THE STUMBLING BLOCKS OF INTEGRATING QUANTITATIVE SKILLS IN SCIENCE

Carmel Coadya, Kelly E. Matthewsb, Peter Adamsc, Shaun Belwardd, Leanne Rylands, Vilma Simbagf

Presenting Author: Carmel Coady (c.coady@uws.edu.au)
aSchool of Computing, Engineering and Mathematics, University of Western Sydney, Penrith NSW 2751, Australia
b Teaching and Educational Development Institute, University of Queensland, St Lucia QLD 4072, Australia
c Faculty of Science, University of Queensland, St Lucia QLD 4072, Australia
d School of Engineering and Physical Sciences, James Cook University, Townsville QLD 4811, Australia
e School of Computing, Engineering and Mathematics, University of Western Sydney, Penrith NSW 2751, Australia
f Teaching and Educational Development Institute, University of Queensland, St Lucia QLD 4072, Australia

KEYWORDS: quantitative skills, science curricula, integration

ABSTRACT
The Science Higher Education community has acknowledged the essential role of quantitative skills (QS) as a graduate learning outcome. However, efforts to build QS across science degree programs have been meet with a range of obstacles that are inhibiting the development of QS to an appropriate standard. This presentation, drawing on interview data from the ALTC funded QS in Science project which used a case study approach, details the challenges institutions have found in trying to ensure that QS are developed and embraced in science curricula. Interview data (n = 48) from academic staff involved in the case studies revealed several broad categories that significantly impacted on embedding QS effectively in the science curriculum: 1) the attitude and background of students undertaking science courses, 2) the constraints of the various science degree program structures.