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is rep~aced by a phyllode with a much lesser number, and 
consequently a much more effective chlorophyll bearing 
organ for a xerophytic type. If, then, as is probably the 
case, this genus found its way from northern lands to 
Australia, it probably entered as a mesophyte, found 
conditions suitable to. its growth, and modified its foliage 
later in :response to changing climatic conditions. Having 
developed a method of water conservation which proved 
so satisfactory, it then was able to occupy many of the 
most arid regions of Australia. 

We might, then, add a third group of plants to the 
two with which we started-namely a group consisting of 
modified mesophytic types acting as a connecting link 
between the Indo-Malayan types and the true endemic 
species. 
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ON OBTAINING RESULTS FROM 
EXPERIMENTS. 

By I1T.-COL. R. c. SIMPSON, V.D., 
Lecturer in Electrical Engineering, Sydney Technical College. 

IN most experiments two or more quantities have 
to be measured and a series of readings is obtained fo~ 
each of them. Curves are then drawn showing how the 
various values so obtained vary under various changes 
of conditions and, very often, results have to be worked 
out from these curves, and it may be that further curves 
are then plotted. 

In measuring the quantities, certain possibilities of 
error are always present ; among these are : 
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(a) The personal errors of the observers. Some people 
can read instruments more accurately than others. 
Untrained observers will read to the nearest division on 
the scale, and not worry with any greater degree of accuracy 
than that gives. Others, more expert, will read sometimes 
to the nearest division and sometimes to half a division. 
While a trained man will give his reading as he estimates 
it to one-tenth of a division, or if these are very small, 
to one-fifth. But, on most instruments, one-tenth can 
be estimated. Sub-standard instruments always have a 
knife-edge pointer with a mirror behind it, and care must 
be taken that, when taking a reading, the pointer hides 
its own reflection, so that parallax error may be avoided. 

In such a set of readings, as taken by the average 
careful man, some readings will be given as whole numbers, 
with no figure shown on the right of the decimal point, 
while others will have one more figure, which is incorrect 
and the result of false teaching in arithmetic. 

In this connection, some consideration must be given 
to the real meaning of figures . Say that a reading is 
given as 29·5 . This means that, as accurately as it can 
be read, the real value is somewhere between 29 ·45 and 
29 ·55, and so it is given as 29 ·5. And, in this reading, 
the accuracy is about one in 295, or one-third of one per 
cent. But there may be another reading in the same series 
of 34. Simply given as 34 without any fignre on the right 
of the decimal point ; which means that the value is 
somewhere between 33·5 and 34 ·5, and the accuracy is 
only one in 34- or three per cent. If this value, as is 
probably the case, is meant to be 34·0 as nearly as can be 
read, it should be read and recorded as 34·0, which means 
that it is between 33·95 and 34·05. Incidentally, in 
figures the symbol " 0 " is " nought," and not " oh." 
Experimental results are not telephone numbers. It 
is to be hoped that the spread of automatic telephony will 
restore the word nought to its proper use. 

(b) The errors of the instruments. How large these 
are depends, of course, on the particular instruments 
used ; but in any exact work these errors should be known 
and allowed for where necessary. 

(c) Other errors which may affect the results. These 
may be of many kinds. For example, in a case where the 
speed of a machine is supposed to be constant, it may vary 
from time to time. Or the temperature of the air or of 
something else may have an effect which ought to be 
allowed for. In some cases the pressure of the atmosphere 
as read by the barometer may be important, and so on. 
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All these types of errors occur, and their effects may 
add together and make large errors, or they may more or 
less compensate for each other, but in any case they 
have the effect that ~ny individual reading is likely to be 
incorrect to some ext.ent, and it is not possible to say, 
by merely looking at a table of results, which are the 
most nearly correct. 

In the case of a quantity which ought to be constant 
over the whole range of readings, its real value can generally 
be found by taking the average of all of them, but even 
in this case there may be some readings which are distinctly 
different from the others, and it is then difficult to know 
whether to take them into account or not. 

In all cases where there is any such uncertainty, as 
well as when it is desired to be able to see at a glanee how 
one quantity varies when another one alters, it is desirahle 
to· plot curves connecting the various quantities, and the 
first thing to do in this connection is to determine the 
scales to be used. 

