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THE STABILITY OF RETAINING WALLS.

By R. H. B. Downes.

(A Paper read before the Sydney University Engineering Soctety,
on July rygth, 1915 )

INTRODUCTION.

The main object of the following article upon the stability
of retaining walls is to suggest the inclusion, in calculations
for design, of an important factor of strength or resistance that
most assuredly exists, but which is totally ignored in the more
commonly distributed text-books anyhow. It is that of the co-
hesive strength of the materials of which such walls are usually
constructed. A wall cannot be designed economically if one of
its most important sources of strength is refused place amongst
its calculated assets.

The method of consideration of Surcharged Walls here sug-
gested differs from that of some writers, and yields different
results; but the theory advocated is fully described, so the
reader has full opportunity of choosing which form of reasoning
he prefers, according to his judgment. '

The equation obtained for the case bears a strong family
resemblance to another that is to be found in at least one well-

. k h? cos a . .
known text-book, viz., P = ~——— the difference in value

=

being that between cos a and cos? o3 but upon comparing with
modifications given in the same work, it is evident that the equa-
tion referred to is constructed upon some basis that is quite
different to the argument herein enunciated. It may have been
derived by working backwards from the hydrostatic expressicn
k.h2 -
2
according with that expression, at the two extremities of a,
namely, 0°and 90° ; but anyhow, it is quite different, notwith-
standing the general similarity, and the modifications referred
to indicate a substantial variation in pressure with truncated
surcharge, which appears to be improbable if the argument ad-
vanced herein be logical.

with an assumption to include the angle of friction, and
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In another work, the angle gof;f—is deseribed as the angle

of maximum pressure. Herein it is argued that there is no
such angle of maximum pressure. If there be such an angle, it
would appear that gravity -acts upon solids and fluids under
quite different laws, instead of the one law modified by the
element of friction.

NOMENCLATURE.

h = Height of wall.
H = Depth of material retained.

P = Total pressure of retained material.
p = Unit pressure of retained material at any depth.
Po = Pressure acting along the direction of P, necessary to

cause overturning of wall.
b = Width of base of wall.
d == Thickness (length) of base of wall.

t = Width at top of wall having back batter.

s = b — t = horizontal projection of back batter.
f = Factor of safety.

L = Lever arm of force tending to overturn wall.

1 = Lever arm of force of gravity about toe of wall.
g = Specific gravity of wall.

q = Specific gravity of retained material.

w =— Weight of material in wall.

W = Total weight of wall.

C = Total cohesion on base b.

k = Weight of retained material (solids) in pounds per cu. ft.
M/3= Abbreviation for middle third point.

WALLS WITHOUT COHESION.

The following equations may be evolved relating to walls
without cohesion retaining any liquid (see Figs. 9 and 10) :—
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WALLS WITH COHESION FROM MORTAR.

The foregoing equations are based solely upon the weight
or mass of the material of the wall, or as it might be, in the
case of a wall constructed of bricks laid dry on a smooth bot-
tom. Such a wall, of course, would not retain water, nor could
it adhere so as to be overturned in a mass; but what is meant
is that no allowance has been made for the cohesion of the
mortar at the base or ends of the wall; the wall is regarded as
a rigid mass, loose on its foundation, and resisting overturning
momént, sliding, bulging, ete., by virtue of its mass and weight
alone. iz

But walls built for practical purposes have foundations
toothed into the ground, or anyhow, more or less fastened to
the ground with mortar, which has a considerable amount of
cohesive strength that materially adds to the resistance to the
overturning moment, hence, if the eohesive resistance amount
to any important quantity, it is obvious that less weight will
be required, and a smaller and less costly wall will perform
the nett duty. And it thus follows that any wall designed with-
out regard to the force of cohesion, is designed with excess of
strength, and will therefore be wasteful and extravagant to
construet. ' -

It is intended to show that the cohesive resistance is no
negligible quantity, but is a large and important proportion of
the total resistance. So far as the writer is aware, this phase
of the question is not dealt with in text-books. For effective
treatment of the subject, a considerable amount of experiment
under practical conditions is much to be desired, but obviously
such experiments would be very expensive and beyond the
means of most private enquirers. So far as the writer is aware,
no such ‘experiments upon any comprehensive scale have been
carried out, hence the details in the following articles are em-
pirical only; even so, and upon most conservative allowances,
great economy is possible, and anyhow, so far as small walls
are concerned, is commercially essential as compared with the
results that would be derived from the above equations.

