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Abstract

We consider tenders/auctions for the procurement of items that do not
exist at the time of the tender. The cost of production is subject to ex-post
shocks, i.e. cost overruns, which cannot be contracted away or insured at
the time of tender. The contractors may default due to the cost overruns
once the project is underway. We consider a simple contract that specifies
the payment in case of default and the award that is paid upon successful
project completion. This contract is allocated at the tender and the award
part is determined by competitive bidding. We characterize bidding behavior
of contractors in standard tenders and derive the implications for the buyer’s
expected cost minimization.

1 Introduction

The volume of goods and services procured by the governments and the private sector
is enormous. Government procurement alone represents 17.4% of GDP on average
for OECD countries.! The means used for the procurement differ, but in all the
cases cost savings is emphasized. When the item may be procured from a number
of potential contractors and it is realistic to expect that those range in their costs of
production, competitive bidding is recommended as a tender method for government
procurement.”’ Developers and homeowners solicit quotes from several contractors
when building or renovating houses. Schools choose catering service providers via
similar tenders.

It may seem that procurement tender can be analyzed along the lines of a com-
mon auction, simply reversing the roles of buyers and sellers. The crucial distinction
between the auction and the procurement tender is that the item being procured at
the tender typically does not exist yet — a new building, a new type of aircraft, de-
livery of school lunches in the future. The production cost therefore cannot be known
with high precision at the time of the tender and may well increase at the production

'From “Government at a Glance 2009,” OECD, http://dx.doi.org/10.1787/724227300453.
2See i.e. the norms of Federal Acquisition Regulation in the USA, www.acquisition.gov /far/.



stage. Of course, the contractors preparing their bids factor in the possibility of such
cost overruns.

In a situation of high uncertainty over the future cost of the project the use
of cost plus contracts is advocated. They indeed perform well when the costs and
cost overruns are verifiable, however in a realistic scenario the contractor knows a
lot more than the buyer about the actual costs of the project.> Auctioning off cost
plus contracts in such situation does not help much, such tender would select the
contractor that is willing to accept the lowest profit margin, not the one that will
deliver the product at the lowest cost.

We therefore concentrate on the tender where the fixed price contract is allocated.
This form of the contract is most commonly used in the government defence procure-
ment, see Fox (1974), McAfee and McMillan (1986), and in the public infrastructure
procurement, see Bajari et.al (2008). With such contracts the buyer suffers from
ex-post risks that are realized if the winning contractor defaults once the project is
underway. In a typical auction setting such ex-post uncertainly does not affect the
seller, however, in procurement setting this uncertainty is the norm.*

This paper introduces a few twists in the standard model of procurement via
competitive bidding. The cost of the project is subject to the ex-post shock once the
contractor makes a significant irrecoverable initial investment.®” Such “significant
investment” is normalized to be equal to the estimate of the production cost which is
private information of the contractor. Thus our production technology is two-stage.
In the common procurement setting contractor’s ¢ estimate of the production cost
is identical to the total cost if contractor ¢ is given the job. In our model it is the
cost of the first stage of production. After the first stage is completed, the contractor
makes another draw that now determines the cost of completion of the entire project.
As we show, in equilibrium, the winner optimally completes the first stage but not
necessarily the second. She may be unwilling to finish the project given the award
that awaits and declare a default. Such event of default is verifiable and we allow
the (otherwise fixed price determined at the tender) contract to specify the default

3Some cost components are, of course, observable and contractible: e.g., the costs of materials and
of some labor and capital. However, a significant component of the costs (or cost savings) depend
on the much less tangible managerial talent, the quality of internal organization and monitoring,
and other concurrent projects of the contractor, etc.

4Systematic studies of cost overruns in public infrastructure projects report that in 9 out of 10
projects the cost will exceed the original quote with the average overrun at 28% of the winning bid
(see Flyvbjerg et.al. (2002)).

®More than 80,000 contractors filed for bankruptcy leaving behind unfinished private and public
construction projects with liabilities exceeding $21 billion in the United States during 1990-1997
(Dun & Bradstreet Business Failure Record).

6 Ashley and Workman (1986) in a survey of contractors and buyers in USA building industry
report that project engineering must be 40-60% complete to establish a reasonable estimate for the
cost.

"This assumption distinguishes our approach from most of the literature that deals with ex-post
uncertainty of the auctioned object, see Section 2.



payment.® In case of default the buyer captures the positive effect of the initial
investment but has to complete the project at extra cost. The contract is allocated
at the tender, we consider some common tenders, i.e. the lowest and the second-lowest
bid tenders and general incentive compatible tender.

Importantly, our setting allows to reduce the problem of the expected cost min-
imization to the problem of finding the tender that minimizes the probability of
default. In previous studies of procurement tenders such equivalence does not follow.
We find that in our symmetric independent private values setting the expected cost
equivalence does not follow. We show that (given the level of default payment) the
lowest bid tender generates the lowest expected cost among all incentive compatible
tenders when the distribution of the ex-post shocks is log-concave. Specifically, with
such distribution given the level of default payment, the lowest bid tender minimizes
the probability of the winner’s default. With appropriately chosen default payment
the lowest bid tender implements the optimal auction in our setting and reduces the
probability of default to zero.

Our findings help to shed some light on the relative prevalence of the lowest-bid
tenders in procurement. The sealed bid second price or open ascending auctions are
commonly used to buy goods ready to use, but are virtually never used in procure-
ment, see Carpineti et.al.(2006). In Italy, for example, the format of the procurement
tender is regulated by law, and the law states that the winner of the tender can
only be paid what he bids. Also in Italy between 1998 and 2006 the required tender
mechanism was the average-bid tender, see more on such tender in Section 5. In 2006
a legislative reform allowed to choose between the average-bid and the lowest-bid
tenders, see Decarolis (2009). Our results suggest an explanation for this reform.

The rest of the paper is organized as follows. Section 2 positions the paper among
the literature. Section 3 outlines the model. Section 4 describes the equilibria in
the lowest and the second lowest bid tenders. Section 5 deals with the expected cost
minimization and contains our main results. Section 6 introduces the default payment
and extends the main findings to the richer setting. Section 7 contains directions for
future research.