It can be laid down as a general rule that points can 
be marked more accurately on squared paper than they 
can be read on an instrument, especially if a needle point 
is used to mark them, and so it is, in general, inadvisable 
to make the scales such that the distance between two 
adjacent lines on the paper is much larger than that 
between two divisions on the scale of the instrument. 
It can even be a little smaller, because of the greater 
accuracy of plotting. If, as is not unusual, the divisions 
on the instrument are not all of the same size, a compromise 
can be effected by making the whole length of the scale 
on the paper about the same length as that on the instru
ment. This generally gives a very convenient size for a 
diagram. 

To make the scales on the paper much larger than 
those on .the instrument on which the readings were taken, 
as is often done in an effort after a degree of accuracy 
which is really unattainable, is very inadvisable, as it 
exaggerates the errors, and is likely to result in a set of 
points so spread out that the real shape of the curve 
they should form cannot be seen. 

Even if none of the readings are small, so that all of 
them are far removed from zero, it is, in most cases, 
advisable to take all the scales in the rliagram down to zero. 
Very often the curves which ha\e to be obtained must, by 
the nature of things, go through zero, which is very useful 
as a guide when drawing curves, as it means another point 
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well removed from the others and quite definitely known. 
There is, however, a danger to be avoided here, as all 
curves do not go to zero, and care must be taken not to 
distort them into doing so when they should not. 

But it is not always essential to put in the whole of 
the scales. A case where it is not necessary is where the 
readings obtained are values of something which should 
be constant, and the object of drawing the curve is to 
determine their mean value but, even then, it is not 
advisable to use larger scales on the paper than on the 
instruments. 

When plotting a curve all the points on it which 
are available should first be marked and then a smooth 
curve drawn among the points in such a way that they 
are evenly distributed on each side of it. If any are 
distinctly out of the general line, they can usually be 
neglected. · 

All points should be clearly marked, those for different 
curves being distinguished, those of one curve being circles, 
another crosses, etc. 

When drawing in the curves, beware of French curves, 
whose use results in curves being drawn to suit them 
rather than the points. When the curves have been 
drawn, if not before, it is usually necessary to work out 
some results, which means doing arithmetic and, in 
doing this, care must be exercised to work out the results 
to the full degree of accuracy that is really known but, 
at the same time, to avoid wasting time in writing down 
imaginary figures. 

Probably the best way of stating the accuracy in any 
particular case is as a percentage or to give it as, say, 1 in 
100 or 1 in 1,000. 

And it must be remembered that the accuracy of the 
result cannot be any better than that of the set of readings 
which is of the lowest degree of accuracy. Thus, if three 
values are known to one part in 1,000, it is of no use if 
another which has to be used with them in working out the 
results is only known to one part in 50. 

There are two things commonly taught in arithmetic 
which must be discarded in working out experimental 
results ; one of these has been already mentioned, that is, 
that a nought, when it is the last figure on the right of the 
decimal point, must not be omitted if it is known, and the 
other is that in working out results from experiments 
answers must not be expected to " come out ". In 
ordinary school arithmetic questions are generally so 
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arranged that the answers are whole numbers but, for 
that to happen with the results of experiments is pure 
accident, and can only happen occasionally . 

.Another thing w.hich must be avoided is the insertion 
of imaginary figures. What is meant by this is best 
illustrated by an example. 

Taking an actual case. In a certain experiment the 
following readings were taken : Volts 100 ·0, Amperes 10 ·65, 
Watts 880·, and it is desired to find what is called the 
Power Factor, which is equal to the watts divided by the 
product of the volts and the amperes. 

The result by arithmetic done in the ordinary way 
would be: 

10·65 x 100·0=1065. 
1065\880 I OJO ·82629 

852 0 

28 00 
21 30 

6 700 
6 390 

3100 
2130 

1970 
First, as the watts are short by one figure on the 

product a 0 is added to them. Then, after the first 
subtraction, another 0 is brought down, and so on, and 
the result is worked out to as many figures as may be 
thought fit. 

