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- TRANSITIONED CURVES FOR TRAMWAYS,

BY H. 8. MORT, B.8C., B.E.

(A Paper read before the Sydney University Engineering Society,
on August 13th, 1913.

In its original form this paper consisted of notes on one or two
points in the practical application of transitioned curves to tramways,
in which the author expressed the opinion that there was room for im-
provement, either in the direction of greater simplicity or uniformity.
In order to make these notes more intelligible to those who have not
previously had to do with these curves the paper has now been made a
more general one. In doing this I have not touched on the Field work
or the calculation of the normal types of curves, as these matters have
been dealt with very thoroughly by Mr. T. Kennedy, Engineer in
charge of Railway and Tramway Surveys, and by Mr. J. C. Try, B.E.,
of the Railway Survey Branch, whose papers are reprinted herewith,
The thanks of the Society are due to these gentlemen and to the In-
stitute of Surveyors for their permission to reprint the papers, also to
Mr. C. J. Merfield of Melbourne Observatory, who has kindly con-
sented to the publication of his transition table (Appendix C).
The subject of “The calculation of Tramway Curves”has been pretty
thoroughly dealt with by several officers of the Railway Construction
and Railway Survey Branches of the Department of Public Works.
Mr. W. Shellshear and Mr. C. J. Merfield discussed the cubic parabola
as a means of easing the circular curves on Railways; Mr. Merfield
prepared Tables for both Railway and Tramway curves and showed
how to locate the parabola by the use of these tables, and Mr. J. C.
Try showed their practical application to all varieties of curves met
with in the field.
For further information on the subject the following papers may
be consulted : —
(1.) On a simple plan of easing Railway Curves; by W. Shell-
shear, P.R.S., N.S.W., vol. xxii, 1888, p. 89. i

(2.) The Cubic Parabola as applied to the Easing of Circular
Curves on Railway Lines ; by C. J. Merfield, P.R.S., N.S. W,
vol. xxix., 1895, p. 51.

(3.) Notes on the Cubic Parabola applied as a transition to small
Tramway Curves ; by C. J. Merfield, P.R.S.,, N.SW_, vol.
xxxi, 1897, p. 56.

(4.) Tables to facilitate the location of the Cubic Parabola ; by
C. J. Merfield, P.R.8., N.S.W., vol. xxxiv., 1900, p. 281.

(5.) Tramway Curves; by J. C. Try, B.E,, Surveyor, September,
9.
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OBsecT OF TRANSITION TO CURVE.

The object of applying a ‘“ transition ” or curve of varying radius
to a circular curve is to allow the super-elevation of the outer rail
(which is necessary to counteract the centrifugal force of the train or
tram) to be applied gradually, so that at any point on the curve the
elevation for a given speed will be suitable to the radius at that point.
It is further desirable that the change of elevation should be uniform,
in order to avoid the difficulty of bending rails in two planes at once.

Ax1s g

Fia. 1.

DETERMINATION OF SUITABLE CURVE.

To find the curve best suited to this purpose we have :—
T auge (inches) x velocity® (m.p.h.).
el hes) — Sauge (inc )
super-elevation (inches) T25 = radius (fooh).

If L3 be the rate of rise of the outer rail, the rise at any distance
e

along the X axis will be , so that
£ . £ = BV e 1
e ~ 195 OFp &= grgper WA= e (1)
where c is a constant for any given velocity.
Now for any curve { dy\?*) $
; =R L 2
P + (dx) % N ¢)
L)
dx?
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or taking ds = dx 4

d’y 1 x
dx®* — p T ¢
3
Integrating twice :—y = g_c or writing 11T for 6¢
y=mx* .. (3)

a cubic parabola.

It will now be shown how to find a parabola which may be
applied to a curve of any given radius.