2 Literature

In this Section we concentrate on the literature that deals with auction settings, n > 2
bidders and 1 buyer, ex-post shocks to the values and possibility of default.

The closest to our paper is Waehrer (1995). Waehrer and further Board (2007)
consider an auction model where after the auction but before the settlement a verifi-
able shock to all the values is realized.” The winner can default on her bid and lose

8In contract law such payment is called liquidated damages, in procurement the corresponding
term is surety bonds, see www.sio.org for more details.
9Contracts with auction prices contingent on the value of the shock are assumed out.



her bond. Further the winner and the seller may negotiate a new price. Several rene-
gotiation regimes are considered. “Strong seller” in Waehrer (1995) or “full recovery”
in Board (2007) are equivalent to our assumptions that i) the buyer fully captures the
effect of the initial investment and ii) net of the bond the winner’s payoff is reduced
to zero in case of default. Waehrer shows that the seller’s payoff is decreasing in
the size of the bond, which is the exact opposite of our Proposition 3. Board (2007)
shows that the seller prefers the second price auction to the first price auction, which
contradicts our Propositions 1.

With higher bond the probability of default increases in equilibrium both in
Waehrer’s model and this paper. In addition, Board (2007) shows that the prob-
ability of default is higher after the second price auction, just like in this paper. In
our model, however, lower probability of default is good news for the buyer. Even
though she extracts all the rent from the winner after a default, the buyer faces adap-
tation costs if the default occurs. In contrast, in Waehrer (1995) and Board (2007)
lower probability of default is bad news for the seller, which in Board’s own account
raises questions about the full recovery assumption in their model.

Chillemi and Mezzetti (2013) study the design of the optimal procurement tender
in the setting where the contractor can quit after the cost overrun because of a more
favourable outside option. The opportunity cost of this outside option is private
information of the contractor, but it is determined by the same draw as the cost of
working on the current project. Then the contractor who is the most efficient on the
current project is also the most likely to default and pursue the outside option. It
turns out that the optimal tender in such setting is a lottery—the buyer randomizes
over the identity of the contractor for her project.

Rhodes-Kropf and Viswanathan (2000) consider a twist to Waehrer’s model where
they allow the bidders to bid in securities whose value is derived from the future rev-
enue of the firm being auctioned. They consider a number of financial instruments
and show that in many cases non-cash auctions lead to higher expected revenue than
cash auctions. Eso and White (2004) derive the equilibrium bidding strategies in
Waehrer’s setting where the bidders are risk averse and their values are interdepen-
dent.

Parlane (2003) is an attempt to recast Waehrer’s model in procurement setting.
The key difference between Parlane and this paper is the timing of events that lead
to default and precisely what happens in case of a default. In our setting the cost
overrun is realized after a substantial investment by the winning contractor.!’ In
Parlane the shock hits after the winner is selected, before she makes any investment.
Further, if the winners defaults, the buyer starts from scratch. Parlane provides
partial analysis of the optimal procurement scheme, in her framework the actual
value of the adaptation cost becomes important.

Our model is complementary to the one studied in auction setting by Zheng

10This reflects the common point in construction industry literature that the cost of a complex
project cannot be known with good precision until the project is well underway.



(2001), and adopted to procurement by Calveras et.al. (2004), Burguet et.al. (2012)
and Decarolis (2009). In their model the bidders face common cost of the project
that is realized after the tender, the private information is about the amount of the
assets they stand to lose in case of default. Both Zheng’s and our models explain the
“abnormally low tenders” that concern the regulators. In Zheng (2001) equilibrium
the contractor with the lowest assets wins the tender and is the most likely to default.
The equilibrium in this paper has a similar property, the contractor with the lowest
private cost wins, but since she submits the lowest bid, the probability that the award
induces her to cover the cost overrun is also the lowest.

In Spulber (1990) the potential amount of cost overrun is privately known to
the contractors before the tender. When the contract is signed the cost overrun
occurs exogenously. Several contract enforcement regimes are considered. Liquidated
damages is the one equivalent to the surety bonds in this paper. In Spulber (1990)
such penalty for default leads to a pooling equilibrium at the bidding stage and the
buyer suffers from default whenever the cost overrun occurs. In contrast, in this paper
the equilibrium in the bidding stage is separating, the winner later optimally absorbs
some of the cost overruns, and the probability of the winner’s default is endogenous
and responds to the choice of the tender format and to the size of the surety bond.

The (binary) probability of default is given exogenously as part of the contractor’s
type in Chen et.al. (2010). The contractors bid is two dimensions, on the cost and
the amount of the liquidated damages in case they default. They buyer uses a scoring
rule to select the winner and pays the winner the cost part of her bid. Chen et.al.
derive the class of scoring rules that lead to the efficient allocation and characterize
the ones that minimize the buyer’s expected cost.

Several papers deal with the model where the private information is two dimen-
sional, both the value and the budget is known only to the bidder. Rhodes-Kropf
and Viswanathan (2005) consider the model with ex-post shocks to the values and
possibility of default. They bidders are allowed to access various forms of financial
instruments to finance their bids: borrow at exogenous interest rate, issue equity
or debt. The main finding is that even though access to financial markets allows
to reduce the problem to a single-index auction, with competitive financial markets
that auction is inefficient. In Birulin and Izmalkov (2013) the budget constraints are
“hard”. After the cost overrun the bidders may be unwilling, like in this paper, or
unable to finish the project, when the budget is insufficient. The main finding is that
the buyer improves her expected cost by splitting the tender award into ex-ante part
payable after the tender with the balance payable upon completion of the project.

Laffont and Tirole (1986, 87) and McAfee and McMillan (1986) combine moral
hazard with adverse selection. In their model the costs are subject to ex-post shocks
that can be mitigated by the winner’s higher effort. The buyer auctions off a menu
of contracts. McAfee and McMillan consider n risk averse contractors that bid for a
linear incentive contract that factors in both the cost (assumed observable ex-post)
and the winning bid and derive the optimal contract in this class. Laffont and Tirole



(1986) with one agent and Laffont and Tirole (1987) with n risk neutral contractors
derive the optimal selling procedure for an incentive contract. The optimal contract is
shown to be linear in ex-post cost with the burden of the cost overrun shared between
the winner and the buyer.!! The winner of the tender in Laffont and Tirole (1987)
optimally exerts the same amount of effort as the sole agent in Laffont and Tirole
(1986) (and so moral hazard is separated from adverse selection), but enjoys lower
informational rent.

