

PART II.

PAPERS.

8TH MARCH, 1900.

PRESIDENTIAL ADDRESS.

MR. H. B. HOWE.

Gentlemen,—In opening the 30th Session of this Association, the first duty—a very pleasant one—that I feel it incumbent on me to carry out is to express my very best thanks to the council and members for the support they have given me by contributing papers, their regular attendance at the meetings, and in many other ways, which resulted in the past Session being one of the most successful that our Association has seen. I can say this without egotism, for it must be patent to you all that I as an individual could do but very little without your support. The papers read were most able and interesting, and evoked discussions that I am sure will prove of value to us all.

I must further thank you for the honour you have again conferred upon me by re-electing me as your President, and I am sure you will all accord me the same hearty support and co-operation that you did during the past Session. In my last address I departed from the orthodox lines that are usually followed, and gave you an outline of the history of the rise and progress of the New South Wales railways. Unfortunately, there were many important points that I could only touch on in the most superficial manner without making the paper of such great length that it would probably have wearied you.

The subject of my last address having—so 1 am assured—proved so interesting to you, I have, after mature consideration, decided that I cannot do better than give you some further information thereon.

The most important factor in connection with railways is unquestionably the traction part of the business, and this evening I purpose giving you a brief description of the locomotives of the colony and their development, and also a comparison of what is done in other colonies and other parts of the world.

For many years it was the practice to work most of the railways of the world with somewhat light locomotives compared with those of the present day. This was the case on the New South Wales railways until within the last ten years, when the necessity for engines of increased power became manifest, and it has been put into practice and continued up to the present with great advantage, particularly as the alteration of a number of steep grades and curves have very largely contributed to the benefit derived from the use of heavier engines.

To the American locomotive engineer is largely due the rapid strides that have been made in increasing the power of locomotive engines, and in that country the development has been very great, and so far as I can ascertain with considerable advantage.

The English engineers, until very recently, apparently do not seem to have given the subject much thought; at all events, they did not attempt to put it into practice until about the middle of last year, when a large tenwheeled express engine was built for the North-Eastern Railway Company to the design of Mr. Worsdell. This engine is intended to run between York and Edinburgh; the service required is the heaviest and one of the fastest in England, the trains at times consisting of 20 loaded carriages, which run $124\frac{1}{2}$ miles at an average speed of 53 miles per hour, without stops. The weight of the train is about 420 tons, and the grades vary from 1 in 96 to 1 in 200. This class of engine is intended to do away with double-headers, and it is a noticeable departure from the English practice, viz., large outside cylinders, 20in by 26in, with extended piston rods, six coupled driving wheels 6ft 11 in diameter, and four-wheeled bogie. The weight in working order is 140,000 pounds, or 105 tons. The general dimensions are as follows:—

Six-coupled Express Engine, North-Eastern Railway, by Mr. Wilson Worsdell, M. Inst. C.E., engineer.

	,	, 0
Six Coupled Wheels		6ft. 14in. in diameter
Bogie Wheels		3ft. 74in. in diameter
Cylinders		20in. x 26in.
Length of Boiler	••••	15ft.
Diameter of Boiler		4ft. 9in.
	J.	Tubes, 1639 sq. ft.
Heating Surface	{	Fire-box, 130 sq. ft.
-	- F	Total, 1769 sq. ft.

Length of fire-box, 8ft.

Area of fire grate, 23 square ft.

Centre of boiler stands 8ft 7in above the rail level. Working pressure, 200lbs per square inch.

Weights-	Tons.	Cwt.
On bogie	. 16	IO
On leading coupled wheels		0
On driving ,, ,,	17	10
On trailing ,, ,,	16	0
Weight of engine		0
Weight of tender	39	0

Engine and tender in working order, 105 tons. This is, of course, greatly in excess of anything hitherto seen in British locomotive practice.

Total wheel base	48ft /	43⁄8in
Length over buffers	58ft /	43⁄8in
Capacity of tender: Water, 3782 galls		

Coal, 5 tons.

The tendency at the present time is, I believe, towards largely increasing the size and power of their engines.

