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Abstract

This paper studies a principal-agent problem of moral hazard, in which the outside option

is stochastic. This renders the agent’s participation decision random from the perspective of

the principal. The participation cost is no longer defined in terms of the agent’s outside option

but in terms of the principal’s marginal benefit of participation. The optimal contract (i)

entails information rents; (ii) features a trade-off between participation probability and rents

and (iii) induces a lower effort than the standard model. Random participation results in weaker

incentives and in twofold (ex ante) welfare losses. Menus of contracts (screening mechanisms)

are not helpful to extract information because the single-crossing condition does not hold.

Keywords: moral hazard, asymmetric information, contract, participation constraint, principal-

agent. JEL Classification: D82,D86.

1 Introduction

The canonical model of moral hazard takes the agent’s outside option as known to the principal

designing the incentive contract. This simplifying assumption allows the analyst to focus attention

on the incentive problem: the only friction stems from moral hazard, while participation can

always be secured. This approach has spawn a vast literature and has been successfully extended

to problems of moral hazard in teams (Holmström, 1982; Itoh,1993), multitasking (Holmström

and Milgrom, 1991), hierarchies (Tirole, 1986) or even common agency (Bizer and DeMarzo, 1992;
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Martimort, 2004) and to countless applications. In doing so however the question of participation

has been neglected; this is neither natural nor innocuous.

It is not natural because employers likely do not know their prospective hire’s outside option,

who may receive other offers from market participants. In financial contracting, it is unlikely that

any one bank knows exactly other lenders’ terms – i.e. the borrower’s reservation utility. It is

not innocuous because assuming that one knows the outside option is tantamount to disregarding

information about the environment that is relevant to the optimal contract. In this paper I relax

this standard assumption and let the outside option be stochastic. This random variable can be

thought of as the reduced form of a game between principals competing for agents–say in a labor

market. Allowing for the outside option to be uncertain sheds new light on the nature of the

participation problem, which is found to interact subtly with the incentive problem.

Bar for the randomness of the outside option described by a common-knowledge distribution, the

model is a standard principal-agent problem of moral hazard. The optimal contract still bears some

of the standard properties; in particular, the transfer function is increasing in the output according

to the likelihood ratio of the distribution (Holmström, 1979, Rogerson, 1985b, Jewitt 1988). The

paper’s central feature is a rent extraction-participation trade-off: conditional on participation,

the principal wants to limit the transfer paid to the agent, but he also must offer high-enough a

payment to secure said participation. Technically, the objective function becomes non-monotonic

concave in the transfer t, while it is monotonically decreasing in the standard problem.1 The

participation cost is thus not defined in terms of the agent’s outside option, which is unknown.

Rather it is exactly given by the principal’s marginal benefit of securing participation, which always

(necessarily) exceeds the agent’s shadow cost (the Lagrange multiplier in the standard problem).

That is, to secure participation the principal is willing to pay more (than in the standard problem)

for any effort level. This interacts with the incentive problem in that the principal internalizes the

higher cost of any given action; his preferred action is thus lower than the standard second-best.

From a social standpoint this is costly on two accounts. First, the social surplus decreases when

effort decreases. Second, with a lower action the agent’s expected utility in equilibrium is also

1Put another way, any agent who accepts a contract necessarily receives an ex ante rent (except for the marginal

agent). The principal would like to extract this rent but can do so only imperfectly because the agent chooses her

action, not the principal.
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lower. Therefore the probability of participation decreases and gains from trade are lost.

With the characterization in hand two sets of comparative statics can be derived. The first one

concerns itself with the impact of a change in the the incentive problem (i.e. distribution of output

and agent’s risk aversion) on the participation probability. More dispersion of the distribution

output, or more risk aversion, both lead to a lower participation threshold. In the second set

of comparative statics I study the effects of changes in the contracting environment captured by

changes in the distribution of the outside option. A shift the distribution in the sense of first-

order stochastic dominance unambiguously results in a lower action being induced, and therefore

in a lower participation probability. A mean-preserving spread of the same distribution has more

ambiguous consequences.

A natural question that arises is whether the principal may be made better off by using menus

of incentive contracts. Indeed a revelation mechanism may be called on to elicit the agent’s private

information about her outside option. If so, the principal would essentially trade-off an information

rent (under the revelation mechanism) for another (without it). Truthful revelation of that infor-

mation can only be achieved with non-contingent transfer functions; that is, menus are useless. The

reason is that, unlike in a standard adverse selection problem, there is no direct (i.e. technology or

preferences) connection between the agent’s private information (here the outside option) and her

choice of action. In technical terms, the single-crossing condition does not hold in a strong sense:

the game is not supermodular in the agent’s private information.

As a by-product of the analysis, the linear contract derived by Holmström and Milgrom (1987)

is shown to be a very special case. In that model the contract divorces participation from incentives.

With a stochastic outside option, this results in the slope of the linear contract, and therefore the

equilibrium action, to remain unchanged. This insight is in fact quite misleading, and unique to

the exponential specification.

This paper bears a nominal connection to a paper by Rochet and Stole (2000), who study

random outside option in the context of adverse selection. The analysis here turns out to be

simpler and has a different economic content. Broadly speaking I find results that run counter to

theirs. Under adverse selection, uncertainty of the outside option lowers the probability of paying

the information rent, so distortions used to decrease that rent can be relaxed. Under moral hazard,

uncertainty of the reservation utility increases the cost of any one action, so it creates incentives
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for further distortions.