Differentiating we have

j—i = 3mx*? (4)
2
g;):: 6mx

(1 + 91n2x‘)£25‘

so that p = 5
mx

writing tan ¢ for c(iLy and taking R as the radius of the circular
X

curve, we have at the point of contact (x¢, yc)

1 + tan? ¢)% X X, sec® ¢ -
B g e ik B0 9O X X, 860 e e (@
Pe tan ¢ x 2 9 tan ¢ ©)

or ZXTF{ = sin ¢ cos? ¢, from which ¢ can readily be found by trial or by
solving the cubic
Xe — o . .. (5a

where s — sin ¢
In practice, as far as Tramway curves are concerned, the usua

procedure is to select values for R and );{ (which will determine ¢)

and refer to the tables for the other quantities required; it will
therefore be sufficient here to show how these other gnantities can be

derived from ¢ and _;3 :

Taking the columns of the table (Appendix C) in order :—
From (4) tan ¢ = 3mx,’

tan ¢
t —
A an;f’ ; m R = 3<Xc)2 we  (6)
X R

3

This quantity is given in log. form for greater convenience.
x' = CG = R sin ¢ (see Fig. 1).
1

u%:ﬁn¢ . .. . .. . e (D
Yo = mxg = 3 mx.? X g":?tantﬁ

i
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Xe

* yc p— < .. e .

"R T3R tan ¢ . . . (8)
h =yc — y' = yc — R versin ¢

. % — }1'_; — versin ¢ ... 9)
ds __ d
ax \/1—{-(%)2: \/1+91u2x‘

s:/\/l + 9 m%** dx
expanding and integrating individual terms
729

9 9
s = Xe + — m?’x® — —m*x® 4+ " méx® —

10 8 208
putting tan ¢ for 3mx?

s = x¢ (1 4 %) tanZ ¢ — % tan* ¢ + ‘7(1)—8 tan® ¢)
1
208

The last column gives the circular measure of ¢

S_xc l 2 _1 and
__1T(1+1_0tan ) ﬁtd.ndr-l—

> tan®e) ... (10)

To find the radius of curvature at any point of the transition.

p= 6%-}-%111)(3 . (1D

will give a sufficiently accurate result.

For a fuller mathematical treatment of this curve the reader is
referred to Mr. Merfield’s 1895 paper.

I.iMITS OF APPLICATION.

¢ must not be greater than one half the angle between the
straights, or the circular curve will disappear and the transitions
overlap. Further, as there should be no point on the transition at
which the radius of curvature is less than R, the point of minimum
curvature of the parabola must not be passed. This point will oceur

where the value of % is a maximum, and may be found as follows : —
From (8) and (9)
h _ xc
R~ 3R
and from (4)
xc = 2R sin ¢ cos’ ¢

tan ¢ — versin ¢

_h- = g sin? ¢ cos ¢ — versin ¢
R 3
differentiating and equating to 0 we get
sin* ¢ = —(15 e (12)
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giving ¢ = 24° 5’ 41-45"" and a corresponding value ;—c: 0680414

For the method of using the tables the reader is referred to Mr.
Try’s paper (Appendix A).

PosiTioN oF SWITCHES.

At a junction the position of the switch is determined by the
necessary offset at the heel, which must be equal to rail width plus
groove width. This is 3% inches for the 80 Jb. rail and 3} inches for
the 60 1b. rail.

On a transition

N y
X = \/E where y is the offset at the heel of the switch.

The standard switch is 7-25 feet in length and it will be found in
most cases that the tangent point is several feet in advance of the toe
of the switch. As the transition curve is in abeyance until the heel
of the switch is reached, it would appear that a rather longer transition
is advisable where a switch occurs, but since a longer transition neces-
sitates a flatter crossing, with more liability of breakage at the point of
the frog, it is as well to keep the transition the normal length.
Another objection to long transitions at junctions is that the trams
cannot stop on the crossing, and consequently often have to stop a
considerable distance down the street instead of at the corner.

On a circular curve
X = V2Ry -y
= \/0'58331}, — 0:0851 for 80 1b. rails.

The radius of the circular curve in this case must not be greater
than 330 feet, since a flatter curve involves cutting away a consider-
able part of the flange of the rail and also leaves less room behind the
rail for spiking. These switches usually occur. on the inner curve in
cases similar to Example (3) in Appendix A.

