A slightly greater engine-room staff is necessary; but this seems of little importance compared with the foregoing advantages.

Weight of Machinery relatively to Power.-It is interesting to compare the weight of machinery relatively to the power developed; for this comparison has sometimes been adopted as the standard of excellence in design, in respect of economy in the use of material. The principle, however, on which this has generally been done is open to some objections. It has been usual to compare the weight directly with the indicated horsepower, and to express the comparison in pounds per horsepower. So long as the machinery thus compared is for vessels of the same class and working at about the same speed of revolution, no great fault can be found ; but as speed of revolution is a great factor in the development of power, and as it is often dependent on circumstances altogether external to the engine and concerning rather the speed of the ship, the engines fitted to high-speed ships will thus generally appear to greater advantage than is their due Leaving the condenser out of the question, the weight of an engine would be much better referred to cylinder capacity and working pressures where these are materially different, than directly to the indicated power. In Table 4 appended are given the relative weights of nine tripleexpansion engines, according to both modes of comparison; Nos. 1 to 6 are mercantile engines, and Nos. 7 to 9 are naval examples. It will be noticed that though the twin-screw engines Nos. 5 and 6 are the same type of engine as the singlescrew engines Nos. 1 to 4, as evidenced by their weights per cubic foot of cylinder capacity, yet their engine-room weights per indicated horse-power are considerably lower by virtue of their higher speed of revolution. Comparing its predecessors with No. 9, which is a fair type of a naval engine, it will be seen that the engines usually fitted in the merchant service are about 44 per cent. heavier per unit of cylinder capacity than this engine. The low weight of boilers per unit of heating surface in Nos. 7, 8, and 9, which is about 22 per cent. less than in the mercantile examples Nos 1 to 6, is due to careful use of material, as well as to the lighter scantlings adopted for boilers by the Admiralty.

The advantages of saving weight of machinery, so long as it can be done with efficiency, are well known and acknowledged. If weight is to be reduced, it must be done by care in design, not by reduction of strength, because safety and saving of repairs are much more important than the mere capability of carrying a few tons more of paying load. It must also be done with economy; but this is a matter which generally settles itself aright, as no shipowner will pay more for a saving in weight than will bring in a remunerative interest on his outlay. In his paper on the weight of machinery in the mercantile marine (North-East Coast Institution of Engineers and Shipbuilders, vol. 6, 1889-90, page 253) Mr. William Boyd discussed this question at some length, and proposed to attain the end of reducing the weight of machinery by the legitimate method of augmenting the speed of revolution and so developing the required power with smaller engines. This method, while promising, is limited by the efficiency of the screw, but may be adopted with advantage so long as the increase in speed of revolution involves no such change in the screw as to reduce its efficiency as a propeller. But when the point is reached, beyond which a further change involves loss of propelling efficiency, it is time to stop; and the writer ventures to say that in many cargo vessels now at work the limit has been reached, while in many others it has certainly been passed.

Economy of Fuel.—Coming to the highly important question of economy of fuel, Table 5 gives the performances of twentyeight three-stage expansion engines in ordinary work at sea. The average consumption of coal per indicated horse-power is 1.522 lbs. per hour. The average working pressure is 158.5 lbs. per square inch. Comparing this working pressure with 77.4 lbs. in 1881, a superior economy of 19 per cent. might be expected now, on account of the higher pressure; or

taking the 1.828 lbs. of coal per hour per indicated horse-power in 1881, the present performance under similar conditions should be 1.48 lbs. per hour per indicated horse-power. In Table 6 the principal factors in the present performance of marine engines are compared with those of 1881, and also with those of 1872 as indicated in the table accompanying Sir Frederick Bramwell's paper. Compared on the same basis then, it appears that the working pressures have been increased twice in the last ten years, and three times in the last nineteen. The coal consumptions have been reduced 16.7 per cent. in the last ten years, and 27.9 per cent. in the last The revolutions per minute have increased in the nineteen. ratios of 100, 107, 114; and the piston speeds at 100, 124, 140. Although it is quite possible that the further investigations of the Research Committee on marine-engine trials may show that the present actual consumption of coal per indicated horse-power is understated in Table 6, yet it is hardly probable that the relative results will be affected thereby. The returns of the coal consumption have in all cases been taken in the same way and on the same basis as for Mr. Marshall's paper in 1881, so that whatever errors may affect the returns for the one year are likely to have affected those for the other. The probability of error lies in the statement of the horse-power indicated, which when taken directly from the ship's log is usually in excess of that actually indicated continuously: so that the comparison of coal consumption with power is open to objection.