The literature on moral hazard is vast and rich. This work builds on the well-known contri-

butions of Holmström (1979), Rogerson (1985b) and Jewitt (1988), who study what has become

the standard moral hazard problem. Beyond that however, perhaps surprisingly, no other paper

combines moral hazard and stochastic outside option. Somewhat tangentially, this paper relates to

the work of Laffont and Tirole (1986), who analyze a combination of adverse selection and moral

hazard. Their revelation mechanism has bite because the agent’s private information directly affects

her payoffs, unlike here. Conditional on extracting that private information, the optimal action is

not distorted (conditionally first-best). In the present model, the optimal effort is “conditionally

second-best”: the distortion is indirect, as in Laffont and Tirole (1986), and in response only to the

modified transfer. This study also connects to the works of Lewis and Sappington (1989), Maggi

and Rodriguez-Clare (1995) and Jullien (2000) who investigate the role of type-dependent reserva-

tion utility in models of adverse selection. When the outside option is high enough, the interaction

of the participation constraint and the incentive constraint generates countervailing incentives that

may reverse the direction of the usual distortions. The nature of the present work is quite different

but it is worth noting that it is precisely the interaction of the moral hazard constraint and the

participation probability, through the transfer, that is the source of distortions.

The next Section introduces the model. In Section 3, I start with the standard model to fix ideas

and conduct most of the analysis. Section 4 discusses the linear model Holmström and Milgrom

(1987) and Rochet and Stole’s (2000) work. Last I conclude. All proofs are sent to the Appendix.

2 Model

A principal delegates a task to an agent. She undertakes an unobservable action a ∈ A ⊂ R+. The

action yields a stochastic outcome q ∈
[
q, q

]
≡ Q ⊂ R+ with conditional distribution F (q|a) and

corresponding density f(q|a) > 0, at cost c(a) increasing and convex. The density f(q|a) satisfies

the MLRP: fa(q|a)/f(q|a) is increasing, concave in q; therefore F (q|a′) stochastically dominates

F (q|a) in a first-order sense when a′ > a. Upon a realization of q, the agent receives a transfer

t. Her net utility is given by v(t, a) ≡ u(t) − c(a), where u : R 7→ R is a continuous, increasing,

concave function. There is no limited liability constraint. Throughout the principal can commit

4



to the contract and receives a net payoff S(t; q) = q − t. Said contract C = 〈t(q), a〉 is an effort

recommendation a and a transfer function t : Q 7→ R.

For that contract to be accepted by the agent, it must satisfy an individual rationality constraint.

The object of this paper is to study the effects of randomness at that stage of the game. The

participation decision itself is not random, of course; rather the outside option is. Specifically, the

agent’s outside option u0 follows a log-concave, common knowledge distribution G(u0), u0 ∈ U0 ≡

[u0, u0] ⊂ R. That U0 be bounded is without consequences on the results. That outside option

is unknown to the principal; it is private to the agent when she decides whether to accept the

contract. The timing is otherwise standard:

1. The principal offers a contract C;

2. The outside option u0 is realized. It is known to the agent only;2

3. The agent accepts or rejects the contract. If rejecting, she receives her outside option and

the principal gets 0. If accepting, she also chooses an action a;

4. Action a generates an outcome q ∈ Q;

5. Transfers are implemented and payoffs are realized.

3 Analysis

3.1 The standard problem

In the standard model, the principal’s programme reads

Problem 1

max
t,a

∫
Q
[x− t(x)] dF (x|a)

s.t.

a ∈ argmax
a′∈A

∫
Q
u(t(x))dF (x|a′)− c(a′) (3.1)

and

U(t, a) ≡
∫
Q
u(t(x))dF (x|a)− c(a) ≥ u0 (3.2)

2Whether stages 1 and 2 are interchanged has no bearing on the outcomes of the game.
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for some exogenous, known outside option u0. Let (aSB, tSB) denote the solution to Problem 1.

This is a well known problem, studied under different angles and with different motivations, by

Mirrlees (1975, 1999), Holmström (1979), Rogerson (1985b), Jewitt (1988), Araujo and Moreira

(2001) or Conlon (2009). Typically the participation (3.2) constraint binds – except if the agent

is subject to a limited liability constraint. Jewitt (1988) and Conlon (2009) have also provided

tractable conditions for the first-order approach (FOA) to be valid; these conditions are assumed

to hold in this paper.

3.2 Random participation

Let ũ0 be a realization of u0. When u0 ∼ G(u0), the participation constraint of the agent is satisfied

with probability Pr (U(t, a) ≥ ũ0) ≡ G((U(t, a)). This immediately gives us a first result.

Lemma 1 In any contract accepted by the agent, she receives an ex ante rent; i.e. whenever (3.2)

is satisfied, U(t, a) > ũ0 for any realization of u0, except on a set of measure 0.

The proof is immediate and therefore omitted. Lemma 1 informs us that the agent’s participation

cannot bind. With this Problem 1 rewrites as:-

Problem 2

max
t,a

G((U(t, a)))

∫
Q
[x− t(x)] dF (x|a)

s.t.
∂U(t, a)

∂a
≡

∫
Q
u(t(x))dFa(x|a)− c′(a) = 0; ∀U(t, a) ≥ ũ0 (3.3)

Let π(t, a) ≡
∫
Q [x− t(x)] dF (x|a) and U = U(t, a) for ease of notation. Attach multiplier µ

to (3.3). A solution to this problem must satisfy the first-order conditions:-

1

u′(t)
=

g(U)

G(U)
π(t, a) + µ

fa(q|a)
f(q|a)

(3.4)

and ∫
Q
[x− t(x)] dFa(x|a) + µ

[∫
Q
u(t(x))dFaa(x|a)− c′′(a)

]
= 0 (3.5)

by application of the Envelop Theorem (i.e. (3.3) holds). Let t∗ solve (3.4) and a∗ be a solu-

tion to (3.5); let them induce U(t∗, a∗) = U∗ and denote by u∗0 the value of u0 for the marginal

participating agent. I make three claims about these conditions. First,
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Lemma 2 At a solution of Problem 2 the principal is effort constrained, i.e. the multiplier µ is

strictly positive.