The Railway Commissioners avoid switches on circular curves in
such cases by compounding the circular curve on the inner track with
a curve of Jarger radius to which long transition is applied ; this brings
the switch on to the transition. One of the objections to this method
is mentioned below.

SELECTION OF RADIUS AND LENGTH oF TRANSITION.

Owing to the varying circumstances in different cases, no rule can
be laid down. In order to avoid resumption, the centre line of the
inner curve must clear the kerb line by at least 8-5 feet (se, 6 feet
clearance to rail); on roads one chain or less in width this will
necessitate sharp curves unless the deflection angle is small. Where
the line is off the roadway flatter curves may be used.

A good length of transition to adopt is about 40 feet ; this givesa
rise of about one inch in 9 feet for the maximum elevation of 4} inches
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and at the same time does not unduly lengthen the curve. When
pinched for room a shorter transition must be used, and in cfome
special cases different transitions will be necessary at the two ends of
the curve (e.g. on the inner curve at the corner of Day and Erskine
Streets). In New Zealand a 30 feet transition is favoured.

CoMPoUND CIRCULAR CURVES.

The method most favoured in America for gradually increasing
the curvature is the “compound spiral ”; that is to say, a series of
short circular curves in which the radius is gradually diminished until
it becomes equal to the radius of the main curve. A length of chord
is chosen, aud the degrees of curvature of the successive curves must
then form an arithmetical series.

For example, if we wish to connect a 100 feet curve to the
straight by means of a 40 feet transition, we assume a chord length—
say 8 feet—and divide the angle of curvature, in this case 60 degrees
into six (40]+ 8 + 1) parts. The successive degrees of curvature
will be 10, 20, 30, 407and 50, coming at the end of 40 feet to the 60
degrees curve. % This of course is not a true transition curve nor is it
so elastic as the cubic parabola for use with sharp curves. For
instance, with a 66 feet curve (981°) for a 40 feet transition we must
either use very short’ chords, which would unnecessarily complicate
both the calculation and setting out of the curves, or we must have
sharp changes of radius ; while with a cubic parabola we can get as
smooth an entrance to a sharp curve as to a flat one.

Another advantage of the cubic parobola over the so-called spiral
is that, unless the chords are very short, the secant to the main curve
will be longer in the case of the spiral, involving more resumption of

property.

Qlagram to_scofe, showing stspdard

J_in7_collisio, curres of

20 >, //0 /2 Radiv.

Fic. 2.
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Note oN THE DISTANCE BETWEEN TRACKS ON A DOUBLE
Track CURVE.

On double track lines, owing to the overhang of the cars, unless
the distance between tracks be widened, the footboards of two trams
passing on a curve approach closer than is considered safe ; and if the
curve be a sharp one the trams actually collide. This is evident from
the diagram (Fig. 2b).

For the N.S.W. Tramways the increase necessary was fixed by the
Railway Commissioners some years ago, the distances being tabulated
for the various radii. These distances give a clearance between cars
varying somewhat irregularly from 104 inches on a curve of 8 chains
radius to 16 inches on a curve of 55 feet radius.

It would seem more rational to decide the clearance necessary for
safety (which need not be the same for all, but might be rather
greater on sharp curves), and then calculate the distance between
tracks which would give this clearance. It will be sufficiently accurate
if for any given radius of the inner track we find the outer radius
which will just allow the cars to touch, and then add the necessary
clearance. The method of calculating the outer radius is given below.

We must first know the dimensions of the car or combination of
cars which will produce the worst case ; for the N.S.W. Tramways this
will be with the 70-seat steam car trailer on each track, as all new
cars are designed to keep within the limits imposed by this case.

The dimensions are (see diagram Fig. 2a).

Length of footboard ... ... = 2EF = 34ft. 6in.
Width , " ... = 2ED = 9ft.
Distance between centres of Bogies ... = 2DG = 23ft. 64in.(23-5¢').

