those previously used; 10 per cent. of water by weight was used in each case, but the briquettes were $1 \frac{1}{2}^{\prime \prime}$ by $1 \frac{1}{2}{ }^{\prime \prime}$ (or $2 \frac{1}{4}$ square inches in section,) prepared with the same cement as that previously used (q^{2} in table C) and reduced to the square inch strain.

It will be noticed that, notwithstanding these facts, the strains obtained from No. 1, both at 7 and at 28 days, differs from those already recorded at those periods when made with the $1^{\prime \prime}$ by $1^{\prime \prime}$ moulds (vide q^{2} tests in table C). This appears to point to the fact that the smaller briquettes can be made more dense and uniform in texture than those of larger size, and consequently afford better results in testing.
3 to 1 Tests: Comparative Strength by Weighi and by Volume.

No.	$\underset{\text { at }}{\substack{\text { By weight }}}$			By volume at		$\begin{gathered} \text { Per } \\ \text { centage } \\ \text { of } \\ \text { oncease } \\ \text { from } \\ 7 \text { to } 28 \\ \text { days. } \end{gathered}$	Extent to which strength is decreased when proportions are by volume instead ofby weight, at	
	7 days.	28 days.		7 days.	28 days.		7 days.	28 days.
1	$\begin{aligned} & \text { lbs. } \\ & 145 \end{aligned}$	$\begin{aligned} & \text { Ibs. } \\ & 182 \end{aligned}$	$\begin{aligned} & \text { per cent. } \\ & 25.5 . \end{aligned}$	$\begin{aligned} & \text { lbs } \\ & 131 \end{aligned}$	$\begin{aligned} & \text { libs, } \\ & 159 \end{aligned}$	$\begin{gathered} \text { per cent. } \\ 59.0 \end{gathered}$	$\begin{gathered} \text { per cent. } \\ 10.35 \end{gathered}$	per cent. 12.17
2	127	170	25.2	107	131	87.1	15.20	22.94
3	143	244	41.3	105.	172	63.8	26.50	29.50
4	113	214	89.3	82	155	89	27.60	27.50
5	178	245	37.6	119	177	48.7	33.10	27.70
6	221	330	33.0	143	218	34.4	35.20	33.90

An attempt was also made to obtain the relative strengths of concrete made entirely of bluestone aggregates, and that made with river gravel and sand, but with hardly satisfactory results, in consequence of the size of the blocks being too large.

The blocks were made in each instance 6 inches in thickness, $9^{\prime \prime}$ by $9^{\prime \prime}$ on the surface, and were gauged 6 to 1 (by volume) of aggregate and cement, with 6.4 per cent. of water for the bluestone concrete, and 5.06 per cent of water for the gravel and river sand mixture.

The "bluestone" aggregate was composed of equal parts of 1 " and $2^{\prime \prime}$ metal, mixed with 50 per cent. of screening passing through a $\frac{1^{\prime \prime}}{4}$, but not through an $\frac{1^{\prime \prime}}{8}$ mesh, and of bluestone dust in the proportion of 1 to 2 . The weight of this mixture was 121.5 lbs . per cubic foot.

The "gravel and sand" aggregate consisted of gravel ranging from $\frac{1}{2}$ inch to 2 inches in gauge, mixed with Nepean River sand in the proportion of $2 \frac{1}{2}$ to 1 , and weighed 1291 bs . per cubic foot.

The same cement was used for both concretes, and three blocks of each kind were made, and sent to Professor Warren's testing room at the Sydney University, to be tested for compression when the concrete was 21 days old, half of which time was under water. Professor Warren, who kindly undertook the test, reported that they presented too large an area for the machine, which is limited to a pressure of $100,000 \mathrm{lbs}$.

One bluestone block cracked on one side at $67,0001 \mathrm{lbs}$., but there was no sign of crushing at $100,000 \mathrm{lbs}$. ; the second did not crack even at $100,0001 \mathrm{lbs}$. ; and the third was not attempted.

One Nepean gravel block cracked at $54,0001 \mathrm{bs}$., and crushed at $85,000 \mathrm{lbs}$. ; the second cracked at $96,000 \mathrm{lbs}$. ; but the third did not even crack at $100,000 \mathrm{lbs}$.