Now how many of these figures are really known ~ 

Consider first the original readings. The volts are 
given as 100 ·0, which means that they are somewhere 
between 99·95 and 100·05, but the last 0 is not really known 
to be 0, but may easily be, for example, ·98 or ·02, which 
would be hard to read on the instrument. 

· Similarly, the current is given as 10 ·65, and the 5 
might easily be 4 or 6. .And, in the case of the watts, 
880 on the instrument used might easily be 879 or 881. 
In fact, in all cases the accuracy is to within about 3 in 
1,000. . 
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Then, in doing the long division, a 0 is added to the 
figures for the watts. As the 0 already there is not really 
known, there is no justification whatever for assuming 
that the next figure is 0. It is just as likely to be any of 
the other nine digits . And the same applies to each of 
the others which are added in successive stages of the 
division. 

It is thus quite accurate to say that any figures on the 
right of the full vertical line put into the long division 
sum are quite imaginary, for they depend upon the O's 
which were added. This means that only the first three 
figures of the quotient are really known, the others only 
have the values shown because noughts were added 
in an arbitrary way when any other figures would have 
been just as likely to be correct. 

In fact, if the long division was worked out as follows 
it would be accurate to exactly the same extent as by the 
method given above. 

1065J8804J0·82673 
8520 

2847 
2130 

7173 
6390 

7835 
7455 

380 

The onlv difference between the two cases is that 
the noughts· which were arbitrarily inserted in the first 
have been replaced in the second by other figures which 
are just as likely to be correct. 

It will, however, be seen that in both cases the first 
three figures of the answer are the same, 0 ·826, which is 
because those three figures are really known within the 
limits of accuracy of the experiment. (Actually, the. 6 
is rather doubtful.) 

Such a sum as this should be worked out by the 
contracted system, in which, instead of adding imaginary 
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figures to the dividend in successive steps, figures are cut 
off the divisor instead, and the process becomes : 

1065!880!0 ·826 
852 

106128 
21 

,--
II 7 

6 
Here only the figm·es that are really known are written 

down, and the result shows the same answer again, as far 
as it ·is known. 

This example also illustrates the necessity for writing 
down noughts when they are known. The quantity 
880 watts could also have been written 0 ·880 Kilowatts, a 
Kilowatt being 1,000 watts . .And by the ordinary methods 
would have been written as 0·88 Kilowatts, when the 
contracted long division sum would have been made one 
step shorter, and the answer would have only contained 
the two figures 0·82. Of course, in this case, as the watts 
are expressed in Kilowatts, the volt-amperes would also 
have to be divided by 1,000, and would read 1·065. 

The same rules about not putting down imaginary 
figures apply equally to multiplication. This did not 
show up in multiplying 10·65 by 100·0, but supposing that 
the two numbers are 53·7 and 47·9. The sum, done in 
the ordinary way, will be: 

53·7 
47·9 

±83·3 
3759x 

2148xx 

2572·23 

In this there are three imaginary figures, or rather 
figures which are assumed to be 0. These are not shown, 
but are indicated by x. They are just as likely to be any 
other figure, so the last two figures of the answer can 
only be described as imaginary values. 

Contracted multiplication should be used, the idea 
being to begin to multiply with the first figure instead of 
the last, taking care to insert the decimal point in its right 
place. Then in the succeeding lines, no figures are put 

. in which go further to the right than the line first worked 
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out. In the second line, the first figure on the right of 
the decimal point is put down as 6 instead of 5, because 
the next figure, if put down, would be larger than 5, 
namely 9, giving a result which is obviously nearer the 
real value. 

If there are several figures to be multiplied together 
and then the result divided by the product of several 
others, the ordinary procedure would be to do the two 
multiplications first, and then a long division sum, resulting 
in a great waste of time and the writing down of many 
unknown figures. 

Thus, suppose in working out a result the following 
expression is obtained: 

143 X 509 X 793 X 349 
514 X 627 X 421 X 128 

the usual method would be to multiply together all the 
numerators first, then all the denominators, and then 
divide one by the other, that is, 20144311759 divided by 
17366916864, which is a very large long division sum . 

