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Abstract

Study of two recognised geographic lineages within Radula novae-hollandiae sens. lat. have resulted in the
detection of morphological differences between individuals from the Queensland Wet Tropics, and those from
New South Wales. Individuals from the Wet Tropics have perianths that are shorter at maturity (1.6-2.0 v.
3.8-4.4 mm), leaf lobes that usually bear numerous marginal gemmae, and leaf-lobules that are smaller and
more quadrate. The morphological differences, particularly in perianth length, were not fully appreciated
previously and provide evidence supporting the recognition of the Queensland Wet Tropics lineage as a
distinct and new species, Radula tonitrua, which is here described. The degree of phylogenetic divergence and
fixed molecular difference between R. tonitrua and R. novae-hollandiae, are comparable with the separation
observed between R. ocellata and R. pulchella, another species pair exhibiting the same geographic disjunction.

Introduction

Paluma Range in Queensland is an isolated, large, rainforest island, surrounded by much drier areas. It is
most notable for the northerly occurrence of several otherwise southern rainforest species, and for being a
southern limit for many otherwise northern species. At the same time the Paluma Range is the type locality
for several recently-described bryophyte taxa, including Jubula hutchinsiae ssp. australiensis Pocs and Cairns
(2008) and Cololejeunea cairnsiana Pdcs. There are other rare species too, originally reported for Australia
based on collections from the Paluma Range, including Cheilolejeunea ventricosa (Schiffn.) X.L.He (Pdcs and
Streimann 2006) and Nowellia langii Pears. (Pdcs et al. 2012). It is likely there are more novelties there to
be discovered. During fieldwork collecting material for a revision of the genus Frullania in Australia, the
first author collected, among other epiphyllous material, a tiny Radula species on the leaves of the filmy fern
Abrodictyum obscurum (Blume) Ebihara & K.Iwats. in the notophyll vine forest of Birthday Creek in Paluma
Range of Queensland, near Paluma settlement, at 850 m elevation. The plants bore acute leaves, and two pairs
of female bracts, so belonged to subgenus Odontoradula K.Yamada. They were similar both to Radula kojana
Steph. in their copious marginal gemmae and to Radula novae-hollandiae Hampe in their leaf and perianth
shape. After careful examination it became clear that the specimen does not belong to R. novae-hollandiae and
proved to be new to science, as both of the above species have much longer perianth (c. 4 mm long), while
in the new species the mature perianth hardly exceeds 2 mm length. Radula novae-hollandiae infrequently
produces gemmae, which are very abundant in the new species. Both known species have narrower stem
medulla cells 8-12 um diameter (in 5-12 or 19-27 rows respectively) while the stem medulla cells of the new
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species are 10-20 um diameter (in 6 rows). Its stem cortical cells are even larger, some to 30 um diameter.
Otherwise, the shape of sterile and perichaetial leaves (apart from the gemmae) are similar in all three species.

The relationships of 9 Australian species of Radula subgenus Odontoradula (Yamada 1979) were resolved
using chloroplast DNA markers (Renner et al. 2013a, 2013b). In their revision of Australian Radula (Renner
et al. 2013a), Radula novae-hollandiae was broadly circumscribed, and considered widespread in Australia,
including Norfolk Islands, and occurring in New Zealand only in the Kermadec Islands. Two geographic
lineages were resolved within R. novae-hollandiae, one in south-east Australia, the other in the Wet Tropics
Bioregion of north-east Queensland. In this paper we reanalyse the molecular data from Renner et al. (2013a),
which included Radula novae-hollandiae s. lat., as part of our re-assessment of the plants from the Wet Tropics
Bioregion of north-east Queensland, and separate these populations from R. novae-hollandiae as a new species.

Materials and Methods

Taxon sampling and molecular protocols

Sampling for DNA was based on material collected haphazardly throughout the Australasian geographical
ranges reported for species of Radula subg. Odontoradula. This includes the Wet Tropics bioregion in north-
eastern Queensland, along the coast and Great Dividing Range through New South Wales, Victoria, Tasmania
and in New Zealand, for the purposes of the revision of Radula subg. Odontoradula published by Renner et al.
(2013a). The objective of collecting was to sample individuals of each species from many sites across their
range. Clean shoot tips comprising the meristem, embryonic leaves, and one or two nearly mature leaves were
excised from each specimen until ~25-50 mm? of cleaned material was obtained, depending on plant size.
DNA samples were either stored on silica gel or rapidly air-dried from wild-collected material to ensure plant
material remained green and fungus-free.