The results appear to be in favour of the bluestone concrete, but are not satisfactory; and further experiments with smaller blocks will be made shortly to settle the point accurately.

Several attempts have been made to manufacture Portland cement in the colonies, and a good deal of money has been spent in experiments without much success; the apparent difficulty being to obtain the class of lime that will produce the necessary chemical change-effected during calcination when the lime is mixed with silica and alumina-whereby the carbonates are transferred into silicates of lime.

The author has himself been present at several of these trials, which have resulted in failure, either from the fact of the materials which were employed not possessing the proper chemical constituents, or from defective manufacture. Under these circumstances it may be supposed that he feels pleasure in stating that he has just had his attention drawn to a sample of cement made in Tasmania froni materials obtained within some twelve miles of Hobart, which has been exhibited at the recent exhibition held under the auspices of this Association, and which he is now testing. Although, up to the present, the tests have only reached the seven day period, and the ultimate behaviour of the material has still to be cautiously observed, it will doubtless be of interest to inform the members present that -so far-the prospects of this being a genuine and valuable cement
appear to be very good, The tensile strength of the neat cement at 3 and 7 days was 421 and 693 lbs . per square inch respectively; and the test of the 3 to 1 briquette at 7 days gave a result of 2131bs. per square inch, which may be regarded as indicative of considerable initial strength. The pats gave no sign of "blowing" or cracks, and the color, which is light grey, is a good tint.

The small parcel submitted to the author hardly justifies the formation of an opinion of the general fineness and weight of the cement; that which was sieved gave a residue of only 1.58 per cent. on the A sieve (of 2,500 meshes to the square inch) which shows it to have been well ground; in all probability it was put through a Chilian mill.

The chemical analysis, by W. A. Dixon, F.I.C. (which has been submitted to the author for his inspection) is of a rather favorable character, being as follows:-

Lime	\ldots						
Magnesia	\ldots						
Alumina	\ldots						
Silica, free...	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	1.2
Silica, combined \ldots	\ldots	\ldots	\ldots	\ldots	\ldots	19.9	
Carbon, combined air and traces of carbonic acid	\ldots	3.1					
Oxide of Iron Traces sulphuric acid and alkalies	\ldots	\ldots	\ldots	...	\ldots	\ldots	0.1

Mr. Dixon also remarks that "the quantity of lime in this "cement is somewhat in excess of that usually found, whilst the "silica and alumina are deficient. The manufacture has, however, "been so carried out that nearly all the silica is in the combined or "active cementing condition ; indeed, of all cements which have "come under my notice, this is the highest, by about one-third, in "combined silica. Under these circumstances the cement should be "very hard setting, should stand sand well if finely ground."

A comparison of the above analysis with that given by Henry Reid, in his work on the manufacture and use of Portland cement (page 354) as the composition of a good cement, viz :-

Lime ...	\ldots	\ldots	\ldots	\ldots	\ldots	60.05	per cent.
Magnesia	\ldots	\ldots	..	\ldots	\ldots	1.17	,
Alumina	\ldots	\ldots	\ldots	\ldots	\ldots	10.84	$"$
Silica....	\ldots	\ldots	\ldots	\ldots	\ldots	24.31	,
Alkalies	\ldots	\ldots	\ldots	\ldots	\ldots	1.54	,

will show a tolerably close resemblance between the two, the chief difference being that the Tasmanian sample is evidently "over-limed," which the maker affirms has been intentionally done, possibly with the idea of increasing the immediate strength.

One peculiarity in this cement is that it took 18 hours to set, a much longer time than any ordinary cement requires.

However, there appears to be sufficient merit in this attempt at the manufacture of a colonial cement to warrant us in wishing the speculators in the venture every success in their praiseworthy undertaking.

In conclusion, the author would apologise for the incomplete character of these notes, as the time at his disposal has been restricted, and the experiments in connection with cement are still being carried on ; final results cannot therefore be expected at the present time. He trusts, however, that enough has been shown to prove the necessity that exists in Sydney for a careful and intelligent examination of every shipment of cement that is offered for use on important work, regardless of the utterly misleading recommendation of "brands," or the self-satisfied assurance of the "practical" man who will tell you that he can at once pronounce, by the touch, if a cement be good or bad (a mysterious gift which-if reliable-would be of infinite value, and one before which the most scientific chemists would bow the head !)