The contracts in these papers combine the elements of the fixed price and cost plus
contracts. Such contracts are infeasible in our setting as both the original estimate
and the final value of the cost remain the private information of the winner.'?> In
addition in our model the contractors are protected by limited liability therefore cost
sharing schemes even when feasible provide limited incentives.

Piccione and Tan (1996) consider a model in which ex-ante symmetric potential
contractors invest in the cost reduction technology and then compete for the procure-
ment contract. The cost can be further reduced by exerting effort with no exogenous
shocks. If the buyer is able to commit to the procurement mechanism before the in-
vestment stage the first best solution can be implemented by either lowest or second
lowest bid tender under quite general conditions. If the buyer chooses the mechanism
after the initial investment stage the level of investment is suboptimal. Arozamena
and Cantillon (2004) consider a similar model, however, the contractors are ex-ante
heterogeneous, investment is only made by one of them and the level of investment is
observable which brings asymmetry to the competition. If investment affects which
contractor is the most efficient then the lowest bid tender will induce less investment
than the second lowest bid tender.

In the setting where the total cost of the project depends on the privately known
type (without cost overrun) and on the duration of works Lewis and Bajari (2011a)
analyze the tender where the contractors bid on the cost and the number of days to
complete. They show that such scoring rule improves expected welfare relatively to
the tender where the bids are only on the cost. Asker and Cantillon (2008) in similar
setting show that scoring auctions dominate price-only auctions, beauty contests,
and menu auctions. Asker and Cantillon (2010) further characterizes the optimal
procurement mechanism where both the fixed and the marginal costs of production
are private information of the seller. Lewis and Bajari (2011b) deal with the problem
where adaptation after cost overrun does not require renegotiation and can be done
solely by the contractor. They study efficient contract design where the incentives
are provided by deadlines and penalties for breach.

1 Che (1993) shows that a scoring auction with a scoring rule linear in price implements the
optimal scheme.
12See also Tirole (1986) on why the cost may be unverifiable even after completion.



3 The Model

The buyer, e.g. a homeowner or a government agency, wants to realize a project
that once completed it values at V. We assume V' high enough so that the buyer
always procures the project. There are N contractors/firms that have a capacity
to complete the project. The buyer conducts a tender and selects the winner. A
winning contractor has to make an initial irrecoverable investment representing all
the capital, labor, and managerial resources necessary for completion of the project,
and also faces an ex-post risk of a cost overrun that cannot be resolved at the time
of the initial investment. The cost of the initial investment for contractor i, c;, is
his private information. For every contractor ¢; is a random draw from [0, C] with
smooth c.d.f. F, that is we consider an independent private value setting. In practice
some cost components of procurement projects are observable and contractible: e.g.,
the costs of the materials and of some labor and capital. However, a significant
component of the costs (or cost savings) can be attributed to the managerial talent,
the quality of internal organization and monitoring, and other concurrent projects
of the contractor, etc. These are not directly observable or contractible and ¢; is
assumed to be their summary statistics.

The contractor ¢ that wins the tender may make an initial investment of ¢; in
the project.'®> Once she makes the initial investment she faces ex-post risk.!* Before
completion, but after the initial investment of ¢;, the winner may have to incur extra
cost z. This z is a random variable that represents the cost overrun, it is assumed to
be distributed with smooth c.d.f. F} on [0, Z] possibly with a mass point of F, (0) at 0.
The cost overruns can arise due to a management oversight, an adverse shock to input
costs, or some other unforeseen contingencies. It is essential that the cost overrun is
realized only after significant investment, ¢;, into the project.!®> We assume that these
overruns are also not verifiable and so cannot be contracted upon and have the same
effect on the cost of any potential contractor.'® The same symmetry with respect to

13In case she does not make such investment her payoff is normalized to 0.

14 As we show, in equilibrium the winner expects a positive payoff from the continuation of the
game therefore he has incentives to invest c;.

50ur model is similar in that respect to Riordan and Sappington (1986), Tirole (1986), and
Chillemi and Mezzetti (2013) but differs from Spulber (1990), Waehrer (1995), Zheng (2001), Parlane
(2003), Board (2007) and Burhuet et.al. (2012). Riordan and Sappington (1986) consider the tender
for monopoly franchise, where the bidders observe their marginal cost, their private information,
only after they invest the fixed cost, assumed to be the same for all firms. In our setting the initial
required investment is private information but the cost overrun is common. Tirole (1986) studies the
contracting problem where the firm chooses the initial investment that later leads to cost reduction.
In contrast here the required initial investment is determined by the production technology but is
only known only to the contractor.

16 Before the construction starts the actual cost of the project is unknown to any contractor, and
they will in general not agree with their estimates of the cost. However, once the preparatory work
has been done the degree of assymetry of the information “subsides”. The project becomes one of
the “standard” types. It remains true that the professional contractor has better information than
the buyer, but the professionals agree among themselves on the cost estimates once they recognize
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cost overrun is assumed both in the classic papers of McAfee and McMillan (1986)
and Laffont and Tirole (1987), and in the most recent Burguet et.al. (2012) and
Chillemi and Mezzetti (2013). The event that the project is completed is verifiable.
The award is paid only after successful completion.!”

The contractor may decide not to cover these extra costs in which case he is
not able to complete the project. The event of the contractor’s default is of course
verifiable and the contract specifies the payment S in case of default. This S is
the level of liquidated damages, see i.e. Waehrer (1995) or surety bonds, see i.e.
Calveras et.al. (2004). The two are equivalent in our formulation. The value of S
is ex-ante set by the buyer or an external party, e.g. industry regulator or code of
practice and is known to the contractors at the time of the bidding. If the contractor
quits after the initial investment we assume that the buyer captures the positive
effect of the investment. We also assume that if the contractor quits, the buyer is
not obliged to pay the award. These may be extreme assumptions favouring the
buyer.!® In practice, in construction industry after the disputes that result from cost
overruns, the contractor receives partial compensation for the work done, however,
the regulators that determine this compensation quite often side with the buyer.
Effectively, in most circumstances it is expected that the cost overrun is anticipated
by the contractor and factored in the original bid at the tender.