An immediate consequence of Lemma 2 is that the transfer function t(q) is increasing, concave in

q as in the standard contract thanks to the MLRP. Second,

Lemma 3 Conditions (3.4) and (3.5) are (necessary and) sufficient to identify a solution of Prob-

lem 2.

and third,

Lemma 4 U∗ > u0.

This last Lemma essentially asserts that the optimal contract does not induce a trivial solution.

That is, the transfer t∗(q) is bounded according to (3.4), some effort is exerted in that a∗ > min a

by (3.5) and a positive measure G(U∗) of agents may participate.

Condition (3.4) departs in an obvious way from the standard first-order conditions characterizing

tSB in Problem 1. The term g(U)
G(U)π(t, a) appears in lieu of the standard Lagrange multiplier.

Condition (3.5) is thus also altered, however indirectly through the transfer t, which enters the

first-order condition (3.5) and therefore determines the optimal action a∗. In the spirit of Laffont

and Tirole (1986), this contract can be called “conditionally second-best”: the action is not directly

distorted, but the transfer is – with consequences on the equilibrium action.3

We will return to the interpretation of these conditions. For now I note that the hazard rate

g/G appears. With this in mind,

Proposition 1 The threshold U∗ is unique. For all u0 ≤ U∗ the agent participates, while she does

not if u0 > U∗.

In the first-order condition (3.4), the hazard rate g(U∗)/G(U∗) exactly identifies the rent U∗ that

defines the participation threshold. This truncated density multiplies the principal’s expected

profit. That is, a marginal increase in the agent’s rent increases the probability of acceptance, in

which case the principal receives π(t, a). Indeed g(U∗)
G(U∗)π(t, a) is the marginal benefit of increasing

t to secure the agent’s participation. Importantly, Condition (3.4) tells us that the participation

3In that paper, the effort is “conditionally first-best” but the allocation is distorted to solve an adverse selection

problem.

7



t

π(t, a)

Figure 1: objective functions. Problem 1 (left) and Problem 2 (right)

t

G(·)π(t, a)

cost is not defined in terms of the outside option u0, as it is in Problem 1; that outside option

is unknown.4 Rather the cost of participation is determined in terms of the principal’s marginal

benefit of securing participation. In this model the participation problem induces a rent extraction-

participation trade-off between securing participation and offering excessive rents. This comes

about because not assuming that u0 is known drastically modifies the principal’s objective function.

In Problem 1 it is monotonically decreasing in t (for a fixed action a); in contrast, in Problem 2 it

is non-monotonic and concave in t – hence the trade-off.5

3.3 Properties of the optimal contract

Lemmata 1, 3 and 4 and the first-order condition (3.4) already inform us that the optimal contract

entails some distortion away from the standard second best. Because there are (ex ante) rents

(by Lemma 1), the transfer is necessarily “too high” as compared to that of the standard problem

(where the participation constraint binds). The solution a∗ of Condition (3.5) is therefore also

distorted, even if only indirectly, compared to aSB. I want to formalize these ideas.

First it can be easily shown that the principal overpays the agent for any given action, as

compared to the standard problem (Problem 1).

Lemma 5 Fix the action a. For any realization u0 ≤ u∗0, ∀q, t∗(q) > tSB(q).

In light of Lemma 1 this result may not be surprising; that is, overpaying the agent contributes to

4Recall that in Problem 1 Constraint (3.2) has a multiplier λ(u0) > 0, which is its shadow cost.
5Pointwise differentiation of the objective function yields [g(U)/G(U)] ·u′ · π(t, a)− 1. Differentiating again yields

a negative expression by log-concavity of G and concavity of u(t).
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generating the rent U∗ identified in Lemma 1. But it is not the only channel through which rents

may be created: the action may also be chosen so as to leave the agent with a rent. Thus Lemma 5

does identify the source of the rent as being a more generous transfer for any given action. The

fundamental reason is that the principal’s problem is quite different when the outside option is

stochastic, as previously discussed. Lemma 5 also implies that participation is more costly to the

principal with a random outside option than in Problem 1. To see why, fix a, multiply both sides

of the FOC (3.4) by f(q|a) and integrate over Q to find:-

Eq

[
1

u′(t∗)

]
=

g

G
π(t, a)

Similarly with the standard FOC of Problem 1:-

Eq

[
1

u′(tSB)

]
= λ

so t∗(q) > tSB(q) ∀q ⇒ g
Gπ(t, a) > λ, i.e. the cost of participation is larger for a given action.