There is no doubt that, in conjunction with some excellent cement, a lot of inferior and adulterated material is often shipped to Australia, and offered to the public at a cheap rate. Perhaps this has been already rejected at home, and the manufacturer thinks it will do for the colonial market; perhaps it has been under-burnt; or in all probability it has simply been adulterated with a cheaper ingredient, such as free lime, pulverized slag, or shale ; or, if a high initial strength is required, about 2 per cent. of plaster of Paris may have been added.

Danger in such cases is to be apprehended; added to which there is the additional risk of injury through bad packing or wet during the voyage, all of which possibilities conspire to make the selection of cement a very anxious matter, unless it receives the consideration of one who has an intelligent understanding of how to set about the work of judging and determining its merits. That all engineers should endeavour to obtain this knowledge is self-evident;
in support of which it is only necessary to quote the following remarks made by Mr. (now Sir) John Fowler in his presidential address before the Institution of Civil Engineers in the year 1866, when enumerating some of the requirements of a civil engineer :-
"Cement is used, chiefly with sand, in various proportions, accord"ing to the nature of the work to be executed; and it is not only "necessary to possess the requisite knowledge and experience for "determining the proper proportions of cement and sand for each "individual case, but it is desirable to have the means of determining "by direct and repeated experiment the strength and quality of the "cement which it is intended to use."

How much more that applies at the present day when the use of cement has so wonderfully expanded (especially in its application to concrete work), it is unnecessary to say!

Appendix A .

SPECIFICATION

For the Supply of Cement for the use of the Municipal Council

 of the City of Sydney during the year 1886.(Clauses relating to Tests.)
"The cement will have to satisfy the following tests, which will "be conducted in this office, under the supervision of the City Sur"veyor or his authorised officer.
"The results of tests made on cement supplied under this "contract will be made known to the contractor, if desired by him.
"Specific Gravity and tests for adulteration.-The specific "gravity of all cement supplied under this contract must not be less "than three and one-tenth (3.10) when carefully tested by approved "gravimeter; in addition to which-if the City Surveyor deem it "necessary-further tests by chemical treatment may be made, to "ascertain if the cement is adulterated by the introduction of any "foreign matter. Cement of less specific gravity than the minimum "standard of three and one-tenth (3.10), or which shows any indica"tion of having been adulterated, will not be accepted under this " contract.
"Weight.-The weight of cement will be determined by filling "the standard measure with the cement, allowing it to run in as "gently as possible through a specially prepared hopper, to be struck "off at surface when full. On no account will it be permitted to "press the cement down, or even to allow it to acquire any velocity "in its fall to increase its density.
"The cement to be tested will be weighed as received, unsifted, "and must weigh at least one hundred and five (105) lbs. per "Imperial bushel. It will also be required when sifted, without "rubbing, through a sieve of five thousand eight hundred (5800) "meshes per square inch, to leave a residue not exceeding twenty " (20%) per cent. The sieves used in testing to be those now in use "in the testing-room of this office, and known as Adie's standard " brass wire sieve, or sieves similar in description to them.
"Proportions of cement, water, and sand to be ascertained by "weight and the temperature of the water used, both in the mixing " and in the setting-tank, will be noted.
"The cement to be tested will be made into briquettes, both of " neat cement, and of cement and sand mixed in the proportion of "three (3) parts of sand to one (1) part of cement, with such propor"tions of water as will be hereafter specified.
"The sand employed in the cement tests to be obtained from "crushed sandstone, sifted through a sieve of (400) four hundred "meshes per square inch ; and to be caught on a sieve of (900) " nine hundred meshes per square inch.
"Tensile strength will be acsertained by Adie's testing machine ; "strain to be applied at the rate of (200) two hundred lbs, per "minute.
"The neat cement briquettes, after being thoroughly mixed "with from (16) sixteen to (20) twenty per cent. of water, according "to the nature of the cement, will be tested at the expiration of (7) "seven, and of (28) twenty-eight days from date of mixing, and will "be required to stand a strain of not less than (400) four hundred "lbs. and (550) five hundred and fifty lbs. per square inch, respec"tively.
"The briquettes of one (1) of cement to three (3) of sand, after "being thoroughly mixed with from nine (9) to (10%) per cent. of "water will be tested at (7) seven and (28) twenty-eight days after " being made.
"The minimum standard tensile strain at (7) seven days is '"ninety (90) lbs. per square inch ; and at (28) twenty-eight days "one hundred and forty-four (144) lbs., provided the neat cement "sets in less than (2) two hours, or is what is known as quick setting; "but should the neat cement take more than two (2) hours to set, or "be what is known as 'slow setting,' the minimum standard is " (200) two hundred lbs. per square inch.
"To determine its setting properties, the cement, after being "mixed neat and made into pats, will be tested with a weight "equal to one (1) lb. avoirdupois, pressing on an area of cement "under test equal to that of a circle of one-sixteenth $\left(\frac{1}{16}\right)$ of an inch "in diameter. When the pressure produces no depression or inden"tation on the surface, the cement is considered to be set. Neat "cement pats kept in air to observe for colour, and others placed in "water after setting for seven (7) days, to ascertain fitness for "immediate use, and ensure the absence of free lime, will also be " applied as may be deemed necessary.
"The above tests are practically similar to those approved by "the Harbours and Rivers Department of this colony, and are "based upon the official requirements of the London Metropolitan "Board of Works, and the rules and regulations for the supply and "testing of Portland cement adopted in Germany, Austria, and "Russia, being actually lower than the standards therein laid down.
"Any cement that will not satisfy the above tests will not be "approved."
"The contractor is to state in his tender the rate at which he "will deliver the cement, in accordance with the conditions of this "specification, at per cask, containing a net weight of cement, "exclusive of cask and packing, of not-less than three hundred and "eighty (380) lbs, avoirdupois."
A. C. Mountain, M. Inst, C.E.,