After the original contractor quits if the buyer decides to complete the project she
invites another contractor, j. This new contractor examines the state of the project
and provides the buyer with the cost estimate of z + a;. Variable a > 0 stands for
the extra direct costs that result from the original contractor being replaced with a
new one. They may include adaptation costs, the set up costs, etc. For the buyer the
realization of a; is a random variable, independent from z and c. The buyer may run
a new tender, selecting the contractor with the lowest a;, or she can merely choose
a replacement professional from the pool. Importantly, it is assumed that the buyer
does not renegotiate with the original contractor, despite a > 0.1%:2°

We consider a number of policies: modifications of the tender rules, varying the

the standard type.

1"Birulin and Izmalkov (2013) consider a similar setting where the award can be split into the
part that is paid ex-ante and the rest paid ex-post. In the setting considered here it is optimal to
pay the entire award ex-post.

18The equivalent of these assumptions is standard in the literature on auctions with ex-post shocks
and limited liability, see Rhodes-Kropf and Viswanathan (2000) and (2005), Zheng (2001), DeMarzo
et.al. (2005), “strong seller” in Waehrer (1995), “full recovery” in Board (2007).

19What we try to capture with our stylized model is an extensive relationship with the contractor
where many cost overruns are possible down the track. If the buyer demonstrates she is open
to renegotiation it effectively turns the fixed price contract into a cost plus one which changes the
underlying bidding game. In our environment with unverifiable costs the buyer is probably better off
not renegotiating and facing potential adaptation costs, however, we do not consider renegotiation
explicitly.

20In many settings where the buyer is a government agency the renegotiated is restricted or
prohibited by law, see Gil and Oudot (2009).



amount of default payment, all of which are determined ex-ante. Since the buyer
commits to a particular policy she is only concerned with Emin {a} = o > 0. This
a may also include the costs that affect the buyer but are not payable to the new
contractor, i.e. the cost of delays, the cost of running a new tender, negative emotional
effects, etc. The exact value of « is unimportant for our analysis, only the fact that
a > 0. As we show in our model the minimization of the total expected cost of the
buyer is equivalent to minimization of the probability that the original contractor
quits the project. Regardless of the particulars of the model the latter negatively
impacts the buyer and the policies that avert such events or decrease their chances
are important to consider.
The timing of the game can be represented as follows.

1. The buyer announces that she wants to procure the project and declares the
rules of the tender and associated policies. Each contractor i learns c;.

2. The tender is being conducted, the contractors submit bids, the buyer selects
the winner, say j, the size of the award is determined.

3. The initial investment of ¢; is undertaken by the winner.

4. The shock—the value of the extra investment required—is realized. If z = 0
the project is completed and the award is paid. If z > 0, the winner either

(a) makes extra investment z and receives the award, the ex-post payment
prescribed for the event “the project is completed” or

(b) abandons the project in which case the ex-post payments prescribed for
such event are executed and the buyer pays z + a to the third party to
complete the project.

The details of the particular policies considered are given in the corresponding
Sections. Finally, the objective of the buyer is to minimize the expected cost of the
project, inclusive or all the payments the buyer faces. The objective of each contractor
is to maximize its profits. Both the buyer and the contractors are risk-neutral and
have the same value for money.

4 Common Tenders

In this Section for simplicity of the exposition we assume that F), is continuous on
[0,00) and has no mass point at 0. We also concentrate the two common tender for-
mats, the lowest and the second lowest bid tenders. Section 3 treats general allocation
mechanisms and general distribution of the shocks F,.



4.1 The Lowest Bid Tender

Assume that the award is determined at the lowest bid tender, where all N contractors
submit sealed bids, the lowest bidder wins and the award is equal to the winner’s
bid. This award is paid only after the cost overruns are covered and the project is
completed. Assume there exists a symmetric equilibrium b = b(c) with increasing
b(c) and consider bidder ¢ with cost ¢, who pretends to have cost z and bids b (z) .
At the bidding stage the contractor, naturally, anticipates further shocks to the cost
of the project. The winner will optimally cover any cost overrun z < b and receive
the payoff b — 2 in such event. Therefore after winning with bid b and investing c¢ the
contractor expects the continuation payoff of ® (b) = fob [b — z] dF,. Integrating by
parts note that

@(b):/ob[b—z}dFZ:bFZ(b)—/ObzdFZ:/ObFz(m)d:r. (1)

Hence, the continuation payoff of a contractor that wins with bid b is ® (b) =
fob F. (z) dx, strictly increasing and continuous with ®’ (b) = F, (b). Consider ® (b(x)),
the continuation payoff that a contractor with true cost ¢ expects to receive if he wins
the tender with bid b (), which happens with probability (1 — F ()", and invests
c. Expected payoff of such contractor is then

I (c,2) = (@ (b(2)) =) (L= F (2))" . (2)

By the standard argument in a symmetric equilibrium each contractor maximizes her
expected payoff (2) with bid b(!) (¢) that solves

® (b (¢) =E[Y'Y' > ]. (3)

Note that upon winning the tender the contractor with cost ¢ expects positive
continuation payoff from the investment of ¢, hence she makes such investment in
equilibrium.

4.2 The Second Lowest Bid Tender

In the second lowest bid tender if bidder ¢ with cost ¢ bids b the lowest bid of the
others 3; > b determines whether the contractor will cover the cost overrun in case
z < [, or quit the project. Upon winning and after investing ¢ bidder i expects the
continuation payoff of

B1
o (B)) = /0 «dF,

Since , > b, and ® () is increasing in (5, with ® (0) = 0 contractor i with
cost ¢ maximizes her expected payoff with bid b that solves ® (b(c)) — ¢ = 0, hence
optimally chooses b such that

® (b@ () =c. (4)
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The optimal bid ensures zero profit if bidder ¢ happens to win at her own bid. Note
that will full commitment the optimal bid is b (¢) = ¢+ Ez. With limited commitment
the bids are below this full commitment level, since b (0) = 0 and ®' (b) = F, (b) is
increasing in b, see Figure 1.

A

Figure 1: Bidding strategy with limited and full liability.