Let it be assumed that the wall to be considered is built
of brickwork, set-in Portland cement mortar, in the proportion
of 3 parts of sand to 1 part of cement, and take the S.G. of
the mass as 1-8. At a low average specification for the material
the cohesive strength of such mortar may be taken at 200
pounds per square inch at the age of one month, and this repre-
sents 28,800 pounds per square foot.

Assuming the wall to be built with extreme care. as. for
test conditions, if it has a base one foot wide, and one foot
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length of the wall be taken for the argument, there will be re-
quired an upward pull of 28,800 pounds to fracture the mortar;
that is to say, in opposition to a vertical pull upward, the wall
has acquired what is tantamount to an increase of weight of
28,800 pounds. But the force tending to overturn the wall
is not a vertical force; it is horizontal in direction.

Suppose the wall to be 2 feet wide at the base, and that it
is only attached to the foundation at three points, the inside
edge, the middle point, and the outside edge, with one square
inch of mortar at each point; and for further simplicity, let
it be assumed that these separate dabs of mortar act at points
at the centre, and at the extreme edges respectively. The added
weight is now 3 X 200 = 600 pounds against a vertical pull.

Take the case of a rectangular wall of breadth b, acted on
by a horizonal force P, at the height % above the base. Let

the vertical forces of cohesion act with uniform intensity over
the whole of the base. The sum of their moments about the
outer edge of the base is equal to the moment of a force C, equal
to their sum acting at the middle of the base. Let W be the
weight of the wall if cohesion be disregarded, and w its weight
if cohesion be taken into account.

Taking moments about the outer edge of the base. For
equilibrium,

P—}‘]‘Z(\\'-FC)%

if cohesion is taken into account,
h b
— = W =
and P 3 W 9
if cohesion be disregarded.

If the vertical force of cohesion be taken at 200lbs. per sq.
in., then on a wall of width b, C = 28,800 b lbs.

But the value of 200 pounds per square inch is a laboratory
value, and it would not be practicable in general work to pay
sufticient attention to the mixing of the ingredients, and to other
points, or to construct an ordinary wall capable of fulfilling
such strenuous conditions, so it is necessary to decide what is
a reasonable working value for the force of cohesion. The co-
hesion of brickwork in mortar has been considered with much
detail in Trautwine’s “ Engineering Pocket-Book,”’ and in that
publication a statement may be found to the effect that the
adhesion of 3 to 1 Portland cement mortar to brickwork, may
be taken as 34 of the cohesive strength of the mortar. Upon
some little accumulation of evidence the cohesive strength of
mortar has been above-taken as 200 pounds per square inch,
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and 34 of 200 = 150. Trautwine, however, assesses a higher value,
viz.. 240 pounds per square inch for 3 to 1 Portland cement
mortar, and with that estimate the adhesion to brickwork is set
down as 180 pounds per square inch.

Next, as Trautwine very justly represents, the complete
laboratory test will always afford values considerably in excess
of those derived from tests of the same materials taken from
an ordinary mixing on the site of construction work, owing to .
greater refinement of the gauging in the former case; and he
assesses a relation between the two conditions in the proportion
of 240 to 175. Adhering to the lower test value of 200, as a
reasonable average for cements in the open Australian markets,
and adopting the same relation between laboratory work and
practical construction, 146 becomes the value for the mixing
box, and taking 34 of that value as the adhesion to the bricks,
109 per square inch 1is afforded as a practical value for the
ultimate adhesive effect of the mortar, or say 100 pounds per
square inch. Under these circumstances, C = 14,400 b, is a
value that might be allowed for a carefully supervised and
well-built wall.

However, it is not always a good policy to calculate upon
first-class supervision and workmanship, especially nowadays,
when workmanship is deteriorating perceptibly every year;
therefore, to provide for contingencies suggested by these condi-
tions of the day, it may seem desirable to make a further reduc-
tion of 50 per cent., when the value becomes C = 7,200 b.
which represents an ultimate cohesive strength in the cement
mortar of 50 pounds per square inch.