.A far better way is to rearrange the original expression 
in the form of a number of separate fractiems, each of which 
is near unity, that is, write it in the form : 

149 349 793 509 
.128 X 514 X 627 X 42{ 

and then find the value of each of these fractions by 
contracted division. 

128114211·11 
128 

13 1~ 
13 

~.\1 
514134910·68 

308 

51141 
- 41 

62717931~ 
627 

63\166 
-126 

~\40 
36 
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~1509\1·21 
421 

42\Ss 
~ 84 

~14 
4 

37 

When, instead of the formidable expression previously 
arrived at, we get simply 1·11 x 0·68 X 1·26 X 1·21, and an 
easy contracted sum in multiplication gives the answer. 

It will not usually happen that the numbers are such 
that a series of fractions can be written down that are all 
near unity. Taking another example of a much more 
probable sort : 

6·28 X 5500 X 50·0 X128 
514 X 0 ·00237 X 535 X 2 ·69 

These values, which have been selected at random, 
should be rearranged so that each of them has one figure 
on the left of the decimal point, and is multiplied when 
necessary by 10 to the power of something, when the 
expression becomes : 

6·28 x 5·500 x 103 x 5·00 x 10 x 1·28 x 102 

5·14 X 102 X 2·37 X10-3 X 5·35 X102 X 2·69 
Of course, it is not necessary to write down all these 

separate tens, the various powers can be added up and the 
result written : 

6·28 x 5·500 x 5·00 x 1·28 10 6 

5·14 X 2·37 x 5·35 x 2·69 XIO 
or simply x 105• 

Then the working out can be done as before, and there 
is no room for any doubt as to the position of the decimal 
point, the answer in this case being 1·31 x 105• And this 
is the best form in which to leave it as the alternative, 
namely 131,000, involves the insertion of three noughts 
which are not known, while the first way shows the known 
figures clearly and gives no imaginary ones. 

In ordinary arithmetic it is usual to say that problems 
should be worked out to a certain number of places of 
decimals. This is a meaningless limit to put on the degree 
of accuracy required, and should never be used. Obviously, 
two places of decimals in such a quantity as 27 ·45 is quite 
a different degree of accuracy from two in a quantity such 
as 1456 ·87. Further, the use of this limit may lead to 
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absurdities, for example, if it was necessary to multiply 
·025 by ·025 and this limit was used, the answer would 
be ·00. 

Another limit often used and rather better is to work 
always to the same number of " significant figures ". 

The best way of explaining what significant figures 
are is to explain what figures are not significant. The only 
figures which are not significant are noughts which come 
directly on the right of the decimal point, and only then if 
there is not any figure other than nought on the left of the 
point. Thus in the expression 12 ·237 all the figures are 
significant, as also they are in 12 ·007 and 12 ·070, but in 
0 ·0124 7 the only significant figures are 124 7. 

But the number of significant figures does not really 
correspond to the degree of accuracy, for 99 has only two 
figures, and 101 has three, and yet the accuracy is 1 in 
100 in each case, and there is a great difference in accuracy 
between 23 and 99, and yet each has two significant figures. 

In recording very exact calculations it is usual to write 
the last figure, which is not generally really known exactly, 
smaller than the others and rather below them, thus 
14328• Which means that 1432 is exactly known, and that 
the 8 is more likely to be right than 7 or 9. 

Most ordinary experimental results can be worked 
out with quite sufficient accuracy with a ten inch slide rule. 
The accuracy of this is nearly the same all along its scale. 
On the lower scales near the left-hand end, it is divided 
to one in 100, and at the other end to one in 99, or sometimes 
·5 in 99. It is easy to estimate with a considerable degree 
of accuracy to ·1 in 100, which is as near as most ordinary 
instruments read. 

For greater accuracy than this, when it is worth while, 
either a longer rule must be used, or recourse had to 
logarithms, if the results are not worked out on paper, 
which means wasting time. Spiral slide rules can be 
obtained which read with actual divisions to one in 1,000 
and to one in 10,000. An estimation between the divisions 
will give still another figure. And, owing to it being 
divided logarithmically, the number of figures read on a 
slide rule is equivalent to its degree of accuracy. 