With b < Z the contractor optimally expects not to always bear the cost overrun
and accordingly shades her bid relative to the one with full commitment, b/ in Figure
1. The winner, the contractor with the lowest ¢, shades her bid the most. Similar
result holds in the lowest bid tender and, more generally, in any incentive compatible
tender. This may explain the abnormally low, below the expected cost, bids at the
procurement tenders that quite concern the regulators.

4.3 Expected Cost Comparison

Consider the buyer who runs either the lowest or the second lowest bid tender. Such
tender selects the winner and determines the award, b that the winner will receive
upon the completion of the project. Denote with G (b) the distribution of the
award in tender A. G (b) in the lowest bid tender is linked to the distribution of
the lowest cost, ¢, by (3) and G® (b) in the second lowest bid tender is linked to the
distribution of the second lowest cost, ¢y, by (4). After tender A given the equilibrium
behaviour of the winner the ex-ante expected cost of the buyer

EAC = /0 h {bFZ (b) + /b N (2 + ) dFZ} dG™ ().

In this expression the first term corresponds to the event z < b where the winning
contractor covers the cost overrun, finishes the project by herself and receives b. The
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second term corresponds to the event z > b, where the winner optimally quits after
investing ¢, and receives no payment. The buyer replaces the original contractor
with another one who faces the same cost overrun z. Extra cost a > 0 represents
the ex-ante expectation of the adaptation costs as discussed in the description of the
model.

Adding and subtracting z in every realization (b, z) rewrite the expected cost as

00 b o0
EAC = Ez +/ {bFZ (b) — / zdF, + 04/ dFZ} dG™ (b).
0 0 b

With the above definition (1) of ® (b) such expected cost of the buyer simplifies
to

EAC =Ez + /OO [® (b) + aPr [z > b]] dGY (D).

In the lowest bid tender the winner’s bid satisfies ® (b (c1)) = E[Y![Y! > ¢],
and by the law of repeated expectations [;°® (b)) dGW (b) = E, E[Y!|[Y! > ¢1] =
Ec,. Similarly in the second lowest bid tender ® (b® (c3)) = ¢2, and [} @ (b¥) dG® (b) =
Ecy. Hence in both the lowest and the second lowest bid tenders the expected cost
reduces to

EAC = Ez + Ec, —l—a/ Pr[z > b dGY (b).
0

We now concentrate on the last term in the above expression. Recall that & is
strictly increasing and introduce variable ¢t = ® (b) . Now consider random variable ¢!
that is function ® transformation of the equilibrium award in the lowest bid tender.
Denote with G1 () the c.d.f. of such #!. Also consider #>—the ® transformation of
the equilibrium award in the second lowest bid tender, and the corresponding G2 (t2).
By the standard argument (see Le. Krishna (2002), p.23) one can show that G2 (t?)

is a mean preserving spread of G (t!).
Using b = ®~! (¢) observe that the probability of the winner’s solvency conditional
on the equilibrium award b

Priz<b]=Pr[z <@ ' (t)] = F. (27 (1))

Introduce U (t) = F, (&' (t)) . From the buyer’s perspective the ex-ante expected
probability of the winner’s solvency

/ Pr [z < b]dGY) (b) = / U (t)dGi (t).
If G2 (t2) is amean preserving spread of G1 () and U (¢) is concave then [U@) dG2 (t) <

JU(t dG1 If U (t) is strictly concave at some b the inequality is strict. That is if
U (t) is concave the buyer’s expected cost is higher after the second lowest bid tender.
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Similarly if U (¢) is convex the expected cost is higher after the lowest bid tender.
Since b = &1 (¢) with ®’ (b) = F, (b)

OF, (' () f.(27'(t) _ f.(b)

= = =0, (b
ot o' (b) O
Thus if the reverse hazard rate o, (b) is decreasing then U (¢) is concave, if o, (b)
is increasing then U (t) is convex. Since o, (z) = d—ln F, (x), for any F, that is
x

log-concave the reverse hazard rate o, (b) is decreasing.

Proposition 1 Suppose F, is log-concave. Then the probability of default is lower
after the lowest bid tender and the buyer prefers the lowest bid procurement tender to
the second lowest bid tender.

It is instructive to compare the above Proposition to a classic revenue ranking
result with risk averse bidders, Holt (1980).2! A risk averse contractor in the lowest
bid tender with full commitment maximizes H [b — ¢|-Pr [win|b] , where H is concave.
It follows that risk aversion makes contractors bid more agressively, that is bid lower,
in the lowest bid tender, whereas their bidding behaviour in the second lowest bid
tender is unaffected. Since the buyer minimizes the expected cost he prefers the
lowest bid tender. Proposition 1 shows an identical result but the driving forces
are quite different. In fact, a naive application of Holt’s result would lead to the
incorrect ranking of the two tenders. Since limited liability restricts the downward
loss of the contractor, his “utility” H is convex, not concave, so he is a risk lower.
Reinterpreting the logic of Holt’s argument, a risk loving contractor bids more in the
lowest bid tender, so the buyer prefers the second lowest bid tender in contrast to
what Proposition 1 states.

Our model differs from Holt’s on two counts. First, in this paper in the lowest
bid tender the contractor maximizes [® (b) — |- Pr [win|b] , so in contrast to Holt, the
objective function is quasi linear in the true type. Second, the functional form of ® in
our model arises endogenously. The result of Proposition 1, albeit similar to Holt’s is
driven by entirely different principles. Both in the lowest and the second lowest bid
tenders limited liability changes the bidding behavior but the buyer’s dealing with the
original winning contractor results in the same expected cost in both tender formats.
The difference in the expected cost stems from the need to invoke a replacement after
the original contractor defaults and the probability of that is higher in the second
lowest bid tender since the outcome of this tender is more random from the winning
contractor’s perspective, as Proposition 2 further elaborates.

More recently, Board (2007) compares the first and the second price auctions
in the setting where the bidder may default upon learning the value of the item
after the auction. Several possible continuations are considered depending on what

2Incidentally Holt’s original result is also in the context of procurement tenders.
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the seller “captures” after the winner’s default. In our procurement approach the
buyer does not pay after the default and also fully captures the effects of the initial
investment of ¢;. It is hard to provide a realistic scenario after which the buyer capures
more surplus. In the corresponding “full recovery” continuation in Board (2007) the
seller captures the winning bidder’s value after the default. Then it is shown that
the expected revenue increases in default probability which makes the second price
auction revenue superior.