There is yet another reason on the grounds of precaution
(and it is desirable not to miss any precaution when suggest-
ing procedure in the nature of radical change) for reducing the
valuation of this very effective factor of resistance, which lies
in the vague possibilities of the element ‘‘fatigue.’”” Fatigue
cannot possibly have any effect on the weight of a wall, but it
is possible that it may have some upon cohesive properties. With
the inclusion of an allowance for cohesion in stress caleulations,
the mere fact of placing the factor ‘‘f’” on the P.L. side of the
equation, making that side f.P.L., provides a margin common
to the effects of both weight and cohesion; but since it may be
possible for fatigue to affect cohesion, whilst it cannot in any
way affect the action of gravity, if any factor is to be allowed
upon such grounds, it must be incorporated with the co-efficient
of the cohesion itself.

A dam wall may need to exert its power of resistance to
overturning for 365 days per annum Will such constant strain
have any effect upon the cement, equivalent to fatigue in metals?
And, if so, to what extent? Tt seems impossible to reply to
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these questions without practical experiment, and obviously
such experiments must cecupy great length of time, and they
must cost a considerable sum to carry out. The characteristic
of fatigue is probably of greatest effect in materials possessing
considerable elasticity, and of comparatively small degree in
those which have not that attribute; in that case it might be
anticipated that stone matter, which is naturally rigid in char-
acter, would be but to a small extent influenced by fatigue. Yet
- in laboratory experiments high tensile tests are obtained with
rapid applications of load, whilst with slow application a briqu-
ette fails at an earlier stage; but whether the circumstance is
due to anything in the nature of fatigue or not is ditfficult to
determine. On the other hand. it is well known that cement
increases in strength with age. This is probably accounted for
by the more complete drying out of the water, and it is pos-
sible that mortar might increase in strength with age against
a quick test, and yet suffer from fatigue in a prolonged one.
There is no data upon which to assess an allowance upon this
head. and it only remains to fix an arbitrary value. For such
arbitrary value, then, suppose the co-efficient of cohésion be
reduced a further 50 per cent., then C = 3,600 b, and the co-
efficient now represents a cohesive effect of only 25 pounds per
square inch as ultimate strength. This will be again reduced
by the factor of safety, for which the diagram factor or middle
third condition gives, on the average, a factor of about 2, so that
with C = 3,600 b in calculations for the middle third condition,
the resistance actually relied upon from the cohesion will only
amount to 12145 pounds per square inch; and since it is pro-
bable that fatigue, when it oceurs at all. has but little effect
in stresses well within the working strength of any material,
reliance to the extent of 121/ pounds per square inch as work-
ing stress for Portland cement mortar should not alarm the
most cautious designer, and it seems reasonable to suppose that
no one can urge objection to the inclusion of the allowance
C = 3.600 b.

Ilence, depending upon the conditions and upon the judg-
ment of the designer, C = 14,400 b, 7,200 b, or 3,600 b. and on
applying one of these values to the above equations for rect-
angular walls, we have:—
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It may easily be shown that when the resultant falls at
one-third of the base from the toe of a rectangular wall, the
factor of safety f against overturning is 3. Hence the equation
for stable equilibrium may be written—

—\/ T 624 13

(624 gh + 3600)

There is no constant numerical value for f in the middle
third condition with battered walls, because, putting the pro-
portion in the same way as in the last paragraph—

b
H —*:‘):P
1:1 3 p

Po _ —— o -
P~ _ b andl varies with the slope of the batter in

3
the wall considered as without cohesion, whilst when cohesion
is included, | varies also with the relative values of w and C
with the positions of their respective centres of action; but hav-
ing once ascertained the value of b for the middle third con-

. I . .
dition, both 1 and ~; are known; then if f is required—

The equations for rectangular walls are simple in construe-
tion, because the centre of gravity of the rectangular wall and
the centre of action of the cohesive force are both on the same
vertical line, which is a vertical passing through the centre of
the base; but in the case of battered walls, the centre of gravity
of the mass of the wall is situated on a line passing through

-

3 _
the base, at a distance of G—l_TfIOIIl the toe, whilst the
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centre of action of the cohesive force is at the centre of the
base. Hence the centre of gravity of the combined resistances
lies between these two points. It is, therefore, scarcely prac-
ticable to construct a general equation to suit such diverse vary-
ing conditions. With the primary equations, PL = W1 or
fPL = W or rather (w 4 () 1, an approximation can first
be obtained and then modified to suit the case.