But there is another method, which is less objectionable, and from a shipowner's point of view the better of the two: namely to take the coal burnt as a measure of the power expended in propulsion. Thus for similar ships at similar speeds, the quotient, $\sqrt[3]{(displacement^2)} \times \text{speed}^3 \div \text{coal per day, gives}$ a co-efficient of performance which represents the comparative cost of propulsion in coal expended ; and this co-efficient for the present year, when compared with that for 1881, will show the 9

advance in efficiency of propulsion, and should include the improvements of both ships and machinery.

The tabular statements in Table 7 appended are from a series of reliable examples of performances at sea. If now the later performance coefficient, 14,810 in 1890, be compared with the earlier, 11,710 about 1881, it will be seen that the relative coal economies are as 79 to 100, or that to-day the coal economy is 21 per cent. superior to that of 1881. Against this comparison an objection may be raised that the present best practice is here compared with vessels and machinery at work in 1881. which were perhaps by no means the best practice of that date This is true; but on the other hand it seems hardly fair to mix up with the existing class of three-stage expansion engines, which have for some years past been the standard, the twocylinder or compound engines, which as a class have become practically obsolete so far as present manufacture is concerned. In Table 7 it will also be observed that the vessels taken as examples of present performance are somewhat larger than those for 1881: which will probably affect slightly the exact figures of the comparison, but certainly not the broad general facts.

Dimensions.—In the matter of the power put into individual vessels, considerable strides have been made. In 1881 probably the greatest power which had been put into one vessel was in the case of the "Arizona," whose machinery indicated about 6,360 horse-power. The following Table 3 gives an idea of the dimensions and power of the larger machinery in the later passenger vessels.

General Conclusions.—The progress made during the last ten years having been sketched out, however roughly, the general conclusions may be stated briefly as follows. First, the working pressure has been about doubled. Second, the increase of working pressure and other improvements have brought with them their equivalent in economy of coal, which is about 20 per cent. Third, marked progress has been made in the direction of dimension, more than twice the the power having been put

into individual vessels. Fourth, substantial advance has been made in the scientific principles of engineering.

It only remains for the writer to thank the various friends who have so kindly furnished him with data for some of the tables which have been given; and to express the hope that the next ten years may be marked by such progress as has been witnessed in the past. But it must be remembered that, if future progress be equal in merit or ratio, it may well be less in quantity, because advance becomes more difficult of achievement as perfection is more nearly approached.

TABLE 3.

Dimensions and Power of Machinery in later Passenger Vessels.

Year.	Name of Vessel.	Diameters of Cylinders.	Length of Stroke.	Indicated Horse- Power.
		Inches.	Inches.	I H.P.
1881	Alaska	68, 100, 100.	72	10,686
1881	City of Rome -	46, 86; 46, 86; 46, 86.	72	11,800
1881	Servia	72, 100, 100.	78	10,300
1881	Livadia Yacht -	$\{\begin{array}{c} 60, 78, 78; \ 60, 78, \\ 78; \ 60, 78, 78. \end{array}\}$.39	12,500
1883	Oregon	70, 104, 104.	72	13,300
1884	Umbria	71 105 105	72	14,320
1884	Etruria	$\{$ 71, 105, 105.	14	14,540
1888	City of New York	5 45, 71, 113; 7	60	20,000
1889	City of Paris -	<i>§</i> 45, 71, 113. <i>§</i>	00	about
1889	Majestic -	5 43, 68, 110; 7	60	10 000
1889	Teutonic	§ 43, 68, 110. §	00	18,000

In war vessels the increase has been equally marked. In 1881 the maximum power seems to have been in the "Inflexible," namely 8,485 indicated horse-power. The following will give an idea of the recent advance made :---

"Howe" (Admiral class)	-	-	-	11,600	I.H.P.
"Italia" and "Lepanto"	-	-	-	19,000	"
"Re Umberto "	-	-	-	19.000	,,
"Blake" and "Blenheim"	(buil	ding)	-	20,000	,,
"Sardegna" (building)	<u>`</u> - ·	-	-	22,800	,,

It is thus evident that there are vessels at work to-day having about three times the maximum power of any before 1881.

TABLE 4 (continued on next page).

Dimensions, Indicated Horse-Power, and Cylinder Capacity of Three-stage Expansion Engines in nine steamers.