City Surveyor.
Sydney, October 9th, 1885.

SAMPLE OF PORTLAND CEMENT supplied by \qquad ., Manufactured by. \qquad Brand. \qquad

NEAT CEMENT set in...... hours.
SPECIFIC GRAVITY.
Temperature of water used in mixing. \qquad deg. F.
"
", in setting tank.
deg. F.

NEAT CEMENT put in water after setting, and observed for 24 hours for immediate use.

NEAT CEMENT kept in air to observe for color.

Appendix B-ENGLISH CEMENTS.

Refer-	Neat Cement Briquettes-Tensile Strain at						3 to 1 Briquettes-Tensile Strain at					Weight per bushel.		Residue on Sieves.			Hours in setting.	Tests for	
Nos.	3 days.	7 days.	28 days.!	3 mos .	6 mos.	12 mos	7 days.	28 days.	3 mos .	6 mos.	12 mos.	As reed.	Sifted.	A.	B	C		Expansion.	Colour.
A 1	372	475	605	\ldots	\ldots	601	155	129	\ldots	100.62	$87 \frac{1}{4}$	17.13			9	puffing at edges	dull brown
B 1	496	604	762	746	809	820	107	178	207	263	269	1071	$100 \frac{1}{2}$	11.81	20.59	36.62	8	no change	grey tints
$\because 2$	350	42.2	526	854	135	205	.269	\ldots	\ldots	109	971 ${ }^{\frac{1}{2}}$	13. 2	21. 3	35.4	8	do.	do.
$\because 3$	619 513	656	786 712		\cdots	\ldots	151	218	...	\ldots	\cdots	$107 \frac{1}{2}$	$96 \frac{3}{3}$ 95^{3}	13. 6	21. 4	36.40		do.	grey and buff tints
" 4	513 413	642 462	712 578	\cdots	\cdots	\cdots	124 79	170 140	\ldots	\ldots	\ldots	$106 \frac{3}{4}$	95 98	16. 3	24. 5	36.90 35.80		do.	do.
$\begin{array}{ll}" & 5 \\ " & 6\end{array}$	571	462 629	578 720	\ldots	\cdots	...	79 119	140	\ldots	\ldots	\ldots	$106 \frac{1}{2}$	97	13.6 14.	21. 8 21. 9	35.80 35.20		do.	do.
$\because 7$	405	546	598	\ldots	\ldots	\ldots	100	183	\ldots	...	\ldots	109	$102 \frac{3}{4}$	8. 8	19. 0	33.80		do.	do.
., 8	546	608	677	\ldots	.	\ldots	106	201	\ldots	...	\ldots	$103 \frac{3}{4}$	93	15.37	21.87	32.86		do.	do.
" 9	474	529	678	...	\ldots	\ldots	97	189	\ldots	$111 \frac{1}{4}$	110.2	12.71	21.12	33.70		slight cracks	do.
"10	506	553	621	...	\cdots	...	73	155	\ldots	\cdots	\ldots	109	98.15	13. 9	21.41	34.35		no change	do.
"11	303	379	472	\ldots	\ldots	\ldots	99	171	..	\ldots	\ldots	115	104.92	13. 8	22.43	33. 9		do.	do.
, 12	372	536	621	\cdots	.	\ldots	82	142	\ldots	\ldots	\ldots	107⿺ ${ }^{\frac{1}{4}}$	$97 \frac{3}{4}$	11. 5	21.20	33.36	$\frac{1}{4}$	do.	do.