Total genomic DNA was extracted using the DNeasy Plant Minikit (QIAGEN, Sydney, Australia), and three
chloroplast markers were sequenced: (1) the atpB-rbcL spacer; (2) the plastid trnL-F region including the
trnLUAA groupl intron and the trnL-F intergenic spacer, hereafter trnL-F; and (3) the trnG G2 intron.
These regions were chosen because universal primers are available for all; they are known to exhibit sufficient
variation to be informative at a species level (Stech and Quandt 2010) and two were used by Devos et al.
(2011a, 2011b) to reconstruct the phylogeny of Radula, meaning a broader phylogenetic sampling context
for the investigation of R. novae-hollandiae is available. Primer details were provided in Renner et al. (2013a).
Polymerase chain reaction (PCR) was carried out as follows, for trnL-F, each 15-mL reaction contained 1.5 mL
of 10" PCR Buffer, 1.5 mL of 20 mM MgClz, 0.9 mL of each primer at 10-mM concentration, 0.12 mL of
1% BSA, and 0.12 mL of Immolase Taq (Bioline, Sydney, NSW). For the atpB-rbcL and trnG, each 15-mL
reaction contained 1.5 mL of 10" PCR buffer, 0.75 mL of 20 mM MgClz, 0.9 mL of each primer at 10-mM
concentration, 0.12 mL of 1% BSA and 0.08 mL of Immolase Taq. Temperature profiles used for sequencing
of trnL-F and trnG were 95°C for 10 min, then 35 cycles of 95°C for 1 min, 1 min at annealing temperature of
53°C, then 72°C for 1 min, followed by a final extension step of 72°C for 10 mins. The same profile, but with an
annealing temperature of 50°C was used for atpB-rbcL. Cleaned PCR products were sequenced by Macrogen,
South Korea (www.macrogen.com, accessed 24 February 2014) using the same primers as in PCR reactions.

Sequences were assembled using Geneious v.6 (Drummond et al. 2012), and consensus sequences were aligned
by MUSCLE (Edgar 2004) on the CIPRES portal (Miller et al. 2010) and manually edited in BioEdit 5.0.9 (Hall
1999). jModelTest 2.1.10 (Darriba et al. 2012) to select optimal substitution models for each partition, from
among 56 candidate models, with the corrected Akaike Information Criterion as the measure of model fit
on the ML optimized tree. For the atpB-rbcL spacer an unequal frequency TVM+G model was selected as
optimal, we used the next best model, which was GTR+G. For trnG an unequal frequency TPM1+I+G was
selected as optimal, we used the next best fitting model, which was HKY+I+G; and for trnL-F an unequal
frequency TPM1+G was selected as optimal, we used the next best fitting model but one, which was HKY+G,
as this was easily implemented in BEAST.

We reconstructed relationships under maximum likelihood with iQTree (Nguyen et al. 2015), with a partitioned
model (Cernomor et al. 2016) with a separate substitution model for each molecular marker, with the substitution
models identified following model selection. We used the ultrafast bootstrapping approximation (Mihn et al.
2013; Hoang et al. 2018) as a measure of support for each branch. We estimated ultrametric trees summarising
relationships using BEAST v.1.4.8 (Drummond and Rambaut 2007). Base frequencies were estimated, and six
gamma categories were assigned for each substitution model, with all substitution models and clock models
unlinked, but trees for the three partitions were linked. Substitution model priors followed default settings in
BEAUTi v.1.7.2 (Drummond and Rambaut 2007). A separate uncorrelated log-normal relaxed clock modelled
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substitution rates for each partition, with rates estimated relative to atpB-rbcL. A uniform prior with a range of
0-100 was applied to each clock, a speciation birth-death model (Gernhard 2008) with a uniform distribution
was applied to node heights, and an unweighted pair-group mean aggregate (UPGMA) dendrogram was used
as the starting tree. The phylogeny was not time-calibrated, however the branches in resulting ultrametric trees
are proportional to time. The analysis was replicated three times, each was run for 20 million generations and
sampled every 1000. Burn-in length and convergence were confirmed by comparing trace files in Tracer v.1.5
(Rambaut and Drummond 2009). After excluding the first 10% of samples as burn-in, the maximum clade
credibility tree summarised the sample of trees from the posterior probability distribution.