No. Single		Cylinders.		Revolutions Boiler		Indicated		Heating Surface.			
of Steamer	or Twin Screws.	Di	amete	rs.	Stroke.	per minute.	Pressure per sq. inch.	Horse- Power.	Cylinder Capacity.	Total.	Per I.H.P.
No.		I	nches		Inches.	Revs.	Lbs.	I,H.P.	Cub. Feet.	Sq. Feet.	Sq. Feet
1	Single	40	66	100	72	64.5	160	6,751	522	17,640	2.62
2	Single	39	61	97	66	67.8	16 0	5,525	436	15,107	2 · 73
3	Single	23	38	61	42	83	160	1,450	109	3,973	2.73
4	Single	17	$26\frac{1}{2}$	42	24	90	150	510	30	1,403	2.75
5	Twin	-32	54	82	54	88	16 0	9,625	508	20,193	2.10
6	Twin	15	24	38	27	113	150	1,194	55	3,200	2.68
7	Single	20	30	45	24	191	145	1,265	36 3	2,227	1.76
8	Twin	$18\frac{1}{2}$	29	43	24	182.5	140	2,105	66·2	3,928	1.87
9	Twin	$33\frac{1}{2}$	49	74	39	145	150	9,400	319	15,882	1.62

Nos. 7 and 8 had navy boilers. No. 9 had three double-ended and two single-ended boilers.

TABLE 4 (continued from opposite page).

Weight of Three-stage Expansion Engines in nine steamers

No.	Weig	ht of Macl	ninery.		Relative	Weight of	Machinery.	а. Ч	3
of	Engine	ine Boiler		Per Indi	cated Horse-Po	ower.	Engine room	Boiler room	Type of Machinery.
Steamer. Fingine room.	room.	Tota'.	Engine room,	Boiler room.	Total.	Per cub. ft of Cyl capacity.	Per 100 sq. ft. of Heating surf.		
No.	Tons.	Tons.	Tons.	Lbs.	Lbs.	Lbs.	Tons.	Tons.	
1	681	662	1,343	226	220	446	1.30	3·75	Mercantile do.
2	638	619	1,257	259	251	510	1.46	4·1 0	do.
3	184	128	262	207	198	405	1.23	3.23	do.
4	33.8	46.2	85	170	203	373	1.29	3.30	
5	719	695	1,414	167	162	329	1.41	3.44	do.
6	75.2	107.8	183	141	202	343	1.37	8 ·37	do.
7	44	61	105	77	108	185	1.21	2.72	Naval Horizonta
8	73.5	109	182.5	78	116	194	1.11	2.78	do.
9	262	429	691	62.5	102	165	0.85	2·70	Naval Vertical.

in relation to Indicated Horse-Power and to Cylinder Capacity.

Nos. 7 an 18 had navy boilers. No. 9 had three double-ended and two single-ended boilers.

TABLE 5 (continued on next page).

Particulars of THREE-STAGE EXPANSION ENGINES

of er.	Cylinder	5.	Condenser.	Propeller.				
No. of Steamer.	Diameters.	Stroke.	Cooling Surface.	Diamet	er. Pit	Pitch.		
No.	Inches.	Inches.	Sq. Feet.	Ft. In	18. Ft.	Ins		
1	40 66 100	72	11,586	22 () 28	6		
	40 66 100	72	11,586	22 () 28	6		
2 3	39 61 97	66	11,000	20 10) 26	0		
	39 61 97	66	11,000	20 10		0		
4 5 6	23 38 61	42	2,008	16 (6		
6	$25\frac{1}{2}$ 42 70	51	3,209	16 6		0		
7	$21^{\circ}34^{\circ}55\frac{1}{2}$	36	1,447	14 (6		
8	22 35 59	39	1,430	$15 \ 6$		6		
9	$29 \ 45 \ 74$	54	. 3,900	19 6		0		
10	31 48 82	54	4,150	19 () 19	0		
11	25 41 67	48	2,800	in the second				
12	$21\frac{1}{2}$ 36 59	42	2,000	15 0		6		
13	$32^{\circ}51$ 82	54	12,562	16 6		0		
14	$\cdot 27$ 44 71	48	2,800	17 9		6		
15	29 45 74	60	4,020	19 (0		
16	29 45 74	54	3,850	18 (0		
17	23 37 64	48	2.400	16 6		0		
18	28 44 74	51	3,700	17 9		9		
19	$23 \ 36\frac{1}{2} \ 58$	36	2,218	15 (6		
20	$17,17\ 38\ 60$	42	2,900	15 6		6		
21	$25 \ 39 \ 62$	36	2,700	14 (3		
22	$31 \ 46 \ 72$	51	3,713	16 8		6		
23	$22\frac{1}{2}$ $35\frac{1}{2}$ $58\frac{1}{2}$	39	1,750	14 7		6		
24	25 42 $68\frac{1}{2}$	48	2,763	16 10		9		
25	$22\frac{1}{4}$ $35\frac{3}{4}$ $58\frac{1}{2}$	48	3,530	15 6		0		
26	$31^{-}50^{-}83^{-}$	60	6,860	19 0		0		
27	$32 53 87\frac{1}{2}$	60	7,500	19 0		9		
28	28 46 75	42	3,450	16 0	21	0		

