows ¢ to vary very roughly as —
r
if <f’ is assumed constant, but the stress to vary greatly if ¢ is a constant ;
a constant ¢ for all columns is not justifiable, and as the value of ¢ affects
results considerably, to assume it constant leads to considerable error.

TABLE VI.—RESULTS FOR A TYPICAL STRAIGHT-LINE FORMULA.
| |

1 | l I ! ey {
— | 16,000 —60— q — | H—=g = If f = 16,000
T l" I q { 1.2 |
| f f
{ | _ f:: — (p:
1 | p P
60 | 12,400 | 83,000 .17 | 1.50 | 18,600 | 1.20 = .25
80 | 11,200 | 46000 .24  1.56 17600 @ 1.42 | .31
100 | 10,000 | 30,000 | .33  1.65 = 16,500  1.60 | .37
120 | 8800 | 20,000 .44 | 1.77 | 15600  1.81 | .40
140 | 7.600 | 16,000 .47 | 1.85 14100 211 | .52
160 | 6,400 | 12,000 .53 . 1.98 12600 | 2.50 | .66
180 | 5200 | 10,000 .32  1.95 = 10200 | 3.07 | .73
200 4,000 8000 .50 190 7600  4.00 | 1.17

270 |  zero 4,100 — | |

*See P.I.C.E., 1916 for slide rule solution.  In most cases a graphical solution would be
applicable.
P

tThe original has — = ‘05 represented by 1 inch.
Q
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Curves for Breaking Test Analysis and for Design.

(1). Perhaps the most useful for comparative purposes (since nearly
l P l
all column literature is based on —) will be — against — for various
‘ r f B
values of ¢, which will show the approximations of the straight-line formula,
. see Sheet No. 7, No. 1.

This gives the proportion that “p’ shall bear to ‘f’ for a stress ‘f’
l
to occur in the extreme fibre when — is as shown by the abscissa.
: r
P , f 1
The scales are .he natural scales for — and for \/-—:— —
: 7?E r
i.e., ordinates shall be multiplied by “f’ to get “p’ and abscissae shall
n2E !
be multiplied by \ to get —, the figures for f{=16,000 andf =
r

64,000 are endorsed.
For instance, if f=16,000lbs. and E=30x10¢ ordinates shall be
/n2><30§<‘W6
multiplied by 16,000 and abscissae shall be multiplied by — - _

16 x103
t.e., 137.
If ‘£’ is the modulus of rupture; to examine breaking results, say
64,000lbs. then ordinate shall be multiplied by 64,000, abscissae shall be
multiplied by 68.

The last result shows the difficulty of deducing a formula for working
stresses from breaking test results unless the relations just mentioned are
kept in mind.

It will be seen that the curves of ? may be fairly approximated by
straight lines, especially between ‘5 and 1-2 which on the basis of f=16,000
is -l— 75 to 165, but these presume ¢ constant and no mean straight line
ca.nr be assumed which approximates closely to the conditions for all values
o Table of straight Jine approximations—

) g f [ [ k ko
I %kl—kz Vo __g A e
: E r 211.06 | .40
4| .88 .33
.6 | .725 .28
o (o LT ¢
The straight line p=£f J-9— —\ — ¢ might be taken as a mean
( 3 x2E -

for ordinary rough practical use for mild steel

1
for £=16,000]bs. per sq. in. it becomes say p—= §14,500«40—§
: r
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e
(2). Again @ varies with ‘r’ being — so that a consta.nt @ cannot be
2
l
assumed for various values of —. The effect of variations of ¢ for
r

P
different values of — is shown by Sheet No. 7, No. 2.

q
f f
(3). The curve of — against — (see Sheet No. 7. Curves Ne. 3).
p q
f f N2
— against (—-) which
P n2E

becomes to an appropriate scale

f I\*
— against (—-) for constant ‘£’
P r
See Sheet No. 7, No. 3, and 3A.

These curves are the most suitable for examining the assumption of
the Rankine formula which states —

f=p { 14-¢ (——) )i.e., that the curves are straight lines.
T ,

The same feature exists as is mentioned above, under 1, that is, however
good approximation these may be for breaking stresses, for design purposes
where a variation in ¢ affects the results greatly they can only be very
roughly approximate.

Gurves for Direct Practical Design.