Automatic barcode gap discovery (ABGD)

Automatic barcode gap discovery (ABGD) distinguishes distances resulting from coalescence from those
resulting from divergence, by identifying the first significant peak in a plot of ranked pairwise genetic
distances, which is interpreted as the gap separating intra- from inter-specific difference (Puillandre et al.
2012; Fontaneto et al. 2015). ABGD was applied to the concatenated chloroplast markers through the ABGD
web portal (http://www.abi.snv.jussieu.fr/public/abgd/, accessed 16 November 2020), with default settings and
distance matrices calculated using K80.

Generalised mixed Yule coalescent (GMYC) analysis

Generalised mixed Yule coalescent (GMYC) analysis (Pons et al. 2006) uses the expectation that coalescent
branching within species occurs more rapidly than do speciation events between species. Therefore, species in
gene trees form clusters of individuals on short branches separated from other such clusters by longer internal
branches. Because they share the same gene tree by virtue of inheritance in plastid DNA, the concatenated
chloroplast markers were used for estimation of an ultrametric gene tree. Single and multiple threshold model
GMYC analyses were performed in R, ver. 3.5.2 (R Foundation for Statistical Computing) with the splits
(see http://R-Forge.R-project.org/projects/splits/, accessed 16 November 2020) and ape (Paradis et al. 2004)
packages, based on the ingroup, comprising subg. Odontoradula, only.

Fixed differences

Groups based on molecular data and morphological characters were compared in DnaSP v.5 (Librado and
Rozas 2009). For each group, only individuals for which all three markers were sequenced were included.

Results

Voucher data and associated GenBank numbers for the molecular markers analysed for the ingroup
samples belonging to Radula subg. Odontoradula are given in Table 1. Radula novae-hollandiae was resolved
monophyletic with full support, in a sister relationship with R. acuta, a relationship that received support
as measured by ultrafast bootstrap, but had low posterior probability. The R. novae-hollandiae plus R. acuta
monophylum was in turn sister to a strongly supported clade containing R. kojana, and R. apiculata (Fig. 1).
This clade was sister to R. cuspidata, and in turn in a fully supported sister relationship to R. pulchella plus
R. ocellata. Parameter traces confirmed stationarity and convergence of all three runs, with effective sample
sizes for tree likelihood and substitution model parameters greater than 200 in all three. Relationships resolved
in maximum likelihood and Bayesian trees differed in the relationships close to the base of the tree, with
R. decora plus R. tasmanica forming an unsupported monophylum sister to the remainder of the subgenus
in the maximum likelihood tree, whereas in the Bayesian MCC tree R. decora plus R. tasmanica formed a
monophylum with R. plicata, which was sister to the lineage containing R. pulchella and others, but without
support. Radula novae-hollandiae was subdivided into two fully supported clades, one comprising individuals
from north-east Queensland the other individuals from south-eastern Australia.

Automatic barcode gap discovery (ABGD)

ABGD results were in broad agreement, but exhibited some variation in grouping on the minimal prior inter-
specific distance and the distance metric. Radula ocellata and R. pulchella were both oversplit under JC and
K80 distances. While the north-east Queensland and south-east Australian lineages of R. novae-hollandiae
were delimited as different clusters under JC and K80 distances metrics, under simple distance they were
grouped together in a single cluster. All Radula tasmanica were grouped in a single cluster on JC and K80
distances, but were divided on geography into two clusters on the simple distance metric.
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Generalised mixed Yule coalescent (GMYC) analysis

Both the single and multiple threshold models were more likely than the null model of uniform (coalescence)
branching rate (single: LGMYC = 552.9 vs. L0 = 546.3, 2DL = 26.1, P = 0.0014; multiple: LGMYC = 554.4 vs.
L0 =546.3,2DL =32.2, P = 0.0003). The multiple-threshold model provided a slightly better fit 2DL = 3.0. The
single model fitted a switch resulting in 14 maximum likelihood (ML) clusters (confidence interval (CI: 7-14)
and 21 ML entities (CL: 11-25). The multiple threshold model fitted three switches, resulting in 13 ML clusters
(CI: 10-13) and 21 ML entities (CI: 14-25). The interpretation of geographic clades within R. tasmanica
resulting in the only grouping difference between the two models, in the single threshold model interpreted
these were interpreted as a phylogenetic divergence, but as coalescent branching in the multiple model. Both
single and multiple threshold models identified three phylogenetic lineages within R. novae-hollandiae, one
from south-east Australia, and two from the Wet Tropics of north east Queensland.

Fixed differences.