in twenty-eight Steamers.

(continued on next page) TABLE 5.

Particulars of BOILERS

in twenty-eight Steamers.

No. of Steamer.	Number.	Dian	aeter.	Ler	ngth.	Heating Surface. Total.	Fire- grate Area.	Steam Pressure Lbs. per sq. inch.
No.	No.	Ft.	Ins.	Ft.	Ins.	Sq. Feet.	Sq. Feet,	Lbs.
1	Six "	13	6	18	0	17,640	626	155
2	Six	13	6	18	0	17,640	626	155
3	Five	13	6	18	0	15,107	540	155
4	Five	13	6	18	0	15,107	540	155
5	Two	14	6	10	41	3,972	133	160
6	Two	13	0	17	6	6,162	193	180
7	Two	13	6	10	0	3,350	99	160
8	Two	13	4	9	9	3,324	102	160
9	Three	12	5	16	9	6,875	240	160
10	Three	12	6	18	6	8,000	260	160
11	Two	12	6	16	4	4,645	142	160
12	Three	12	0	10	3	3,852	122	160
13	Four	16	0	19	0	20,192	710	160
14	Two	13	6	16	6	6,164	220	150
15	Two	14	8	16	8	6,950	196	150
16	Two	14	3	17	0	6,960	216	160
17	Two	11	9	17	0	4,715	144	180
18	Two	14	3	18	0	8,000	264	150
19	One		10	15	5	3,271	126	160
20	Two	12	0	15	2	4,400	168	150
21	Two	12	2	14	0	4,000	150	160
22	Three	13	0	11	4	5,076	110	150
23	One	15	0	11	9	2,338	50	160
24	Two	14	3	11	6 4	4,346	84	160
25	Two	13	0	11	4 0	3,486	63	+160
26	Two	16	$3\frac{1}{4}$	12	6	6,438	$\begin{array}{c} 154 \\ 210 \end{array}$	$150 \\ 160$
27 28	Four Three	$\frac{14}{14}$	6 8 <u>1</u>	11 9	0 11	8,571 6,618	188	$ 160 \\ 160 $