Given that he overpays (for any fixed action a), the principal has incentives to implement some

distortion to further limit the rent U∗ left to the agent, but is unable to. The reason is that, no

matter how one may go about it, further rent extraction necessarily implies effort distortion, but

that decision is not the principal’s to make. To see where these incentives stem from, by Lemma 4

the expected cost of the contract is

T ≡
∫ u∗

0

u0

∫
Q
t(x; z)dF (x|a)dG(z) (3.6)

Now let

t(a;u0) ≡
∫
Q
t(x;u0)dF (x|a)

Because t(q;u0) is increasing, concave in q, we know from Conlon (2008, Lemma 1) that t(a;u0) is

non-decreasing, concave in a. Therefore (3.6) rewrites

T (a) ≡
∫ u∗

0

u0

t(a; z)dG(z) (3.7)

which is an increasing function of a. So reducing the principal’s expected cost requires the effort

to drop. However the principal is in no position to impose an effort distortion: unlike in a problem

of adverse selection, he does not choose the allocation. Rather, given a contract, the agent does –

through her action a. This is subgame-perfection at work, which is captured by the application of

the Envelop Theorem when deriving (3.5) – i.e. given any t, ∂U(t, a)/∂a = 0.
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Figure 2: the principal’s first-order condition (3.5).

L(a∗)

Lemma 5 takes the action a as fixed; of course it is endogenous too. The next Proposition

presents a cross-model comparison of the equilibrium.

Proposition 2 Fix the economy Q, F (q|·), c(·),U0, G(u0). For any contract that the agent accepts

under random participation,

1. the effort is lower than in the standard problem; and

2. the transfer function t∗(q) lies everywhere (in Q) below the second-best tSB(q);

i.e. ∀ũ0 ≤ u∗0, a∗ < aSB and t∗(q) < tSB(q) ∀q ∈ Q.

Facing a higher cost for any given action (Lemma 5) the principal necessarily prefers a lower action

than the second-best. This is shown in Figure 2. This in turns moderates the expected cost T (a).

To see why, consider an exogenous increase in the transfer; differentiate (3.5) with respect to t:

−
∫
Q
dFa + µ

∫
Q
u′dFaa + SOC

da

dt
+

dµ

dt

{∫
Q
[x− t(x)] dFa + µ

[∫
Q
u(t(x))dFaa − c′′

]}
= 0

where SOC is the second-order condition of (3.5). The last term is zero, therefore da
dt < 0 from the

perspective of the principal. In turn this adjustment has implications the agent: offering a transfer

that induces her to decrease her action below aSB not only decreases the agent’s expected utility

by first-order stochastic dominance, it also increases the risk.6 Proposition 2 paves the way for a

reasonably intuitive Corollary.

6MLRP implies first-order stochastic dominance, as noted earlier, which is sufficient for second-order stochastic

dominance. Hence the distribution F (q|a∗) is more risky than F (q|aSB).
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Corollary 1 Take some ū0 ∈ U0 such that USB = ū0; u∗0 < ū0

In other words, a further consequence of a stochastic outside option is that the participation

probability is lower than it would be under the second-best contract. The reason for a decrease

in participation between these two contracts is quite simple: a lower action always decreases the

rent U∗(a) ≡
∫
Q u(t∗(x))dF (x|a∗) − c(a∗) of the agent (even across models here). Therefore the

participation condition (3.2) becomes more difficult to satisfy.

Together Proposition 2 and Corollary 1 speak to the extent of the interaction between the

random nature of the outside option and the endogenous variables of the contract. The important

implication of Proposition 2 and Corollary 1 is that moving from a deterministic to a stochastic

reservation utility has twofold consequences on welfare. First the optimal action is lower; second

the probability that a welfare-enhancing relationship is entered into, decreases.

3.4 Comparative statics

This model affords the opportunity to perform an interesting comparative statics exercise on two

exogenous elements: the distribution F (q|a) (as well as the agent’s risk aversion), and the dis-

tribution G(u0), which summarizes the contracting environment. Namely I want to understand

how changes in F (q|a) (or the utility function u(·)) affect the participation threshold u∗0, which is

governed by G(u0). Conversely, I am interested in understanding how changes in the environment,

described by properties of the distribution of u0, interact with the moral hazard problem. These

are the object of the next two Propositions.

Proposition 3 The transfer t∗, the optimal action a∗ and participation (i.e. G(U∗)) all decrease

in the dispersion of the distribution F (q|a) and in the agent’s risk-aversion.

That t∗ and a∗ decrease with dispersion and risk aversion is not puzzling. The third claim is less

obvious. Note that U(a) is decreasing in both dispersion of F (q|a) and risk aversion.7 Therefore

the hazard rate g(U)/G(U) increases, which contributes to increasing t∗ by (3.4). However this

need to secure participation (by raising t∗) is dominated by the incentive problem: any q becomes

a less informative signal of the agent’s effort when F (q|a) is more dispersed.

7This differs from Corollary 1 and its commentary. There I compare participation probabilities across models;

here I consider the contract under random outside option only and let the distribution F (q|a) vary exogenously.
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Proposition 3 considers the impact of the agent’s incentive problem on participation. The next

set of results operate differently: starting from changes in the outside option, which is exogenous

to the agent’s behavior (i.e. to solving (3.3)), I ask what it implies for the principal’s choices. Of

course the principal’s contract offer, which depends on G(u0), ultimately affects the agent’s action.

Proposition 4 Take two distributions G1(u0) and G2(u0).

1. Suppose that G1 first-order stochastically dominates G2; the action a∗ solving (3.5) and

participation (i.e. G(U(a∗, u0))) are both lower under G1 than G2.

2. Suppose that G2 is a single mean-preserving spread of G1, and let u′0 denote the realization

such that G2(u′0) = G1(u′0). When u∗0 < u′0 the action a∗ solving (3.5) and participation are

both lower under G1 than G2. Conversely when u∗0 > u′0.