The usual problem is for certain length ‘1°, load ‘P’ and working
stress ‘f,’ what are the dimensions required to satisfy the conditions ?

f f
(1) A curve of — ag&inst \/ become to appropriate scales

()

t.e. A ”»

l

I

22
7
- See Sheet No. 8, No. 1.
r

f
. a4
(2) A curve of — against \— becomes to appropriate scale.

f 72E
('—)A ” T
P f12

i.e. A . T See Sheet No. 8, No 2, and No. 2A.

If there were a curve connecting-A and r (e.g., with a solid circle,
A=kr?, with a thin circle A=2zr k for constant thickness), the exact point
for A could be deduced, but as there is no definite connection between
A and 1, for ordinary sections, only trial and error methods are available.
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These curves may be found the most suitable for design purposes in
many cases for those who are not concerned with the primary formulae.
The curves shown are plotted to scales for—

f 72E
—=unity and
P {12
tor instance if £ =16,0001bs. per sq. inch.
P =96,0001bs.
{=10ft.
f 1

P 6
72 /30107
and\ = — —1.14
{12 16 < (12)2 x 10°
Then ordinates are to be multiplied by 6
1
abscissae are to be multiplied by —— say "88.
1-14
The designer from such a curve knows his area and so distributes the
material that its radius of gyration is ‘r’

=unity.

T’ or vice-versa.

Conclusion.—The fact is driven home that there is no royal road
to rational column design; as stated at the beginning of this paper,
‘e’ must be assumed (experiment will probably give formulae for its
deduction), and then ¢, and with the curves shewn as guides, trial and error
methods will (very quickly with experience) give to any approximation
desired the working stress that will cause.the allowable maximum stresses,
or the area and radius of gyration required.

The author considers :—

1. That test results should be studied on the basis of deducing the
intrinsic eccentricity ‘e,” either by plotting breaking loads against

l

—and using curves of Sheet No. 7 with ‘f’ as a modulus of rupture
T

or by use of the other curves and tables such as have here given
above.

2. Nearly all testing should be carried out within the elastic limit ;
stresses, slopes and deflections thus deduced are what should
give the basis of design.*

-
3. Tables of — for the various types of columns should be calculated,
2
ey
and thus ¢ = — for various lengths and values of ‘e’.
r2

The author wishes to thank students who checked the tables and
prepared diagrams, and Mr. A. R. Munro, A.M.I. Mech. E., Senior Demons.
trator, who supervised the work and prepared some of the diagrams: also
Mr. C. N. Ross, M.Sc., B.C.E., whose strenuous discussions contributed
greatly to whatever merit the paper may possess.

*Experimental work done on these lines in the laboratories of the University of Queens-
land confirms the thecry very closely. See Sheet No. 6.



APPENDIX A. ‘
DERIVATION OF THE EULER VALUL OF A COLUMN.

The following deductions may be interesting as shewing the unique
properties of Euler’s value for a column*.
Assuming that the curve of deflection

. Yecos which is also the curve of Bending
loxA T Moments, is a cosine curve (this is proved
L1 ,E in most Mathematical and Engineering
! <R Text Books), we have (referring to Fig. 2),
g B using coefficients the equation of the
r*____A_—————D (4
Fie. B curve is y = cos x 5
1
{1) Using the — ffMdx dx formula.
EI 1
Deflection at B referred to tangent at A= — ffMdx dx.
1 Qah L EI
(a) Slope = — [Mdx = " cos x — dx.
E1 EI° 2
Qah 2 n Qah 2
= — —-[sinx-! = —— - ........ 1)
El = 2° El =
1 Qah 2 oy
{b) Deflection = — [fMdxdx = f' —— - sin x- d (xh)
EI ° El = 2
Qah2 4 T
y = —— — [—cos X —]
El a2 2°
Qah? 4
= et (2)
EI =*
Qah? 4
But deflection = a .". a = -
El =n?
*. eliminating a
n2ElL :
Q= —— et (3)
4h?
and if 2h be put = [ for pin ends.
n2ElL
Q = —— e (3a)

12

The elimination of a shows that Q can have but one value, viz., as given
by (3) or (3a), and is independent of «.

dy. 2
*This will be true only to the extent that (—) may be neglected; for deflections
dx .
allowable in Engineering Practice, this is justified, similarly it is neglected in deflection
and continuous girder computations.
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i
(IL.) Using the — fMxdx formula,
FI

Deflection at B referred to the tangent at A

Q 7
= — ah? f1 cosx — (l—x)dx
EI ° 2
= — qh2 X F say
E1
2 7 7
F=-[(1-x)sinx -+ [sinx— dx]
7 2 2 °
T 2 7
= - (1—x) sin x —— —cos x —]
7T 2 = 2°
4
T
4
.. Deflection = — ¢h2 — as in (2) above.
EI 7>

The remainder follows as above under I.*

Note—Appendices B. and C. are copies of papers submitted to the
Institution of Civil Engineers ¥ whose permission has been requested to
reprint.