Two very large engines have recently been built for the Illinois Central Railroad, one by the Rogres Locomotive Company of Patterson, N.J., the other by the Brooks Locomotive Works, Dunkirk, N.Y. They are similar in dimensions, but the Brooks locomotive is slightly heavier. It would perhaps be interesting to give some of the general dimensions of these engines. They are intended to haul a load of about 1700 tons up grades of 1 in 150, and, as will be seen, there is very sught difference between them :

			Rogers.	Brooks.
Cylinders			23 x 30	23 x 30
Wheels			57in dia.	57in. dia.
Boiler pressure	•••		210lbs.	210lbs.
Diameter of boiler			80in.	82in.
Length of firebox			11ft.	11ft.
Width of firebox			3ft. 6in.	3ft. 6in.
Number of tubes			417ft. 2in.	424ft. 2in.
Heating surface		·	3203 sq. ft.	3500 sq. ft.
Grate area			381 sq. ft.	371 sq. ft.
Height of centre ab	ove r	ail	9ft. 2in.	9ft. 8in.
Weight of engine a				364,000 lbs. = 162 t., 0 c.,
				3 qr., 18 lbs.

One very noticeable feature of the Brooks engine is that the driving axles are of nickel steel. It will no doubt be remembered that during the last Session Professor W. H. Warren, Challis Professor of Engineering at the Sydney University, read a very interesting paper on the qualities of nickel steel, and this will show that our American friends have not been slow in adopting that material where excessive weights are to be carried, as in this instance, and a reference to Professor Warren's paper shows that he then strongly advocated its use for the construction of axles and boilers.

The Brooks locomotive, as will be seen from the figures quoted, is slightly heavier than the Rogers engine. The tractive power of each is the same; the boilers are of the Belpaire type (which has been adopted on our railways). The Brooks engine is fitted with piston valves, and the height of the centre of boiler above the rail level

4

is oft 8in. This is a noticeable feature, as on the last occasion I addressed you I had something to say re the raising of the centre of gravity of locomotives, and I believe that this is higher than any yet attained.

Coming back to the colonies, which we in Australia are more closely associated with, very little development has taken place excepting in this colony, and from the tabulated statement attached (see Appendix A) the vast difference will be seen in the weight and power of the locomotives of the different colonies.

The heaviest engine and tender is-

	Tons	c.q.lbs.
New South Wales	107.	5.0.0
Victoria	73	and going
New Zealand	64.	18.0.0
South Australia	64.	2.1.0
West Australia	58.	9.0.0
Queensland	51.	14.0. 0
Tasmania	50.	5.0.0

And when we compare these with some of the American engines, we find that in the latter these weights are exceeded to the extent of more than double, with the exception of New South Wales. reaching a total weight of over 162 tons.

One of my reasons for referring to the Rogers and Brooks engines is to show that while our American friends have been making rapid strides in the increased size, weight, and consequently the hauling capacity of their locomotives, we in this colony have not been so far behind them, while at the same time we have been very much ahead of the English engineers. The engine recently designed for the North-Eastern Railway Company is approximately 105 tons when ready for the road, and the engines of the New South Wales railways designed by the Chief Mechanical Engineer, W. Thow, Esq., are 91 tons P. Class; T. Class, a heavy goods engine, 107 tons 5cwt; and another passenger engine, designed by the same gentleman, will be approximately 107 tons.

PRESIDENT'S ADDRESS.

"P" Class (Express Engine).

Outside cylinders 20 x 26	
Wheels 5ft diameter	
Boiler pressure 160lbs.	
Diameter of boiler 4ft 8in	
Length of fire-box 8ft 71in	
Width of fire-box 4tt of in	
Number of tubes (17%in) 269	
Heating surface 1144ft.	
Grate area 21ft.	
Height of centre above rail 7ft 8in	
Weight of engine and tender 91 tons	
Tractive force 22,187lbs.	
New "P" Class Heavy Express Engines (not yet built)	•
Cylinders 21 x 28	
Diameter of wheels 5ft 9in	
Working pressure 175lbs per sq. inch	
Tractive power 25,054lbs	
Bogie	
Leading, 16.5.0.0	
Driving, 16.15	
Trailing, 16.0.0.0	
Total weight of engine, net, 66 tons.	
Total weight of engine and tender (with water and coal)	,
107.10.0.	
Compound wheel base of engine, 14ft 7in.	
The total wheel base of engine, 26ft 7in.	
The total wheel base of engine and tender, 52ft 11in.	
Centre of boiler from rail, 8ft.	