If recalling Proposition 2 and Corollary 1, the second claim follows intuitively: take a perfectly

known outside option and introduce a little uncertainty around it, Proposition 2 suggests that

effort decreases and Corollary 1 that participation drops. Proposition 4 formalizes this insight.

Both these claims rely on the behavior of the hazard rate g/G. To gain some intuition, recall

the first-order condition (3.4) where, ceteris paribus, the transfer increases in the hazard rate; this

corresponds to a smaller G. Therefore the cost of a given action is higher under G1 than G2. The

difference between the two claims of Proposition 4 is this: under first-order stochastic dominance

G1 ≤ G2 everywhere, so the ordering of the hazard rates never changes. This is not true under a

mean-preserving spread. At u′0 the ordering of the distributions changes and so does that of the

hazard rates. The transfer decreases because its marginal impact on the participation decision is

low: when u∗0 > u′0, participation is already secured for most realisations of the outside option.8

3.5 Menus of contracts

Faced with some hidden information one may wonder whether the principal could not do better

by using menus to screen the agent’s outside option u0 (her type). It turns out that menus cannot

make the principal better off in this model. Suppose he uses a direct revelation mechanism to elicit

the agent’s private information of the form 〈t(q;u0), a(u0)〉. Given a message u0, that contract

8The restriction to single mean-preserving spread is for convenience only; then G1 and G2 cross only once.
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is the standard second-best contract corresponding to Problem 1. We know from the standard

first-order condition 1/u′ = λ(u0)+µSBfa/f that t(q; ũ0) 6= t(q; û0) for ũ0 6= û0. From (3.1) it then

follows that a(ũ0) 6= a(û0). Now consider a truth-telling constraint

U (t(·; ũ0), a(ũ0), ũ0; ũ0) ≥ U (t(·; û0), a(û0), û0; ũ0) , ∀ ũ0, û0 (3.8)

when the agent is of type ũ0 but may report some û0. This condition is equivalent to saying that

the agent solves

û0 ∈ arg max
u0∈U0

U (t(·; û0), a(û0), û0; ũ0) ;

or, differentiating at û0 = ũ0, means

∂U

∂t

∂t

∂u0
|ũ0 +

∂U

∂a

∂a

∂u0
|ũ0 = 0 (3.9)

By (3.3), ∂U
∂a = 0 and by monotonicity of u(·), ∂U

∂t > 0. Therefore truthful revelation requires

∂t
∂u0

|ũ0 = 0: there can be no discrimination on the basis of the outside option. But then eliciting

that information is useless. Thus we have

Proposition 5 A menu of contracts contingent on the agent’s outside option cannot do better than

the (single) non-linear contract given by (3.4) and (3.5).

Why this result? Unlike in a standard screening model, here the agent takes an action â given

t(q;u0) after sending a message û0. That action is necessarily optimal; this is subgame perfection

at work, and the second term of (3.9). Moreover, the single-crossing property does not hold – this

is the first term of (3.9).9 The reason is that there is no direct connection between the agent’s type

(her outside option u0) and her marginal utility of q.10Hence all types pool. Proposition 5 leads to

an immediate Corollary.

Corollary 2 A participation fee cannot be used to extract the agent’s rent.

for which the proof is evident and therefore omitted. Relying on the agent’s message to set a

participation fee is impossible by Proposition 5. At the same time, charging a(n) (expected)

participation fee based on the measure of participating agents
∫ u∗

0
u0

dG(z) would precisely deter the

marginal agent(s).

9The single-crossing condition is lost in a broad sense: the game is not even supermodular.
10Of course, Propositions 2-4 make clear some connection does exist, but it is indirect ; i.e. through the transfer t∗

and the FOC (3.5).
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Remark 1 An alternative timing may be to let the agent decide whether to accept the contract

before she knows her outside option. In an adverse selection context, this is known as ex ante

contracting. It is easy to see that the standard solution prevails, where u0 is replaced by E[u0] and

λ ≡ λ (E[u0]) , µ ≡ µ (E[u0]).

4 Discussion

4.1 The linear model

The CARA-normal-linear framework of Holmström and Milgrom (1987) has proven to be a very

useful model for much applied work. In a dynamic environment, the linear contract has also been

shown to be optimal – under some restrictions (Holmström and Milgrom (1987)). In this section it

is shown that the linear model offers insights about the impact of randomness of the outside option

that do not extend to a more general setting.

Let t = α+τq be the tariff offered, c(a) = (c/2)a2 and u = −er(t−c(a)), where r is the coefficient

of risk aversion. Let also q ∼ N (0, σ2). We know that the agent’s problem upon accepting the

contract (i.e. (3.3)) is unchanged, so that the principal’s program can be directly written

Problem 3

max
α,τ

G
(
−e−r[α+τ2/2c−(r/2)τ2σ2]

)[
τ

c
−

(
α+

τ2

c

)]
Some optimization and simple algebra leads to the standard solution for the slope: τ = 1/(1+rcσ2).

Because the slope of the affine contract in unchanged, the agent’s optimal action is unaffected and

remains as in the second-best problem. In this model therefore the stochastic nature of the outside

option has no consequences on incentives, and therefore on welfare.