The number of fixed differences between individuals of R. novae-hollandiae from Queensland (=R. tonitrua)
and New South Wales was 10, one more than separates R. ocellata and R. pulchella. The average number of
differences between all pairs of individuals was slightly more than 15 in both species (Table 2).

Table 2. Number of fixed differences among sister lineages: n, the number of individuals included; k, the average number
of nucleotide differences among individuals within populations; Mutations, the number of variable sites within species or
populations. Differences are the number of fixed differences between individuals of each species or population pair, while
the values in parentheses show the average number of differences between all pairs of individuals from each population.

n k Mutations Differences
R. tonitrua Queensland 9 5.778 17 10 (15.6)
R. novae-hollandiae New South Wales 5 1.6 4
R. ocellata Queensland 4 6 9 9(15.3)
R. pulchella New South Wales 9 3.6 12
R. tasmanica New Zealand 3 3.3 5 13(15.2)
Tasmania 2 1 1
Discussion

Individuals of Radula novae-hollandiae from north-east Queensland and south-east Australia form two
reciprocally monophyletic lineages which, in most analyses, are objectively diagnosable as two (or more)
separate species. Improved modelling of sequence evolution, compared to Renner et al. (2013a), did not alter
tree topology or branch lengths significantly, with the exception of the relationships between R. decora and
R. tasmanica and the remainder of the subgenus in the ML tree. Despite these differences in topology within
the MCC tree (see Fig. 2), the same groups were returned by objective species delimitation methods. The
GMYC method is known to over-split entities (Luo et al. 2018), and this seems to have occurred in our analysis
for R. retroflexa, R. tasmanica, R. ocellata, and also the Queensland lineage of R. novae-hollandiae. The depth of
phylogenetic divergence, and number of fixed differences separating northern and southern lineages of Radula
novae-hollandiae are both comparable with those separating Radula pulchella and R. ocellata, two sister species
the latter of which was recognized on the basis of subtle, fixed, morphological differences from the first. These
differences, associated with the presence of small accessory teeth around the lobule apex, were subsequently
confirmed as reflecting a phylogenetic divergence by molecular data (Renner et al. 2013a). In contrast, the
divergences between the northern and southern lineages of R. novae-hollandiae are shallower than those in
R. tasmanica, which was interpreted, we believe correctly given the shared morphology of plants on both sides of
the Tasman Sea, as within-species branching in the multiple threshold model. Northern and southern lineages
of R. novae-hollandiae were not recognized as distinct by Renner et al. (2013a) because no morphological
differences between northern and southern populations were detected by that study, hence R. novae-
hollandiae appeared, like R. tasmanica, to present a case where geographically correlated divergences were
possessed by single morphological entities. Subsequent investigation has demonstrated that this interpretation
of morphological variation was incomplete, and that northern and southern lineages are morphologically
diagnosable, on the basis of characters associated with reproductive structures generally considered critical for
species circumscription within subg. Odontoradula, and Radula more broadly, in addition to lobule shape and
propensity to asexual reproduction. A consistent interpretation of the molecular and morphological evidence,
also compatible with overarching theory, is that the northern lineage of R. novae-hollandiae in the Wet Tropics
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Bioregion comprises a new, undescribed species. Radula novae-hollandiae, in turn corresponds to the south-
eastern lineage, from which the type specimen was derived. A single plant from the south-eastern lineage was
the basis for the description of Radula novae-hollandiae in Renner et al. (2013a), and we refer readers there for
a reasonably comprehensive description of it.
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Fig. 2. GMYC analyses on MCC tree from BEAST, with phylogenetic branches in black, and coalescent branching in
colour, as inferred using a single threshold between the two in A, and multiple, thresholds between the two in B, in which
different colours are derived from different thresholds.
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Taxonomic treatment

Radula tonitrua Pocs & M.A.M.Renner, sp. nov.

Diagnosis: Radula tonitrua is similar to R. kojana, but differs from by its much shorter perianth (1.6-2 mm
long) and by the irregular shape and often much larger size (up to 120 pm long) of marginal gemmae, which in
R. kojana are discoid or globular, usually not larger than 20 um in diameter. The leaves of R. kojana are more
concave and have a silky shine, which is not the case in R. tonitrua. It is similar in leaf and perianth shape to
R. novae-hollandiae but separated by the presence of abundant marginal gemmae, which are not common in
that species. Radula tonitrua differs from both by its stem medulla only 5 cells high and 6 cells wide, consisting
of larger cells (10-20 pm in diameter).