5 Optimal Mechanism

In this Section we consider more general class of the distributions of the shocks. We
still restrict attention to full supports and deal with the distributions that are smooth
in the interior of the support but we allowe for mass point at 0 (which corresponds to
the case of no cost overrun) and deal with arbitrary Z, the upper bound of the shock
distribution support. We also consider general allocation mechanisms. From now on
our mechanism is an allocation rule is a vector ¢; (¢;,c_;) for each 7 that satisfies
>4 (ci,c—;) = 1. The allocation rule determines which of the contractors will be
doing the works. The allocation rule in itself may be a probability distribution given
the realized profile of the costs but it eventually selects one contractor, who is called
the winner. Extending the conventional allocative mechanism there are three types of
transfers for each ¢ that correspond to the only three verifiable events: i) contractor
i loses the tender, ii) contractor i wins the tender but fails to complete the project,
he then pays S to the buyer, and iii) winner i completes the project, he then receives
b from the buyer. We return to the optimal transfers for the losers later. For now we
concentrate on the incentives that S and b provide for the winner.

Suppose contractor i has been selected at the tender and the resulting contingent
transfers are b; (c) and S; (c). We further write simply b and S where this creates
no confusion. For given z the winner’s optimal continuation payoff is ¢ (b,S) =
max {b — z,—S}. It is instructive to write this as

60, S)=0b—-2)-I{z<b+S}—-5-I{z>b+ S}, (5)

where [ is the indicator function. Consider also the expected continuation payoff
®(b,s) = E,¢(b,S). If b+ S > Z the contractor will finish the project regardless
of the cost overruns so that ® (b,S) = b — Ez. If b+ S < Z the winner will finish
only if z < b+ S and receive b — z in these realizations, he will optlmally default and
pay S if 2 > b+ S. Then ® (b, S) = + [T (b~ 2)dF. - S [ ;dF.. Observe
that @ (b,S) = (b+S) F, (b+S) — fb+5 2dF, — S = b+5 F.(z)dx — S, after the
integration by parts. Therefore

b+S :
F,(x)de—S ifb+S<Z
= Jo
2 (65) { b—Ez ifb+S>2 (6)
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Note that for b+ S < Z

o (b, S)
b

o (b, S)

J 0S

—F,(b+S5)>0andd

—F.(b+5)—1<0, (7)

so that ® (b, S) is increasing in b and decreasing in S. Moreover @ (b, S) is contin-
uously differentiable (in both b and S) at b + S = Z. Note also that ®(0,5) =
[P (F. () = 1)dz < 0 for S < Z and ® (0, 5) = —Ez for § > Z.

Now turn to the implications of the above S and b for the buyer’s expected cost
EWC. If after the tender, winner i behaves optimally in the continuation the expected
cost of the buyer conditional on ¢ winning the tender can be written as follows

The expectation in EW C|i is with respect to the distribution of the costs ¢ and
shocks z and functions b; (c) and S; (c) are, of course, endogenous to the choice of the
allocative mechanism. The first term in E" C|i corresponds to the event b; + S; > z,
where winner ¢ covers the cost overrun, finishes the project by herself and receives b;.
The second term corresponds to z > b; + S;, where ¢ defaults, pays S; to the buyer,
who then faces cost z + « of finishing the project. Adding and subtracting z in every
realization E" C|i can be written as

EVCli=Ez+E[(bi—2) - [{z < b+ Si}] +E[(a—=Si) - [ {z > b; + S;}].
Now using the definition of ¢ (b, S) in (5) and @ (b, s) = E,¢ (b, 5)
EVC|i = Ez + Eg(b;, Si) + aE [Pr [z > (b; + S))]] - (8)

Thus, in our formulation the expected cost of the buyer and the continuation
payoff of the winner (6) are related in a particular way. Importantly, the relationship
between them resembles that in the classic auction for the good (in i.p.v. setting
with no ex-post shocks) with ¢(b, S) playing the role of the payment that the winning
bidder makes to the seller. In comparison to such classic auctions the above expected
cost has an extra term that captures the extra costs that the buyer faces after the
tender if the cost overruns prompt the winner to default on the project. We already
know from Proposition 1 that due to that term the tender format matters for the
expected cost even in a symmetric i.p.v. setting. It is important, however, that EY C|i
has an additive separable structure, which allows to tackle its terms in isolation.

As with classic auctions the need to respect the contractor’s incentive compat-
ibility and participation constraints has major implications on the optimal tender
format. Consider an incentive compatible tender A. Consider the truth-telling equi-
librium in the direct mechanism that corresponds to A. Denote with ¢ (¢;,c_;)
for all i the allocation rule in such tender and with b (c;,c_;) and SA (c¢;,c_;)
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the transfers defined as above, that is b (¢;,c_;) is the transfer that i receives af-
ter tender A if the realized profile of the costs is (¢;,c_;) and i successfully fin-
ishes the project and S (¢;,c_;) is what he pays if he defaults. Suppose con-
tractor ¢ with cost ¢; instead reports x. Then her expected payoff is I (c;,z) =
Jo B [(¢ (0] (x,c), S (w,¢4)) — i) - ¢* (x,¢4)] dF (c_;). Since this expected
payoff is quasi-linear in true type c; by the standard argument incentive compatibility
alone implies that the expected equilibrium payoff

T2 (ci, ¢;) = max/ E. [(¢ (b (z,c), S (z,¢0)) — i) -4 (w,c2)] dF (cy)
C_;

zeC;
(9)
is decreasing and concave in ¢;. Incentive compatibility also implies that

C
I ) =TC) + [ @ ) d, (10)

where C' is the worst possible type and Q#* (¢;) = [ ¢} (¢;,c—;) dF (c_;). The above

result is familiar interim payoff equivalence, see i.e. Krishna (2002). Since I (¢;, ¢;)
is concave and Q%! (¢;) = —9l (¢4, ¢;) /Oc; at every point where the derivative exists
the allocation Q# (c;) is decreasing in ¢;, i.e. the contractor with the lowest cost wins
in any incentive compatible tender, which results in efficient allocation in our model.
If hypothetically, S = 0 then incentive compatibility also implies that b (c;, c_;)
is increasing in ¢;, hence the contractor with the lowest cost also has the highest
probability of default. The expected cost considerations then require a distortion of
the allocation rule away from efficiency as in Burguet et.al. (2012). Accounting for
optimal S, however, as we further show alleviates the tension between the expected
cost (revenue) and efficiency considerations.