On 10-foot tracks this car has a clearance of 1 ft. on the straight.

Referring to the diagram it will be seen that the point on the car
which describes the largest circle on the inner curve is F, while the
point which describes the smallest circle on the outer curve is C.
These are therefore the critical points, and if O be the centre of the
curves the cars will just touch when OC = OF.

Let AB=DG = a 0G =R OB
EF =1 OF = R! oC
AC =DE =w
Now R! = OF = VOE* + EF*
= ¥ (0D* 4+ DE?) + EF*
and OD = Y 0G* - GD*
therefore R'= ¥ {(R? — a’) + w}a + 17
and r = OB = VW
= Y(0C + CA) + AB?
e V(r1 + w)? + a?

I
"

Il
s ]
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so that if i = R?
r = V(R‘+w)2+a2
Whence, given the value of R, r may be found

Expanding the formula for R!
12 —a% w2z 14-2(a2 4 2w?)I2 4 at

Ri=R4+w+7r ~re 8R*
whence
12 wl2 4 2wa? 4 a2 12 (4w? — 1)+ 4 (2w +a)2
_ 9 o _ -
r=R43v+og R 8RS

For the standard car a — 1177 a2 — 1385329
w= 45 w2 = 2025
1=1726 12 = 297-5625

159 1339 1268
1 — . — vy T
R_R+45+_2T{— 2R? 8R3
80 670 160
1 — * ——— —— ——— ——
R'=R 4 45 + R RE i
of which the fifth term may be omitted for all values of R over 32 feet
and the fourth term for all values over 52 feet.

297-56 272436 2553057

approx.

r=R4+94+ ct g —"9rr + sms
149 1362 3191
=R 4+94 c+ R T Re + Re approx.
Where c is the clearance required between cars.
In this formula the last term = -02 for radii between 50 and 60

feet, ‘01 from 60 to 85 feet, and may be omitted for radii over 85 feet.
For radii over 100 feet the formula
150 1400
r=R+94+c+ | - ®me
will give a result correct to two decimal places (% in.)

The following Tables show for any Radius :—the distance between
tracks for which the cars would just touch ; the distance adupted by
the Railway Commissioners; and the difference between these to the
pearest } inch, which will of course be the clearance.

TaBLE I.—CLEARANCES BETWEEN CARS.

Distance between

Radius of Curves. Distance adopted Clearance.
Inner Curve. Olearance Nil. N S8.W. Trams.

feet. feet. ft. in, ft. in.
50 1146 12 10 1 4}
55 .. 1127 .. 12 8 1 43
60 .. 1112 ... 12 4 1 2}
66 .. 1095 .. 12 2 1 23
70 ... 1086 .. 12 0 1 1}
75 10:75 11 11 1 2
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Distance between

Radius of Curves. Distance adopted Clearance.

Inner Curve. Clearance Nil, N.S.W. Trams.
feet. feet. ft. in. ft. in.
80 10-65 11 10 1 2%
85 10-57 1 9 1 2
90 10+49 . 11 8 1 2
100 .. 108 .. 11 6 1 13
110 . 10-24 11 6 1 3
120 ... 1015 ... 11 2 1 0
132 ... 1006 .. 11 1 1 0}
150 ... 993 .. 11 0 1 0%
165 9-85 11 0 1 13
180 979 11 0 1 2%
198 9-72 10 10 1 1}
231 9:62 10 9 1 1%
264 9-54 10 8 1 14
297 949 10 7 1 1
330 .. 944 ... 10 6 1 03
363 9-40 10 5 1 03
396 9:37 10 4 0 11}
429 9-34 10 4 01132
462 9-32 10 4 1 0
528 9-28 10 2 0 104
875 917 10 O 010

1000 9:15 . 10 O 0 10}

This Table refers only to the circular part of the curves, but,
since the clearance on the straight is only 12 inches, as soon as we
pass the inner tangent point we must get a clearance less than this,
so that the pinch will as a rule come on the transition. However, if
we so choose our transitions as to give the inner curve a lead of 20 to
30 feet from the outer (the sharper curve of course requiring the longer
lead) we shall keep the clearance on the transition above 11 inches.