This outcome is a feature of the exponential specification. The term τ is independent of u0,

which is not true according to the standard condition 1/u′ = λ + µSBfa/f of Problem 1 (since

λ ≡ λ(u0) in particular, and even less when g/G enters the FOC (3.4) directly). The reason is

that in the Holmström-Milgrom model (1987), the agent’s optimal action defined as a = τ/c is

independent of level of utility, unlike in (3.1) or (3.3). Consequently, the rate of substitution of

the principal between instruments α and τ is also independent of level of utility. Indeed, take the
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first-order conditions of the standard linear-CARA-normal problem

−1 + λre−r[·] = 0(
1

c
− 2

τ

c

)
+ λre−r[·]

(τ
c
− τrσ2

)
= 0

Re-arranging and dividing one by the other gives the “marginal rate of substitution” between α

and τ , which is independent of e−r[·]. In consumer theory this leads to corner solutions. The

“corner solution” here is to always increase α to satisfy participation, while τ remains unchanged.

In other words, the exponential utility does not just “abstract from wealth effects” (as noted by

Holmström and Milgrom); there is complete, but somewhat artificial, separability of the instruments

available to the principal. A similar property can be verified when the outside option is random;

τ never changes while α adjusts to solve the participation problem as in Problem 2. Then the

comparative statics of Proposition 3 all carry over, where dispersion is measured by the variance

but Proposition 4 no longer follows in it entirety as effort does not change.

To further the insight into the limitations of the CARA-linear-normal model regardless of

whether the outside option is random, consider the following simple example. Take a linear contract

t = α + τq, an effort cost c(a) = a2/2, a simple two-outcome space: q ∈ {0, 1} with a distribution

Pr(q = 1) = a and an arbitrary utility function u(·), increasing and concave. The agent’s payoff is

au(α+ τ) + (1− a)u(α)− a2

2

so that the maximizer is â = u(α+ τ)− u(α). Internalizing this, the principal’s payoff reads

â(1− α− τ)− (1− â)α,

which is maximized when τ∗ ≡ τ∗(α) = 1 − u(α+τ)−u(α)
u′(α+τ) . The optimal slope is a function of the

intercept. The implication is this: with any other functional form than exponential utility, the

intercept does affect the determination of the slope parameter, which governs incentives. So, the

participation constraint is not neutral on incentives. With a stochastic outside option, participation

is more costly to ensure, with now well understood consequences on the provision of incentives.

4.2 Risk aversion of the principal

One may conjecture that a risk-averse principal may want to increase the transfer function t∗ even

further (for any q) in order to secure the agent’s participation. When the principal is risk-averse
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the contract differs from the scheme characterized by (3.4) and (3.5) only to the extent of risk

aversion. Indeed, let the principal have payoffs w(q− t) with w(·) increasing and concave, the first

order conditions now read:-

w′(q − t)

u′(t)
=

g(U)

G(U)
π(t, a) + µ

fa(q|a)
f(q|a)

(4.1)

and ∫
Q
w(x− t(x))dFa(x|a) + µ

∫
Q
u(t(x))dFaa(x|a)− c′′(a) = 0 (4.2)

The interpretation of (4.1) does not depart much from that of (3.4), but is quite illustrative: a

very risk-averse principal wants at least some output; he will offer a flat transfer that secures

participation and needs not induce high effort.

4.3 Connection to Adverse Selection

Bar for the appearance of the hazard rate g(U)/G(U) in the first-order condition (3.4), the results

of this paper bear little resemblance to those of Rochet and Stole (2000). This should come as

little surprise in that adverse selection and moral hazard are quite different problems. It is worth

mentioning however that Rochet and Stole (2000) show that the introduction of a random outside

option reduces distortions (i.e. is welfare improving, most notably at the lower bound of the type

space). In contrast I find that a random outside option enhances distortions (i.e. decreases welfare).

The ultimate reason for this essential difference resides in the fundamentally different nature of

the agent’s informational rents. In the adverse selection model the information rent exists regardless

of the stochastic nature of the outside option. The principal pays that rent with probability

G(U) < 1: randomness decreases the expected rent paid out. Reducing the distortion, which

is costly to the principal, is thus inexpensive, as well as effective, to increase the probability of

acceptance. Under moral hazard instead, the randomness of the outside option introduces a new

informational rent that the principal can control only imperfectly using the transfer; no direct

distortion of the allocation–here the action–is possible (recall (3.5)). More obviously, randomness

of the outside option increases the expected cost T (a) of any action. Hence the principal’s preferred

action can only be lower than the second-best.
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5 Conclusion

This paper presents a model of moral hazard when the agent’s reservation utility is uncertain. The

introduction of a random outside option has real implications for the optimal contract. Secur-

ing participation becomes an issue for the principal, in addition to addressing the moral hazard

problem; this introduces a new trade-off between rent extraction and participation. The optimal

transfer reflects these twin concerns, and is costlier. This has consequences on his ability to provide

incentives for effort: given a higher cost, the prescribed action is necessarily lower. Thus private

information held by the agent about her outside option leads to a socially worse outcome. The

welfare losses are in fact twofold: the principal prescribes a lower action, the consequence of which

is a lower participation probability. This stands in contrast to the case of adverse selection, where

that same private information is welfare enhancing in that distortions are reduced.

Any participating agent receives an ex ante rent in this model. One may thus interpret random-

ness of the outside option as akin to conferring some bargaining power to the agent. This would

not be faithful to the details of the game; here the principal still makes a take-it-or-leave-it offer

to the agent. In doing so however he is less informed than in the standard problem and thus faces

the trade-off we now know.