The values of this engine are of the piston type, fitted in the ordinary way with a series of rings at each end of the pistons. Provision is made in the body of the values to permit live steam passing through the centre of the pistons to either end of the steam chests, and so maintain the values in an almost perfect state of equilibrium. They are so designed with the object of reducing the friction, and consequently the wear and tear, to a minimum.

Working P	ressures of the Boilers of Engines:		owing Classes
Cl	ass.	lbs, per s	quare inch.
	93	-	140
Ā			I 50
В	205		140
В			150
C			140
C	С		150
-	255		140
	201		140
			150
F			140
н			130
I			150
J	131		130
Ĵ	Wearne		150
	Belpaire		130
J	483		150
K			140
L	304		140
L	436		140
Μ	•••••		150
0	••••		тро
Р			160
Q	••••		140
R			140
Т			IGO

Return showing the total miles run by the following classes of engines, and the average miles run per engine, during the 12 months ending 31st December, 1899:---Mileage.

		Total miles run	
		during the 12	Average mil es
Class of		months ending	run
Engine.	each class.	31.12.99.	per engine.
Α	бд	ī,504, 92 1	21,810
В		2,467,287	25,971
С		889,626	16,474
CC	I 2	346,577	28,881

	Mileage. Total miles run							
		Number of		ring ti		A		
Class of		engine in		nths e		Aver	run	miles
Engine,		each class.		31,12,9		nor	run eng	ino
D		47				per	24,1	
	· · · · · · · · · ·	4/ 12		135,5			24,1	
	• • • • • • • • • •	12		254,2 347,8			19,3	
	· • • · · · · · · ·	10		227,4			18,0	
-	· · · · · · · · · ·	20		383,3	68		19,168	
-		15		231,8			15,4	
		20		307,I			15,3	
		10		133,02			13,3	
L		10		194 ,2 2			19,4	
	5	10		294,58			29,4	
		15		564,12			37,6	
-		12		287,50			23,9	
-		50		805,1			36,1	
~		ັ 6		69,6			28,2	
ã		20		94,98			29,7	
Duplic	ates in "	Z" class ar	e ind	ludeo	l in th	e ave	erag	e for
all classe	es, but no	ot given in	clas	ses.			0	
I	Engine M	fileage to	31st	: Janu	lary,	1900).	
(Class B 5	5.		C	lass E	205		
	nmenced				Comm	ence	d	
	inning.	Miles.		No.		ing.		files.
		5 5 1	•••	205				0.642
			• • •	207		82	473	.133
		231.221 .	•••	210		82		5.117
•			•••	211	.3.	82	474	.549
		5	• • •	214		82		.492
	5.8.9I	0 0 1	•••		.5.			.84б
		express).	C		M (sul		in ta	unk).
	menced	Miles			omme			(1
	nning.	Miles.		No.	runni	<u> </u>		liles.
		1 11			24.9			.195
		0 2	•••	42	7.10. 12.10			.475
	2.3.92	308.294	•••		12.10			.047 •354
		02.			27.11.			·354 .897
		č .	•••	40 49	I.I2.			.791
,	. 5.95	~9°'344 '	•••	79	ו14/	9*	545	./9.

Class T (heavy consolidated). Commenced Class D 255 and 261 (4-wheel express). Commenced							
No.	running.			No.		Miles	
	тапппд. 17.б.9б						
5-4	17.0.90 10.6.96	102 220	• • • •	~)) 256	12 82	514.975	
523	3.6.96	105.220		250	.12.82	531.495	
520	3.0.90 27.5.9б	08.802	••••	45/ 258	.12.02	531.007	
520	15.5.96	99.990	••••	259	.1.83	551.551	
					.12.83		
F	C 1:- 1		C	275	.3.84	449.420	
Engin	es Supplied	to and in	Cours	seor	onstructio	n for the	
					ince 1890		
	Supplied	1					
				Dubs			
			12 E				
			20 I				
				Wearne's			
			20 J				
			15 M				
			120				
			50 P				
			20 T				
					88 Engine	5.	
	Building		25 P		-		
	C		25 T				
			5		50 Engine	s.	
			Fotal	2	38		

ENGINES.

Referring to the wear and tear and maintenance of locomotive engines on the New South Wales railways, anyone glancing at the cost might be somewhat struck at first with its apparent greatness, but a little reflection from an engineering point of view will at once explain how it is brought about.

The conditions under which they have to work, the nature of the country or roads over which they are employed, the high price of labour, and many other points, all have a bearing on the cost of their maintenance.