Consider all the tenders in the above class that share the same allocation rule
¢ (c) for all i and that have the same I (C') , where C is the highest possible cost.
In any such tender in equilibrium I (¢;, ¢;) is the same. The expected cost of the
buyer in a mechanism with allocation rule ¢! (c) for all i satisfies

EAC = Ez+ i > qi () B¢ (b7 (c), 57 (¢)) dF (c) + (11)
of 2 g (c) [1 = F. (6 (c) + S (c)) A Z)] dF (c) (12)

In (12) F. ((b (¢) + S (c)) A Z) is (capped from above by 1) probability of con-
tractor i not defaulting given the realized b (c) + S (c). The three terms in EAC
mimic those in EW'C given by (8). The first term on (11) is the expected value of
the cost overrun, it is invariant to the choice of the tender and the buyer expects to
pay it eventually. The second term is familiar from Myerson (1981) optimal auction.
It represents the expected cost of the first stage of the project together with the in-
formational rents left to the contractors at the tender stage. With full commitment
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(11) would be the entire expected cost of the buyer. Starting from the interim payoff
equivalence, using (10) together with (9) and performing the usual change in the
variables of integration (11) net of Ez transforms into

; > g (¢)E=¢ (b (c), S (c)) dF (c) = N-TI}* (C) + i > g (c) (ci + ;“gg;;) dF (c)

which implies that for (11) the choice of b (c) and S (c) is inconsequential as long as
incentive compatibility is respected and the resulting II (C') do not violate the par-
ticipation constraints. Put differently, treating S as exogenous, the choice of S has no
effect on (11) inasmuch the allocation rule ¢/ (c¢) is unaffected since in any incentive
compatible mechanism fc,i [4i* () E.¢ (b4 (c), S (c))] dF (c_;) is constant by (10).
Therefore in our formulation S has a potential to decrease (12) without affecting (11)
if it leaves the allocation rule unchanged. A recent paper by Burguet et.al. (2012)
approaches the optimal tender problem in the model where the contractors’ budgets
are their private information. In such model introducing S leads to additional com-
plications since it is in the same “dimension” as the bidders’ private information.
In addition, in the expected cost in Burguet et.al. (2012) the informational rents
enter multiplicatively with the probability of default. As in this paper, the probabil-
ity of default decreases with the contractor’s type, however, the informational rents
increase. As a result the characterization of the optimal mechanism is complicated.

From the perspective of (11), just like in Myerson (1981) the optimal tender is
deterministic in the allocation rule and assigns ¢;* (c) = 1 to the contractor whose
ci + 1;((;7) is the lowest at c. Given the regularity assumption incentive compatibility
by itsels implies that the contractor with the lowest cost ¢; wins the tender, hence
Q7 (¢;) = (1 = F(¢;))N ™" for all 4. In our formulation V is high enough so that the
project is always procured, however, this does not deemphasize the expected cost
minimization.

The term on (12) reflects the impact of the expected probability of default on the
expected cost and captures the effects of the higher moments of the revenue distrib-
ution as was illustrated by Proposition 1. The logic of Proposition 1 is that adding
randomness (from the winner’s perspective) to the tender outcome, that is consider-
ing b that depend on the costs other than the winner’s, increases the probability of
the winner’s default. Proposition 2 below generalizes Proposition 1 and shows that
the tender where b only depends on the winner’s private information minimizes the
probability of the winner’s default.

Proposition 2 Consider incentive compatible tenders with the same allocation rule
and same payoff to the lowest possible type. Suppose the default payment S is given
erogenously in each tender. To achieve the same probability of default the tender
where b is entirely determined by the winner’s ¢; requires the lowest S.

The proof is in Appendix. In our model the contractors are assumed to have
unlimited budgets. This may not hold in reality and requiring high default payment
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may decrease the participation in the tender which in itself will drive the expected
cost up. The fact that the tender with “simpler” payment rule requires lower default
payment is therefore remarkable. Proposition 2 and (11) both call for the use of
the lowest bid tender with appropriately chosen S. As long as S is such that the
winner’s probability of default is zero, the optimal tender simply minimizes (11). It
is well known that the lowest bid tender achieves this minimum. By Proposition 2 the
lowest bid tender also requires the lowest S to ensure against the winner’s default, so
that (11) and (12) are alighned in our model. Importantly, the instruments that we
show to be optimal are already used in procurement. The following Section briefly
describes the concept of the surety bonds and analyses their interplay with the lowest
bid tender.

6 Lowest Bid Tender with Surety Bond

Surety bonds were introduced in the USA by the Heard Act of 1894 and are also quite
common in Canada and Japan. The Heard Act was replaced in 1935 by the Miller
Act. The Miller Act requires the contractor to provide surety bond for any Federal
construction contract over $100°000 in value. All the U.S states have since adopted
similar legislation, through the acts known as “Little Miller Acts”. The American
Institute of Architects also recommends the use of the surety bond in its standard
building contract.?> A surety bond guarantees the buyer that the contractor will
complete the contract according to the terms including the price and time frame.
The surety company evaluates the contractor’s capacity to perform the project and
also his financial capacity to pay the bond in case of default. In some cases the surety
also requires the contractor, or the contractor indemnitors, to pledge enough assets
to serve as a collateral on the bond. Our model is already well geared to incorporate
surety bonds, in what follows surety bond S is an exogenously given default payment
that applies uniformly to any contractor who wins the tender. The buyer chooses S
ex-ante and informs the bidders about the chosen value. The value of S influences
the bids in the lowest bid tender and the subsequent expected cost but that influence
is already fully captured by (8).