Describing the outside option as a random variable can be conceived of as a reduced form for

a market game, in which principals compete by posting contract and agents make participation

and effort decisions. The current results lead me to conjecture that agents will receive rents and

that contracts will display weaker incentives (than the second-best). While economists think of

competition as being socially beneficial because it removes distortions, the present paper suggests

the details of the competitive process and the contracting game are essential in achieving allocative

efficiency. Furthermore, if the outside option u0 is generated by offers from competing principals of

varying quality (modeled for example as different supports Q, or different transformations of q), the

result herein seem to imply that lower-quality principals would only be able to induce lower effort

than high types. That is, the moral hazard problem may amplify the differences in the principals’

underlying abilities. The details of these questions are left for future research.
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6 Appendix

Proof of Lemma 2: Taking the FOC of the Lagrangean formed by the objective function and the

constraint (3.3) is straightforward and therefore omitted. Both (3.4) and (3.5) arise by application

of the Envelop Theorem (i.e. (3.3) holds). To show that µ > 0 I apply the proof of Jewitt (1988)

to Conditions (3.4) and (3.3). Rewrite fa = (1/u′ − [g(U)/G(U)]π(t, a)) f(q|a)/µ from (3.4) and

substitute in (3.3): ∫
Q
u(t(x))

(
1

u′
− g(U)

G(U)
π(t, a)

)
dF (x|a) = µc′(a)

Integrate (3.4) over Q : Eq[1/u
′] =

∫
Q[g(U)/G(U)]π(t, a)dF = [g(U)/G(U)]

∫
Q π(t, a)dF =

[g(U)/G(U)]π(t, a) by the Law of Iterated Expectations. Therefore∫
Q
u(t(x))

(
1

u′
− Eq

[
1

u′

])
dF (x|a) = µc′(a) > 0

so µ > 0 as claimed.

Proof of Lemma 3: Necessity is immediate. To show sufficiency, recall that G(·) is log-

concave (lnG(·) is concave), so that g(·)/G(·) > 0 and ∂
∂u0

(g(·)/G(·)) < 0. The term π(t, a) is

clearly decreasing in t. For a fixed a the last term of (3.4) is independent of t, so the RHS of

that condition decreases in t while the LHS increases. Hence t∗ is unique, given some fixed a. We

already know that (3.5) is sufficient from the standard problem under the conditions of the FOA.

Proof of Lemma 4: Rewrite (3.4) as

g(U)

G(U)

∫
Q
u′(t(x))dF (x|a)π(t, a) + µ

∫
Q
u′(t(x))dFa(x|a) = 1

where µ
∫
Q u′(t(x))dFa(x|a) and

∫
Q u′(t(x))dF (x|a)π(t, a) are all well defined and bounded. There-

fore the ratio g(U∗)/G(U∗) is also bounded, and U(t∗, a∗) > u0.

Proof of Lemma 5: Suppose t∗(q) < tSB(q) ∀q and consider a realization u0 < u∗0. With a

fixed,

c(a∗) ≤
∫
Q
u(t∗(x))dF (x|a) <

∫
Q
u(tSB(x))dF (x|a) = c(aSB)

which contradicts the premise that a∗ = aSB (i.e. a is fixed). Conversely, with t∗(q) > tSB(q) ∀q∫
Q
u(t∗(x))dF (x|a) >

∫
Q
u(tSB(x))dF (x|a) = c(aSB) = c(a∗)

18



as claimed.

Proof of Proposition 1: Uniqueness of U∗ follows directly from the fact that (3.4) and (3.5)

are necessary and sufficient. The rest of the claim follows from the definition of the hazard rate

g(u∗0)/G(u∗0).

Proof of Proposition 2: Let L(a) ≡
∫
Q [x− t(x)] dFa(x|a)+µ

[∫
Q u(t(x))dFaa(x|a)− c′′(a)

]
for some transfer function t. The first-order condition defining a∗ is given by L(a∗) = 0 and

L′(a) ≤ 0 (strictly here thanks to the FOA assumptions).

Suppose that the contract 〈t∗, a∗〉 is such that a∗ ≥ aSB. Now a∗ ≥ aSB only if L(a∗) ≥ L(aSB)

at aSB. Recalling that ∫
Q
t(x)dF (x|a) ≡ t(a),

it then follows from Lemma 5 that t∗(a) > tSB(a) for any given a, and therefore that L∗(a) <

LSB(a) ∀a (by simple substitution of t(a) in L(a)). Hence the starting premise is incorrect: there

cannot be a contract 〈t∗, a∗〉 is such that a∗ ≥ aSB. Therefore a∗ < aSB. We know that t(a) in

increasing and concave (for t(q) is increasing, concave in q (Lemma 1 in Conlon, 2008)). It then

follows that

Eq [t
∗(q)] ≡ t(a∗) < Eq

[
tSB(q)

]
≡ t(aSB).

To show that t∗(q) lies every where below tSB(q), I call on the monotonicity of t(a); therefore there

exists a function φ such that

t(q) ≡ φ(t(a))

where φ is increasing. Because a∗ < aSB, t(a∗) < t(aSB) so that

t∗(q) ≡ φ(t(a∗)) < tSB(q) ≡ φ(t(aSB)).