C 1	462	572	628	808	866	850	135	178	275	302	320	110	$101 \frac{1}{2}$	14.96	25.17	41. 7	4	no change	ight grey
, 2	560	609	828	218	262	1093	$107 \frac{1}{2}$	3. 0	9. 9	127. 6	$1 \frac{1}{2}$	do.	do.
D 1	333	437	551	695	743	689	98	167	230	261	310	$104 \frac{1}{2}$	90	18.64	28.14	40.91	1	no change	brown
E 1	388	417	540	720	662	764	103	162	270	306	377	$102 \frac{1}{2}$	$97 \frac{1}{2}$	7.67	16.52	34.54	$4 \frac{1}{4}$	fine cracks	brown
,. 2	532	603	686	731	744	735	168	217	321	289	369	$103 \frac{1}{2}$	$98 \frac{3}{4}$	7.07	15. 3	31. 8	5	slight puffing	buff and grey tints
" 3	388	477	585	809	838	846	139	200	238	302	332	105	$97 \frac{1}{2}$	9. 9 .	19. 4	34. 3	$6 \frac{1}{2}$	no cbange	equal buff and grey
F 1	381	509	617	773	841	838	102	156	299	363	403	$109 \frac{3}{4}$	$102 \frac{3}{4}$	12.20	17.90	33.00	$5 \frac{1}{4}$	no change	equal buff and grey
" 2	426	512	624	770		...	80	155	243	108	$99 \frac{3}{4}$	8.09	14.8	28. 4		do	do.
G 1	354	459	610	674	805	922	93	163	308	331	424	112	$105 \frac{1}{2}$	9. 2	19.00	38.10	6	no change	buff and grey tints
H 1	487	522	549	745	756	755	156	218	340	420	469	105	983	5. 9	12. 5	28. 9	$\frac{1}{4}$	no change	equal buff and grey
I 1	367	472	556	767	782	798	92	149	299	372	412	$102 \frac{3}{4}$	95.27	8. 2	17. 3	32. 4	$\frac{1}{4}$	no change	buff and grey tints
J 1	415	515 298	594	666	780	823	77	165	266	336	420	$104 \frac{1}{2}$	99	9. 9		33. 7	$4 \frac{1}{4}$	cracks	buff and grey tints
" 2	255	292	350	560	51	125	285	$103 \frac{1}{4}$	$96 \frac{1}{2}$	9. 5	18. 4	34.05	$\frac{1}{4}$	no charge	buff
K 1	221	325	391	531		...	44	96	236	\ldots	\ldots	$106 \frac{1}{4}$	$96 \frac{3}{4}$					no change	
" 2	273	345	438	752	...	\cdots	88	183	250	\ldots	\ldots	105	97	10. 4	20. 1	34. 8		do.	buff and grey tints
$\because 3$	234	324	402	748	...	\cdots	116	189	252	\ldots	\ldots	$102 \frac{3}{1}$	94	12. 8	18. 9	35.0		tou.	do.
" 4	261	364	401	602	\cdots		84	189	243			$105 \frac{3}{4}$	$96 \frac{1}{4}$	12. 5	19. 1	32. 6		do.	do.
L 1	541	673	676	\cdots	\cdots	\cdots	153	225	\cdots	\ldots	\ldots	$102 \frac{3}{4}$	92	13. 9	21. 9	32, 3	1	do.	equal grey and buff

A. C. MOUNTAIN, M. Isst. C.E.

Appendix C-GERMAN AND OTHER EUROPEAN CEMENTS.