Under present conditions of transport and communication, it was
thought that this would be the only way to present the subject at once
completely and shortly.

2
*These calculations are useful as showing area of sine curve=-@/, and distance of
T
2 2
centre of gravity from B=-1="673 [—for a parabola the area is —@l and distance of centre
m 3

5
of gravity=- = ‘6251
8

For portion of a sine curve the corresponding figures could be deduced, this would show
the error in Monecrieff’s analysis.

+Paper No. 4207, and Paper No. 4236 ; some slight amendments have been made.



APPENDIX B.
PRACTTCAL COLUMN DIAGRAM WITH PROOF.

The author in this paper proposes to give an analysis of the stresses
in a column and to submit a diagram, using the results deduced, that will
provide the designer and investigator with a simple and accurate method
of knowing what happens when a column is loaded

Some experimental results will also be given* to show how the results
as measured agree with those expected : it will be seen that the agree-
ment in those quoted is close, and further investigations are in progress
to verify the theoretical deductions.

The notation used is endorsed on the diagram, and will be explained
also in detail in the text.

Column formulae have been deduced by theorv and experiment in
great number, but any column investigation must be based on the
mathematical result attributed to Euler, which states that when a freely
supported column has been bent, and is kept bent by means of a centrally
applied load at each end,—

If Q be the centrally applied load—
1 be the length of the column (pin ]omted at each end)
E be the Young’s modulus of elasticity for the material.
I be the Moment of Inertia of the cross section.
A be the Area of the cross section.
be the Radius of gvration of the cross section.

Q
q = —
A
The column bends in a Cosine curve and
n2EI n2E
Q= OF ( = ———  tieierenencsonnanns sesnassssss(l)

NG,

This result is mathematically accurate for the conditions assumed
and understood in this way, the quantity ‘q’ becomes a property of the
column, so that we may speak of the Q or ‘q’ of the column just as we
would speak of A or I of the column, remembering the meaning of Q as
stated above. In other words—when any column has been bent, Q is the
only load or resistance axially applied that will keep it bent, anything more
will cause collapse, anything less will allow the column to straighten.
Again the bending must follow a complete cosine curve, the latter following
from the facts that the double integration or differentiation of the cosine
of an angle is again the cosine with the negative sign, and

if *m " is the deflection under a central load Q

x is distance from origin taken at point of maximum deflection.
d?m
—_— = — mQ
dx

*See sheet No. 6.
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- The full analysis appears in text books of Mathematics and Enginee’ring
in various forms, and there is no need to repeat it, the author here has
endeavoured to emphasise only its actual meaning.

However,

(I) The condition assumed cannot be realised in practice but a close
approach only, which is shown by the lower portion of the diagram Fig. 2
Sheet No. 1 where * p’ approximates to ¢ q.’

(2) There 7is an ‘intrinsic eccentricity° which may be either
infinitesimal or appreciable, otherwise there would never be bending, but
even if infinitesimal, it is sufficient to cause some bending. The * intrinsic
eccentricity ° has been discussed in many papers and text books*, being
due even in the most careful work to variations of E in the material of
the column, slight errors in workmanship, or similar causes.

Given these fundamental facts we may proceed as follows,—

P Referring to the Diagram, Fig. 3.
. A Taking the half column (or what is the same
T . / /157 thing considering the column as fixed at O and

free at A.)

Each load as applied causes a certain definite
deflection.

Let e be the eccentricity of loading (including
the intrinsic eccentricity).

P be the amount of load on column

£
2

P

z
g A be the area of the cross section.
P
j p N
A ] A
% — be the length of the column fixed at
: 2
! one end.
_L Then at the top of the column there is a

Fic.3 Bending Moment P xe. This Bending Moment
IC. may be applied in any manner (so far as the
column is concerned), that will cause a B. Mt. P
X e at A. Assume it applied by lengthening the column to virtual
ll
length of — as shown in the figure, with P as a central load at B.

[I
Then we have a column of virtual length - under a central load
2
P which keeps it in equilibrium, that is to say P is the Q of the virtual column.
.. from fundamental considerations
n2ElL 22El P 2
P=— and Q =
(1)*® 2 Q (@)*

B e o P

Vp

*..f. Fidler ** Practical Treatise on Bridge Construction”.