Type: Australia: Queensland, Paluma Range State Forest 1.5 km NW of Paluma settlement. Birthday Creek,
in the experimental area of James Cook University Tropical Biology Department. On Abrodictyum obscurum
(Blume) Ebihara & K.Iwats. filmy fern leaves in wet, notophyll vine forest among boulders near the streamlet.
At 840-870 m elevation, 18°59,\'9'S, 146°10'7-8'E S. & T. Pocs 01121/AW, accompanied by A. Cairns, E.A.
Brown & Ch. Cargill, 20 June 2001. (holo: EGR, including 2 portions mounted on microslides; iso: BRI, CANB).

Description: (from the holotype). Epiphyllous (other specimens also lithophytic), forming loose mats,
appressed to filmy fern leaves. Live plants dark green, pale green or brownish in herbarium. Shoots uni- to
bipinnately branched, 0.6-1.0 mm, at the female perichaetium up to 1.5 mm wide. Stems in cross section
ellipsoid, 50-100 pm (in average 5 cells) high and 60-120 pum (in average 6 cells) wide, constituted by 15-19
pale brown to rusty pigmented cortical cells, 20-40 pm long and 12-25 pm in diameter and 22-25 medulla
cells, 10-20 um in diameter, with pale yellow or colourless walls. All stem cells have evenly thickened (2 pm)
walls except for the outermost wall of cortical cells (up to 3 um thickness). Leaf insertions reach the midline of
dorsal stem side but leave free 1-2 ventral cortical cell rows.

Leaf lobes asymmetrically ovate, somewhat falcate or deflexed, with obtuse to acute apex, 400-560 um long
and 250-300 um wide on the main stem and 350-450 pm long and 200-320 um wide on branches. Leaf lobes
dorsally cover partially the stem, leaving free a zig-zag shaped zone in the lower part of stem, more imbricate
upwards. Median lobe cells isodiametric polygonal, 19-25 pum in diameter, apical and marginal cells 12-16 um.
Cell walls evenly thin, with small triangular trigones. Leaf cell surface smooth. Lobe margins smooth to
crenulate by bulging cells, often indicating origin of developing gemmae. Irregular shaped discoid or ribbon-
like (sometimes bifurcate) gemmae copiously develop on the leaf margin (including perichaetial leaves and
rarely the perianth mouth). In exceptional case the half surface of lobe is converted to gemmae or in other
cases no gemmae develop at all. The gemmae are varied in size, consisting of a few to very many cells, in cases
of ribbon-like ones up to 120 pm (12-15 cells) length and 50 pm (5-8 cells) width, uni- or rarely multilayered.
The lobules rectangular, rhombic or triangular ovate, 1/3 to % length of the lobe, flat to slightly inflated in their
postical half with obtuse to rounded apex. Angle between postical lobe margin and keel 130-140°. Interior
lobule margin free from 1/10 to 1/4 of its length, the fused part straight, parallel to stem. Lobule cells similar
to those of the lobe. Rhizoids of 8-10 um of width, rare, develop from the slightly emergent lobule centre, pale
brown, arranged in straight parallel bundles.

Perichaetium consists of 1-2 pairs of female bracts, which are much larger than ordinary leaves, up to 1000 pm
length and 480 pm width, with acute apex, smooth or sometimes irregularly lobulate margin and triangular
lobules of half lobe length. The angle of their postical margin to the stem is 155-170°. Cells and gemmae are
similar to those of normal leaves. Mature perianth 1600-2500 um long, at the mouth 500-600 um wide, labia
plane with gently undulate margin, unistratose in the upper third, conical in the upper two third tapering into
the tubular stem perigynium of 250 um width. In the perianth a young sporophyte was observed with cylindric
capsule. Figs 1, 2.

Etymology: We understand that the name of type locality: Paluma State Forest, Paluma Range and Paluma
National Park came from an aboriginal language in which “paluma” means thunder. Its Latin equivalent is
“tonitrua’, from which the species’ binomial name is derived.