Refer-	Neat Cement Briquettes-Tensile Strain						3 to 1 Briquettes-Tensile Strain at					Weight per bushel.		Residue on Sieves.			Hours	Tests for	
Nos.	3 days.	7 days,	28 days.	3 mos .	6 mos .	12 mos	7 days.	28 days.	3 mos .	6 mos .	12 mos	As recd.	sifted.	A.	B.	c.		Expansion.	Colour.
A 1	187	280	356	455	488	551	61	85	160	188	262	$91 \frac{1}{2}$	914	. 17	2. 5	18.21	10	cracks	
, 2	204	324	480	610	691	730	105	179	229	337	390	94	$93 \frac{1}{3}$. 08	1. 6	12. 2	$6 \frac{1}{4}$	no change	grey and buff
" 3	306	414	516	638	651	729	116	172	234	331	345	$93 \frac{3}{4}$	93.	. 21	1. 5	16. 6	$7 \frac{1}{4}$	slight cracking	
B 1	714	811	707	910	714	861	219	302	319	363	426	$102 \frac{1}{4}$	$93 \frac{1}{2}$	2.24	11. 9	35. 6	6	no change	
" 2	579	600	629	830	879	887	143	265	326	394	...	102	$101{ }^{\frac{1}{4}}$	1. 5	6. 3	25. 6	$\frac{1}{2}$	do.	grey and buff tints
" 3	645	710	833	815	163	268	350	\ldots	\ldots	$106 \frac{1}{4}$	104.1	1. 9	8. 9	31. 0	$2^{\frac{1}{2}}$	do.	light grey
, 4	663	735	771	998	195	321	315	\ldots	...	106	$102 \frac{1}{2}$	2. 3	11. 4	33. 4	2	slight cracks	grey and buff tints
c 1	492	521	662	682	789	840	124	195	252	316	400	$96 \frac{3}{4}$	92	4.26	9.74	25.	$7 \frac{1}{2}$	no change	dark grey
, 2	488	573	578	753	776	821	144	203	304	319	408	991	$93 \frac{1}{3}$	4. 2	9.8	22. 5	7	do.	do.
" 3	418	473	572	722	829	816	116	185	269	317	382	$98{ }_{4}^{3}$	$93 \frac{1}{2}$	5. 8	12.05	27.24	$7 \frac{1}{2}$	do.	do.
" 4	429	500	634	745	778	792	139	206	231	296	339	$95 \frac{1}{4}$	$89 \frac{1}{2}$	3. 6	8.2	22.	$6 \frac{1}{7}$	de.	buff and
" 5	409	538	694	758	775	876	104	149	356	428	509	99	93.6	1. 4	4. 2	16. 6	1	do.	buff and grey tints
" 6	488	705	726	839	853	848	196	280	405	470	506	102	98.5	. 28	2. 1	14. 9	$5 \frac{1}{2}$	cracks	do.
" 7	491	770	853	148	257	100	97.9	1.18	8.02	22. 5			light grey
1 1	240	322	402	490	547	607	64	126	244	291	354	$96{ }_{4}^{3}$	$95{ }_{4}^{3}$	1. 9	8.18	22.98	10	cracks and puff-	brown
,2	285	388	430	527	640	679	87	134	220	290	405	$96 \frac{1}{2}$	941 ${ }^{\frac{1}{8}}$	3. 2	10.	24. 8	$8 \frac{1}{2}$	no change	buff and grey tints
E 1	573	575	712	746	760	882	185	182	267	328	317	103!	103	. 9	7.81	32. 5	5	no change	brownish grey
F 1	402	435	599	744	770	820	99	157	331	360	427	$97 \frac{1}{3}$	923	. 82	7. 4	23. 2	$1^{\frac{3}{4}}$	no change	grey and buff
" 2	338	520	608	801	824	792	128	188	256	381	451	$94{ }^{\frac{3}{4}}$	$90 \frac{1}{2}$,	3. 8	21. 8	1	do.	grey