Proof of Corollary 1: Let a′ solve (3.1) (the agent’s first-order condition in the standard

problem). Now observe that because a∗ = â < aSB = a′,∫
Q
u(t∗(x))dFa(x|â) <

∫
Q
u(tSB(x))dFa(x|aSB) (6.1)

necessarily from the agent’s first-order condition. Also, F (q|aSB) FOSD F (q|a∗). It is therefore

also true that F (q|aSB) SOSD F (q|a∗). Define the variable q∗ = qSB + ε, where q∗ ∼ F (q|a∗) and
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qSB ∼ F (q|aSB) (so q∗ is more risky than qSB). Consider again (3.1), as under F (q|aSB), and

differentiate with respect to ε at ε = 0:[∫
Q
u(t(x))dFaa − c′′(a)

]
da′

dε
+

d

dε

∫
Q
u(t(x))dFa = 0

The last term is equivalent to (6.1) so it is negative. The bracketed one is the agent’s second-order

condition; it also negative. Therefore da′

dε < 0 necessarily and so is the reciprocal. Last, take U(a)

and differentiate with respect to a:

dU(a, u0)

da
=

(∫
Q
u(t(x))dF (x|a)− c′(a)

)
+

dε

da

∂

∂ε

∫
Q
u(t(x))dF (x|a) > 0

where the first term is zero by (3.3) and the partial derivative necessarily negative by SOSD. So as

the action decreases, so does the rent U(a). Because the marginal participating agent is identified

by U(a, u∗0) = u∗0 and the measure of participating agents is G(U∗), the latter necessarily decreases

as ε increases.

Proof of Proposition 3: First let â solve the agent’s moral hazard constraint (3.3). In

equilibrium, â = a∗. Differentiate (3.3) with respect to t:∫
Q
u′dFa(x|a) +

[∫
Q
u(t(x))dFaa(x|a)− c′′(a)

]
dâ

dt
= 0 (6.2)

Since the term in the brackets is the agent’s second-order condition, it is negative. Therefore dâ
dt > 0.

To prove the first set of claims, consider two distributions F 1(q|a) and F 2(q|a), where F 2 is a

mean-preserving spread of F 1 (see Rothschild and Stiglitz, 1970). Fix t; because F 1 dominates F 2

in the second order sense, it follows from (3.3) that at â∫
Q
u(t(x))dF 2

a (x|a) <
∫
Q
u(t(x))dF 1

a (x|a) (6.3)

from (6.1). Define the variable q2 = q1+ ε, where q2 ∼ F 2 and q1 ∼ F 1 (so q2 is more risky than q1,

and (6.3) follows). Consider again (3.3), as under F 1, and differentiate with respect to ε at ε = 0:[∫
Q
u(t(x))dF 1

aa(x|a)− c′′(a)

]
dâ

dε
+

d

dε

∫
Q
u(t(x))dF 1

a = 0

By (6.3) the last term is negative, so dâ
dε < 0. Letting dâ

dε ≡ dâ
dt

dt
dε and using dâ

dt < 0, dt
dε < 0 as

claimed. To show that participation decreases, take U(a) and differentiate with respect to ε:

dU(a, u0)

dε
=

(∫
Q
u(t(x))dF (x|a)− c′(a)

)
da

dε
+

∂

∂ε

∫
Q
u(t(x))dF (x|a) < 0

20



where the first term is zero by (3.3) and the second one necessarily negative by SOSD. Because the

marginal participating agent is identified by U(a, u∗0) = u∗0 and the measure of participating agents

is G(U∗), the latter necessarily decreases as ε increases.

To show the impact of a change in risk aversion, consider a family of utility functions u(t; r)

parametrized by r; risk aversion (i.e. the concavity of u(·; ·)) increases in r. Suppose for simplicity

that u(t; r) is continuous and differentiable in r (as well as t). For a fixed contract C, we know that

d

dr

∫
Q
u(t(x); r)dF (x|a) < 0.

That is, equivalently, for any two r2 > r1,
∫
Q u(t; r2)dF (x|a) <

∫
Q u(t; r1)dF (x|a). It then follows

from (3.3) that a∗(r2) < a∗(r1); equivalently, differentiating (3.3)

d

dr

∫
Q
u(t; r)dFa(x|a) +

da

dr

(∫
Q
u(t; r)dFaa(x|a)− c′′(a)

)
= 0 (6.4)

Because the first term of (6.4) is negative it follows that da
dr < 0 as well. Making use of the fact

that da
dt > 0 completes the argument. To extend the result to the measure of participating agents

G(u0) simply apply the same argument as for the SOSD claim.

Proof of Proposition 4: Because G1 FOSD G2, G1 ≤ G2 ∀u0 ∈ U0 (strictly for at least

a positive-measure subset of U0) and ln(G1) ≤ ln(G2) as well. Therefore by log-concavity of

Gi, g1/G1 > g2/G2. Immediately from the first-order condition (3.4) we must have t1 solving it

under G1 larger than t2 solving (3.4) under G2 (for a fixed action). Therefore a1 solving (3.5) under

G1 must be lower than a2 solving (3.5) under G2. By application of the proof of Proposition 3

(above), participation is therefore lower – i.e. because a∗ = â, F (q|a2) FOSD F (q|a1), which is

sufficient for SOSD as well. To show the second claim, let G2 be a mean-preserving spread of G1

and let u′0 denote the value of the random variable such that G2(u′0) = G1(u′0). Therefore

G1(u0) < G2(u0); u0 < u′0

G1(u0) > G2(u0); u0 > u′0

By log-concavity of Gi, it then follows that

g1/G1 > g2/G2; u0 < u′0

g1/G1 < g2/G2; u0 > u′0
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and that t∗ solving (3.4) is higher (lower) when ũ0 < u′0 (ũ0 > u′0). Therefore a∗ solving (3.5) is

lower (higher) when ũ0 < u′0 (ũ0 > u′0). When a∗ is lower (higher), participation is lower (higher),

by application of the proof of Proposition 3.
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