Additional specimens examined: Australia: Queensland, Paluma Range State Forest 1.5 km NW of Paluma
settlement. Birthday Creek, 18°59'9'S, 146°10'7-8" E. 20 June 2001, S. & T. Pécs 01121/BC, accompanied by A.
Cairns, E.A. Brown ¢ Ch. Cargill (BRI); Daintree National Park, Mount Lewis, headwaters of Leichhardt Creek
flowing down SW flanks of summit, 16°35'02"S, 145°16'33"E, 1150 m, 27 Mar. 2012, M.A.M. Renner 6366,
V.C. Linis & E.A. Brown, NSW896820; Daintree National Park, Coast Range, Little Falls Creek catchment,
immediately above the coral fern patch on the Manjal Jimalji track from Karnak to rock pinnacle, ENE of
spot height 1198 m, 16°23'43"S, 145°17' 57"E, 1030 m, 28 Mar. 2012, M.A.M. Renner 6377, V.C. Linis & E.A.
Brown, NSW896827; Main Coast Range, 19 km NNW of Mount Molloy, 16°31'S, 145°16'E, 1200 m, 30 June
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1984, H. Streimann 30249, CANB8408604; Daintree National Park, Mount Lewis, upper Leichhardt Creek
catchment, 16°34'59"S, 145°16'31"F, 1180 m, 27 Mar. 2012, M.A.M. Renner 6341, V. C. Linis & E.A. Brown,
NSW896746; Kauri Creek, Mount Haig Road, Lamb Range, 22 km NE of Atherton, 17°08'S, 145°36'E, 800m,
27 June 1984, H. Streimann 29887, CANB8408242; Wooroonooran National Park, Bellenden Ker Range,
Mulgrave River catchment, track to Choorichillum from end of Gourka Road, 17°22'48"S, 145°47'14"E, 1020
m, 30 Mar. 2012, M.A.M. Renner 6401, V.C. Linis & E.A. Brown, NSW896902; Palmerston Highway, Massey
Creek, 8 km E of Ravenshoe, 17°37'S, 145°33'E, 1070 m, 8 Dec. 1990, J.A. Curnow 3904, CANB9409858;
Wooroonooran National Park, South Johnston River catchment, Maple Creek, 17°40'59"S, 145°42'10"E, 590 m,
5 Apr. 2012, M.A.M. Renner 6514, E.A. Brown & V.C. Linis, NSW898725.

Fig. 3. Radula tonitrua A: Habit, ventral view. B, D, E and F: Habit, dorsal view. C: Mature perianth in dried herbarium
material. G: Leaf, dorsal view. Images by T. Pocs from the holotype of R. tonitrua.
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Fig. 4. Radula tonitrua A and B: Habit, ventral view. D: Leaf, ventral view. D: Cross section of main stem. E: Lobe margin
with gemmae initials. E and G: Details of lobe margin with gemmae. Images by T. Pdcs from the holotype of R. tonitrua.

Ecology. The specimens collected at the type locality were epiphyllous, growing on filmy fern leaves. The
surrounding habitat is very wet with continuous high level of air moisture, near the cataracts of Birthday
Creek. In other parts of the Wet Tropics Bioregion in north-eastern Queensland, R. fonitrua commonly grows
in turfs on the sides of granite boulders, whether in association with permanent waterways or not. Radula
tonitrua grows in association with a wide range of other lithophytic bryophytes, in particular R. jovetiana
K.Yamada, R. loriana Castle, R. myriopoda M.A.M.Renner and R. patens K.Yamada, Lophocoleaceae spp.,
and Plagiochilaceae spp., and a variety of other mosses and liverworts, including Lejeuneaceae such as
Lopholejeunea muelleriana var. australis (Steph.) B.Thiers & Gradst. (Renner et al. 2013a). Throughout its
range, R. tonitrua inhabits wet tropical rainforests and montane rainforests from ~600 m to the tops of the
highest peaks in the Wet Tropics, which range from 1200 to around 1600 m.
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Revised couplets in key to species of Radula subg. Odontoradula (modified from Renner ef al. 2013a)

4. Lobule margin irregularly crenulated because of bulging cells, lobules longitudinally rectangular.
Apex of leaf lobules rounded to obtuse, apex of female bract lobes obtuse to acute.........ccccceeuverrirriuennee. 4a

Lobule margin entire, lobules trullate. Apex of leaf lobes and female bract
10beS TOUNARM ... R. pugioniformis M.A.M. Renner

4a. Perianths 1.6-2.0 mm long at maturity. Often with marginal gemmae
on lobes of leaves and female Dracts.........ccooveeveiiiiiiieeeeceeeeeeeeeeeeeene R. tonitrua Pocs & M.A.M.Renner

Perianths 3.8-4.5 mm long at maturity. Usually lacking gemmae..................... R. novae-hollandiae Hampe
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