For instance, let it be required to construct a dam wall
h = 12 = II, with 9-inch crest and back battered, of brick in

cement, SG = 1-8, allowing for cohesive effect at the base to
the amount of C = 3,600 b.
9. 2 H
P = fs“t”- = 44928 L =g =4

.. PLL — 17,971-2 = WI, unstable equilibrium. 1 is the
horizontal ~distance between the toe of the batter and a
vertical line representing the locus of the centre of action of the
combined forces, gravity and cohesion. In such a small wall
the cohesive effect (even at this low estimate) will be mue.h
in excess of t{he weight of the wall, and consequently the posi-
tion of the centre of combined resistance will be nearer the

h
centre of action of the cohesive effect, or more close to-;- thau

: 3,’1)_2— 52
2 6b — 3s

; therefore, for the first approximation, assume

that the leverage is; though, of course, it must give a wall a

little in deficit of requirements. 1 = ,j— ; the weight of the wall,
9. _

" i376l47.7g<h;7(2lz - 8)

b 4 75).

w = 673-92 b + 505-44.

C=3600b, W= (w4 () =4,273-92 b -+ 505 -44.

But the wall is required for working conditions, and the
resultant is to fall on or inside the middle third of the base, and
for this condition, W1 = fPL, but we cannot yet assess an
exact value for f. Try f = 2,

then fPL = 2 X 17,971-2 = 35,942 -4,

and W1 = (4273-92b - 505-44) b—,
2,136-96 b2 + 25272 b — 35,9424,

95272 | 359424
T 513696 ° = 213696
(b2 + 05913)2 == 16-819 & (-05913)2 — 16-892,
b - 05913 — 4-1015,
b = 4 feet (4:04).

=624 X 18 %6 (2 — (b — 075)} = 67392

2
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This must now be tested for the diagram condition.
The weight of the wall isw = { 112 X 0-75) + (8 X 2:25) ; 112-32
= (9 4 19-5) 112-32 = 3,201 pounds.

2 2
The centre of gravity line lies at ~———~6l{) — ; from the toe, and
— 4 0T5=395 3 x 16 —(325)2 48 — 105625
1=4-078 =335, 24 — 975 1425

= 2-63 feet from the toe.

The cohesive effect is 3,600 b = 14,400 acting at —‘-:— or 2 feet
from the toe. There is 0-63 between the s.ituation;. If x, be
the distance of the combined effect centre from L then the

. 2
moments are 14,400 x = 3,201 (0-63 — x),
17,601 x = 2,016 -63,
. _ 201663
© 17601

. b
and the mean leverage is1l = -+ 011 = 211

Then, for the diagram P — 4,492 -8,
W = 14,400 + 3,201 = 17,601,
and 17,601 : 4492-8 = 4 : 102,
when 211 — 1-02 = 1-09,
the resultant falls 1-09 within the toe; but the point of the
middle third is £ = 13, so that the resultant falls 0-24 outside
the middle third. The base is a little too narrow; give it an
additional 6 inches of width and try the diagram again.
b=458S=2375,P=44928 L = 4, PL = 17971-2.
W — 624 gh‘)ﬁb«s) _ 624 x 18 X‘) 12 (9-—3‘15):673_92 % 595
“ = = 3538’

3bt — &t {3 % (457 | — (375 _60T5—140625 _,

I =534 T %15 = (d % 375) 27 - 1125
b
C =45 X 3,600 = 16,200, and =225, 296 — 225 =071,

16,200 x = 3538 (71 — x) = 2.511:98 — 3,538 x,
19,738 x = 2,511:98,
2511-98
x = g = 0197
1= 225 + -13 = 2-38.
W = 3.538 + 16,200 = 19,738,
19,738 : 4,492-8 = 4 : 0-91,

2-38 — 091 = 147,

bt—:15 15 — 147 = 0-03,