We further discuss the optimal size of the surety bond. Such question is addressed
with numerical simulations in Calveras et.al. (2004) for the second lowest bid tender
in Zheng’s model. The rest of this section revisits the lowest bid tender with surety
bond S as discussed above. We have already noted that with S > Z the winner
will never default. In fact, such high S is excessive. As before in the symmetric

22 Article 11.4 of General Conditions of the Contract for Construction states: “The Buyer shall
have the right to require the Contractor to furnish bonds covering the faithful preformance of the
Contract and payments of obligations arising thereunder as stipulated in bidding requirements or
specifically required in the Contract Documents on the date of the execution of the contract.”
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equilibrium of the lowest bid tender the equilibrium bid solves
®(b(c,S),S)=E[Y'|Y!'>(], (13)

with @ (b, S) given by (6).

Upon winning the tender the contractor with cost ¢ expects positive continuation
payoff from the investment of ¢, hence she makes such investment in equilibrium.
Note that b(c, S), the solution to (13) for given S is unique and increasing in ¢, so
that the contractor with the lowest cost wins in equilibrium. Also from (7) note that
b(c,S) is increasing in S, with

db(c, S) 1
s Eers 0 (14)

In addition from (14) d(b(c¢,S)+S)/dS = 1/F.(b+S) > 0 for any ¢, hence
when S increases the probability of the winner’s default and the buyer’s expected
cost decrease. Thus in our setting higher S gets reflected in higher bids in the tender,
however, that by itself does not change the expected cost, (11) stays constant since
(13) holds for any S < Z. Surety bond is therefore a “cheap” and effective instrument
that discourages default. Not only the winner loses her bond if she is not willing to
cover the cost overrun, she is also forfeiting the higher award from the tender.

Remark 1 Waehrer (1995) examines the effect of the surety bonds in the setting
where the buyer may default upon learning the value of the item after the auction.
Under “strong seller” assumption where the seller captures the buyer’s value after the
default the expected revenue increases in default probability hence the buyer prefers
not to use surety bonds.

The optimal S* ensures that the probability of default is zero, that is b(c, S*) +
S* = Z for any c. Since b(c, S) is increasing in ¢, optimal S* discourages the win-
ner with own cost of 0 from defaulting. Such winner bids according to ® (b, S) =
E[Y!Y! > 0] = Ecy. Therefore optimal S* is given by

5 = /O F. (z)dz — E o3 (15)

Clearly S* < Z. Proposition 2 also shows that for any other tender format optimal
surety bond would be higher than S* given by (15). Since the lowest bid tender with
surety bond is efficient it implements the optimal tender, that is minimizes (11), if
the surety bond satisfies (15) the tender also minimizes (12).

Proposition 3 In the lowest bid tender the probability of default and the buyer’s
expected cost decreases with the surety bond level. The lowest bid tender with optimally
chosen surety bond, given by (15), implements the optimal tender and minimizes the
buyer’s expected cost. Such combination of the procurement policies ensures zero
probability of default after the tender.
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Appendix I: Proof of Proposition 2

Proposition 4 Consider incentive compatible tenders with the same allocation rule
and same payoff to the lowest possible type. If F, is log-concave then the winner’s
probability of default is minimized by the tender where the winner’s report determines

b and S.

Proof. Consider the probabilities of the winner’s default in the mechanism W A
where b = b(¢;), that is the winner conditional on the winning faces no further
uncertainty in the mechanism, with any other incentive compatible A with the same
allocation rule ¢; (c) for all + and the same exogenously given S. When b (¢;) > Z — S
the winner does not default after W A. The rest of the proof concentrates on the
realizations ¢; where b(c;) < Z — S. Fix any such ¢; and for the ease of notations
introduce b = b (¢;) . From the interim payoff equivalence

/ ¢ (c)[®(b,S) — ¢]dF (c;) = / q; (c) [CID (b;4 (c) ,SZA (c)) — cl-} dF (c_;)

—1 —1

For b < Z — S the left hand side of the above is
b+S
/ 4 () [ / F(z)de— S — c,-] dF (c ). (16)
C_; 0

The right hand side may involve the realizations of c_; where b2 (c) + S (¢) > Z
and those where b2 (c) 4+ S# (¢) < Z. Since for every ¢; the interim expected payoff is
non-negative removing the realizations where b:! (¢) + S# (c) > Z from consideration
reduces the right-hand side so that

/Ci ¢ (c) [/Ob+s F.(2)de — S — CZ} IF (c.) >

(b (e)+57(e)) A2
> / g (c) / F,(x)dr — S —¢;| dF (c_)
c.; 0
In the above A denotes min operator. For given ¢; and S
b+S (b (e)+8)AZ
/ g (c) / F. (z)dx —/ F, (z)dx| dF (c_;) > 0.
Cc_; 0 0

Next we concentrate on the inner integrals. Partition the set of c_; into set T,
where b > b2 (¢;,c_;) and the complementary set I'C. Then the above integral can
be rewritten as

/F ¢ (©) /bb:is F. (z) dedF (c_) — /r 5 /b O (@) dadF (o).

+S
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Dividing and multiplying both integrals by f, (x)

b+S (b2 (e)+S)AZ
Jor @ [ R = [0 [ T G e e <
F.(b+5) | b+5 L | (b2 (e)+S)AZ |
/F 5 (c) / s e ) AF () / L / . (x) dzdF (c_;)

f(b+S)

+S

The inequality follows if F, is log-concave, so that F,/f, is increasing. Recall that
the argument applies to b+ S < Z. We have therefore argued that if the distribution
F, is log-concave then

b+S (bA(e)+8)rZ
/rqi (c) /b;“(c)—i-S f»(x) dxdF (c_;) — /rC qi (c) /b+S f» (x) dxdF (c_;) > 0.

Recalling the definitions of sets I' and I'® we have established that

b+S (b (e)+8)AZ
/ g (c) [ [ (x)dx —/ f.(x)dz| dF (c_;) >0,
C_, 0 0

—1

so that
CZ%A (c) F, (b(c;) +S)dF (c) > CZ%A (¢) F. (b (c) + S) A Z) dF (c).

The left hand side is the aggregate probability of solvency after the tender where
the own bid of the winner b(c;) determines her award after completion. The right
hand side is the aggregate probability of no default after the tender with the same
allocation rule where the award is determined by b (¢;,c_;). =
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