It may be thought that the difficulty could be avoided by in-
creasing the distance between tracks to, say, 13 feet and keeping the
lines parallel throughout, but to this there are several objections.

In the first place the roads in Sydney are mostly only 66 feet wide, of
which 24 feet is footway, leaving only 42 feet of roadway. As there
is no room for traffic between the lines a tramway with 10 feet centres
and cars 9 feet wide leave only 11 ft. 6 in. between footboard and
kirb, and this would be further diminished by any increase in the
distance between tracks. In wide streets with a plantation in the
middle, the trams may be run on either side of the plantation, in
which case the double track becomes practically equivalent to two
single tracks.

Another difficulty is of a financial nature, inasmuch as in N.S.'W,
the roadway between tracks is maintained by the Railway Commis-
sioners, the remainder being maintained by the various Councils. So that
every foot increase in the distance between tracks means the cost of
maintenance of an extra 600 sq. yds. per mile of roadway being
thrown on to the Railway Commissioners.
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Fia. 3.

TraMwAaY CurvEs (DouBLE TrAck) wiTH RaADII FROM
250 F1. TO 900 FT. '

As pointed out by Mr. J. C. Try, B.E., double track curves from
5 chains upward are usually set out, in the Government Tramways of
N.S.W., by making the outer a simple circular curve without tran-
sition, and obtaining the necessary extra clearance on the curve by
giving a transition to the inner such that h = d where d is the
necessary increase in distance between tracks, the difference between
the Radii of the circular curves being, of course, 10 4 d. This
principle may be extended to curves of about 250 ft. radius, but if the
radius be less than 5 chains there must be a transition on the outer
and the transition on the inner must be so chosen that h = d 4 h}
where h! is the value of h for the outer curve.

For a radius of 1,000 feet or more there is sufficient clearance be-
tween cars without increasing the distance between tracks, so that two
concentric curves without transition may be used.

In most cases the method mentioned above gives the inner tan-
gent a lead of about 30 feet on the outer and involves a transition of
60 feet or more. These curves occur frequently on winding roads
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where the angles are small and the curve becomes almost entirely tran-
sition, while if the bends are close together the long lead will often
cause an overlap, necessitating a local widening of the tracks and
giving the curves an ugly appearance on the ground. There are many
examples of this on the Bellevue Hill Tramway, and one very marked
case on the Waverley-Bronte.

Taking Mr. Try’s Example (4).

Suppose the deflection angle to be 10°. A suitable radius to
adopt is 500 ft., which may be taken as the radius of the inner curve.
For 500 ft. radius d = 0-3 feet, making the outer radius 510-3 ft. to
give concentric curves. The outer curve need not be transitioned, but

a transitioned curve having a value of h = 03 ft. will give the
necessary clearance.
Here h = 03
h 0-3
R =500 = 0-0006

The nearest value of h in the Tables is ‘000599 and the corres-

ponding value of -X¢_ is 0-12 giving a transition of 60 ft.

Referring to the tables we have :—

X, = 60 Offsets :— 10’ 0:01
x! = 30'11 20 0-04
X, — x' = 29-89 30 015
yo = 121 40’ 0-36
h = 02995 (say 0-3) 50 0-70
S = 6002 60’ 1-21

logm = 4747094
For this curve deflection angle = 10° = o<
= 3°27' 85"
= (R + h) tan o</2 4+ x, — x!
= ‘0874887 x 500-3 +4 29-89
= 7366
Secant = (R 4+ h)sec o</2 — R
1:0038198 x 500-:3 — 500
= 2:21
o<
1 Circular arc = R X arc (—2‘— - ¢)
= 500 x ‘0270114
13-50
R x chord (— — )
= 500 x ‘0270106
= 13-50
The lead of the inner tangent is x, — x, in this case 29:89. The

calculation of the outer curve need not be given as it is a simple cir-
cular curve.

Total Tangent

Chord of } arc