S. A.S.

Coal	Coal burnt	Indica- ted	Surface.	Heating	Indica-	Piston	8 °	ler.
burnt per I.H.P. per	per	Horse-	Per lb.		ted	Speed.	Revolutions per minute.	an
I.H.P.	sq. foot:	Power	of Coal	Day of S	Horse-	Feet	pir	Ste
per a	of grate	per	per	Per I.H.P.		per	evo er 1	of
hour.	per hour.	sq. foot of grate	hour.	1.11.1.	Power.	mîn'te.	8 Å	No. of Steamer.
Lts.	Lbs.	I.H.P.	Sq. Ft.	Sq. Ft.	I.H.P.	Feet.	Revs.	No.
1.67 H	11.45	6.86	2.46	4.11	4,295	627	52.2	1
1.584 H	11.14	7.03	2.55	4.04	4,402	616	51.3	2
1·896 H	12.60	6.65	2.22	4.21	3,587	630	57.3	3
1·841 H	13.02	7.08	2.14	3.95	3,822	631	57.4	4
1.75	14.75	8.43	2.02	3.54	1,120	427	61	5
1.505	13.25	8.82	2.40	3.62	1,700	521	61.3	6
1.612 H	14.67	9.09	2.31	3.72	900	384	64	7
1.312	13.70	10.42	2.38	3.12	1,065	455	70	8
1·494 H	14.00	9.38	2.04	3.055	2,250	504	56	9
1.505 H	15.10	10.00	2.04	3.075	2,600	553	61.5	10
1.580	14.46	9.16	2.26	3.57	1,300	464	58	11
1.529	13.79	9.02	2.29	3.20	1,100	469	67	12
1.210 H	7.80	5.17	3.64	5.50	3,670	526	58.5	13
1·723 H	13.18	7.65	2.12	3.67	1,680	504	63	14
1.650	19.85	12.03	1.78	2.94	2,360	538	53.8	15
1.500	17.70	11.80	1.82	2.73	2,550	576	64	16
1.568	16.31	10.40	2.00	3.14	1,500	496	62	17
1.620	17.06	10.53	2.85	4.63	1,727	527	62	18
1.400	14.10	10.07	1.84	2.58	1,269	456	76	19
1.464	13.32	9.11	1.96	2.875	1,530	525	75	20
1.330	11.13	8.35	2.40	3.20	1,250	438	73	21
1.488 D H	33.95	22.85	1.34	2.02	2,513	612	72	22
1.350 D H	36.42	27.00	1.28	1.73	1,350	494	76	23
1.242 D H	26.62	21.42	1.94	2.41	1,800	520	65	24
1.338 D H	28.90	21.59	1.91	2.56	1,360	552	69.5	25
1.365 D H	23.05	16.88	1.78	2.435	2,600	590	59	26
1.234 D H	19.97	16.18	2.04	2.52	3,400	660	66	27
1.565	10.92	17.10	2.05	3.212	2,058	511	73	28
	61 j	$\frac{1}{1} = \frac{1}{10}$	1.1			1.10		
1522	17.08	11.22	2·14	3.275	ty-eight	all twen	rage of	Avei
and the second second second second	13.92	8·91	2.25	3· 560	Draught	Vatural]	age of 1	Aver
1.336	28.15	20.98	1.72	2.412	Draught	Forced]	age of]	Ave

TABLE 5 (concluded from preceding page). Results of TRIAL of Twenty-eight Steamers.

D=Forced Draught. H=Feed Heater.

P = Pass-over Slide-Valve.

TABLE 6.

Actual and Comparative Results of Working of Marine Engines

in three years, 1872, 1881, 1891.

	Actual Results.			Compared with 1872.			Compared with 1881.		
Boilers, Engines, and Coal.	1872	1881	1891	1872	1881	1891	1872	1881	1891
Boiler Pressure lb. per sq, inch	52·4	77:4	158.5	1.000	1.477	3·025	0.677	1.000	2.048
Heating Surface per horse } power, sq. feet }	4.410	3.917	3.275	1 ·000	0.889	0.743	1.125	1.000	0.837
Revolutions per minute revs.	55.67	59.76	63.75	1.000	1.074	1.145	0.932	1.000	1.062
Piston Speed feet per minute	376	467	529	1.000	1.242	1.406	0.802	1.000	1.132
Coal per horse-power per } hour lbs. }	2.110	1.828	1.522	1.000	0.866	0.721	1·154 о од	1.000	0.833

TABLE 7.

Performance of Machinery relatively to Coal Consumption.

COGINC	ient of I	er tor ma	and a second	1.241.	oal in 24 h	ours.
No. of Vessels.	Length		ficients of cements.	Speed in knots, divided by square root of Length in feet.	Working Pressure.	Coefficient of Performance.
N	Feet.	Block.	Prismatic.	Speed ir divide square r Length	Lbs, per sq. inch.	Coe Perfo
Seventee	n Vessels u	with Two-	tage Expan	sion Engin	es ; date a	bout 1881
	260to320		0.774	0.539	83	11,710
Sixt	een Vessels	with Thr	ee-stage Exp	oansion En	gines ; dat	e 1890.
1	440	0.633	0.666	0.600	155	15,590
2	400	0.703	0.775	0.520	180	15,750
3	312	0.710	0.805	0.555	160	13,300
4	300	0.635	0.691	0.566	160	14,250
5	295	0.697	0.769	0.536	160	12,150
6	460	0.617	0.708	0.633	155	14,850
7 0	460	0.618	0.710	0.621	155	14,210
8	430	0.623	0.699	0.638	155	13,650
9	430	0.626	0.701	0.641	155	13,450
10	300	0.730	0.765	0.579	160	15,200
11	400	0.770	0.804	0.550	160	14,410
12	336	0.756	0.780	0.545	16 0	16,600
13	275	0.772	0.780	0.633	160	16,700
14	370	0.779	0.810	0.546	150	15,600
15	422	0.745	0.774	0.555	150	15,400
16	345	0.770	0.792	0.554	180	14,690
Means.	30	0.699	0.752	0.579	159	14,810