G 1	165	237	335	370	541	621	49	8ε	185	275	351	$98 \frac{1}{2}$	$97 \frac{1}{2}$. 28	1. 9	16. 1	7	cracks	buff and grey
H 1	307	491	606	702	729	686	127	202	271	356	473	101	$96 \frac{1}{4}$	2. 1	5. 9	18. 3	$7 \frac{1}{4}$	no change	light grey
I 1	427	557	648	764	822	826	125	207	371	426	468	$101 \frac{1}{4}$	$95 \frac{1}{2}$. 07	2.	19. 9	$\frac{3}{4}$	no change	rey and buff
J 1	363	613	775	804	909	904	114	170	292	351	374	111.25	101.19	13.12	24.26	42. 8	$6 \frac{1}{2}$	no change	rey and buff
K 1	307	491	606	702	729	765	127	202	271	356	457	101	$96 \frac{1}{4}$	2. 1	5. 9	18. 3	$7 \frac{1}{4}$	no change	light grey
L 1	305	469	572	694	754	772	104	166	259	354	384	$101 \frac{1}{2}$	$101 \frac{1}{4}$	1.02	4.42	19. 6	$7 \frac{1}{4}$	no change	buff and grey
, 2	377	456	613	100	144	$103 \frac{1}{4}$	$102 \frac{1}{2}$. 42	3. 9	23. 7	$6 \frac{1}{4}$	do.	do.
\#3	401	460	${ }_{5}^{614}$	\ldots	142	189	\ldots	\ldots	\ldots	1094	$109 \frac{1}{4}$.24	2. 4	20. 5	$4 \frac{1}{2}$	do.	do.
" 4	318	427	576	...		\ldots	89	151	\ldots	\ldots	\ldots	110	$107 \frac{3}{4}$. 28	3. 3	23. 7	6		light grey
M 1	116	270	388	590	675	729	38	96	185	269	321	101	$93{ }^{\frac{3}{4}}$	4.05	12. 1	26. 9	$3 \frac{1}{4}$	no change	grey and buff
" 2	326	457	566	748	827	837	97	172	273	325	387	102	991	2. 8	11. 1	28. 4	$1 \frac{1}{4}$		light grey
" 3	370	465	516	636	77	131	278	$101 \frac{1}{2}$	$97 \frac{1}{2}$	4.25	14. 5	29.	$1 \frac{1}{4}$		dark grey
1	352	398	463	656	710	830	50	106	196	265	- ...	$109{ }^{3}$	$101 \frac{1}{4}$	12. 9	23. 3	37. 7	2		buff and grey
, 2	258	306	431	582	695	...	57	115	217	276	...	107	$97 \frac{1}{2}$	12. 1	19. 8	33. 9	$1 \frac{1}{4}$	slight cracks	buff
$\bigcirc 1$	468	514	609	699		\cdots	185	225	313	\ldots	\ldots	981	$96 \frac{1}{2}$	3. 2	8. 5	20. 9	$1 \frac{1}{4}$	no change	grey
P 1	525	565	672	813	\ldots	...	187	308	338	\ldots	\ldots	$104 \frac{1}{2}$	1004	2. 2	9. 8	31. 5	$5 \quad \frac{3}{4}$	bad cracks	buff and grey
" 2	489	592	675	178	226		$105 \frac{1}{4}$	$103 \frac{3}{4}$	2. 1	10. 3	31. 5	4	no change	
Q 1	419	530	620	799	863	806	142	235	287	335	392	$107 \frac{1}{4}$	105 $\frac{1}{2}$	1. 9	8. 2	27. 2	2	no change	light grey
" 2	423 406	532	738	181	268	$105 \frac{1}{1}$	$102 \frac{1}{2}$	2. 5	9. 5	26. 3	3	do.	grey, buff tints
"3	406	470	572	\ldots	\cdots	...	172	262	\ldots	\ldots	\ldots	$97 \frac{1}{4}$	$95 \frac{3}{4}$	2.39	7. 4	23. 3	$3{ }^{3}$		light grey
R 1	410	472	578	...	\ldots	...	131	199	\ldots	108	106	3. 5	13. 0	37. 3	4	cracks	buff and grey

A. C. Mountain, M. Inst. C.E.

