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The dairy goat industry in Australia is expanding due to an increase in consumer demand for 

alternative dairy products as a result of demographic and social changes in society.  Pre-

determination of sex through sperm sorting coupled with AI has the potential to improve the 

efficiency of production of Australian dairy goat herds by selecting for the most productive sex; in 

this instance, replacement does for breeding and milk production. Sex pre-selection can only be 

achieved efficiently by separation based on the difference in DNA content of X- and Y- 

chromosome-bearing spermatozoa.  

 

Artificial insemination of non-sexed fresh and frozen-thawed sperm is commercially available to 

dairy goat producers, yet unfortunately not widely adopted. To date no efforts have been made to 

pre-select the sex of goat kids using sex-sorted sperm. Offspring of pre-determined sex have been 

successfully produced using fresh (non-frozen) and frozen-thawed spermatozoa in pigs, cattle and 

sheep. Regardless, substantial losses are still evident before, during and after sorting and freezing as 

well as a general reduction in the survival rate, membrane integrity and fertilising ability of sexed 

and frozen sperm compared with non-sexed and non-frozen counterparts.  
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Introduction 
 
The ability to pre-determine the sex of offspring prior to conception is a highly desired technology for 

incorporation into assisted breeding programs for both production animals and wildlife. Selection of sex 

has important implications for populations in which one sex has more intrinsic value, for instance; stud 

operations and female dairy replacements. The efficiency of production would be improved by reducing 

animal wastage and allowing for the dissemination, manipulation and storage of superior genetic stock 

(Parrilla et al. 2004).  

 

To date, sex pre-selection can only be achieved efficiently by separation of sperm based on the difference 

in DNA content of X- and Y- chromosome-bearing spermatozoa coupled with assisted reproductive 

technologies (ARTs), namely artificial insemination (AI), in-vitro fertilisation (IVF) and embryo transfer 

(ET) (Maxwell et al. 2004). Advances in flow cytometry have led to the development of the high speed 

Beltsville sperm sexing technology, allowing for faster sort rates whilst maintaining a sort purity of 85-

95% (Johnson et al. 1999; Johnson and Welch 1999; Maxwell et al. 2004).  

      

Offspring of pre-determined sex using flow cytometry have been successfully produced using fresh (non-

frozen) and frozen-thawed spermatozoa in several mammalian species; pigs (Grossfeld et al. 2005), cattle 

(Schenk et al. 1999; Seidel et al. 1999), sheep (Hollinshead et al. 2003; de Graaf et al. 2006; de Graaf et 

al. 2007b) bottlenose dolphins (O’Brien and Robeck 2006) and humans (Fugger 1999). Dairy cattle are 

the only production species to commercially adopt sex-sorted sperm, as the value of the end product 

justifies the premium paid for sorting (Hohenboken 1999; Seidel 2003a). The value and demand for goat 

milk as an alternative dairy product is rising and with it the potential for commercially adopting sex-

sorted buck sperm to advance the growth of the industry. To date no efforts have been made to pre-select 

the sex of goat kids using sex-sorted sperm.     

 

Artificial insemination of non-sexed fresh and frozen-thawed sperm is commercially available to dairy 

goat producers, yet not widely adopted. The cost-benefit analysis reveals the cost efficiency of natural 

matings with bucks outweighs the added benefits of improved genetic selection and year-round 

production of milk, hair and meat associated with AI (Leboeuf et al. 2000). Standard protocols have been 

established specifically for the cryopreservation of goat sperm (Evans and Maxwell 1987). Interestingly 

the presence of egg yolk; a standard cryoprotectant in the sperm freezing of many species, has been 
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found to interact with the seminal plasma proteins in a goat ejaculate with detrimental effects incurred on 

sperm motility and viability during cryopreservation (Leboeuf et al. 2000; Dorado et al. 2007). 
 

Overview of the dairy goat industry 
 
The dairy goat industry in Australia is expanding due to an increase in consumer demand for alternative 

dairy products as a result of demographic and social changes in society (Stubbs and Abud 2002). At 

present the Australian dairy goat industry lacks the supply capabilities necessary for developing new 

export markets. The commercial adoption of assisted reproductive technologies to increase the efficiency 

of production is likely to provide opportunities to establish new export markets, particularly in Asia 

(Stoney and Francis 2001). 

 

Domestic markets for goat milk rely on the consumer perception of added ‘health’ and ‘nutritional’ 

benefits compared to cow milk (Stoney and Francis 2001). Despite its current expansion, the small size 

of the dairy goat niche market is a barrier against genetic and productive gains in the industry. There is a 

real need for commercialisation in the industry with a move away from traditional ‘cottage farms’ to 

large scale operations incorporating compelling marketing strategies to capture larger market shares. 

Artificial insemination protocols have been established (Purdy 2006; Dorado et al. 2007; Mara et al. 

2007) and offered on a commercial level to improve the rate of genetic gain, yet the incorporation of this 

technology into breeding programs has been slow. The costs, in terms of dollars and reduced viability is 

seen to outweigh the benefits to breeding programs of extending breeding and lactation beyond the 

breeding season to consistently supply the demand for products throughout the year (Leboeuf et al. 

2000). 

 

Pre-determination of sex through sperm sorting coupled with AI has the potential to improve the 

efficiency of production of Australian dairy goat herds by selecting for the most productive sex; in this 

instance, replacement does for breeding and milk production. There is also the additional benefit 

associated with AI of faster rates of genetic gain as genes from superior males are able to be transported 

across the country in a liquid or frozen state, negating the need for and costs associated with live animal 

transport. 

 

Sperm sexing 
 
Over the years, numerous efforts have been made to separate sperm into two distinctive sex-chromosome 

populations for sex selection based on presumed differences in weight, density, size, motility and surface 

charge (Johnson 1994; van Munster et al. 1999). No study based on physical attributes has been 

successful in demonstrating a skewing of the sex ratio in the resultant offspring (Seidel 2003b). To date 

the only effective method for pre-determining sex with separated sperm is based on flow cytometry and 

relies on a difference in the DNA content of X- and Y-chromosome-bearing spermatozoa after staining 

sperm with the fluorescing DNA-binding dye, Hoechst 33342 (Maxwell et al. 2004). This section will 

focus on the applications of sexing technology, the advances and constraints of the technology and how 

sperm sexing can be incorporated into the Australian dairy goat industry.      

 
Practical applications 

 
The costs and complexities involved with sex-sorting of mammalian sperm have limited the 

commercialisation and adoption of this technology to niche applications in several species with all 

applications requiring AI or IVF (Seidel and Garner 2002). The largest beneficiary of sex-sorting 

technology lies with production agriculture with practical applications revolving around situations in 

which one sex intrinsically provides more value to production. This is true for female herd replacements 

in the dairy industry for breeding and lactation, male steers for meat production due to their efficiency 

with growth rates and also in stud male operations (Lu et al. 1999; Seidel 2003b).   

 

Pre-determination of sex has various other uses in terms of research in biotechnology namely by 

advancing progress and limiting the number of animals required for studies, in companion, show and 

sporting animals; to reproduce superior genetics, but in particular for managing captive breeding and 

repopulation of wildlife (O’Brien et al. 2003; Seidel 2003a). In species with single sex dominated social 

structures, selecting for female offspring provides a means of accelerating the repopulation of 
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endangered species, which is especially true for those with slow growth rates and those unable to breed 

in captivity (Maxwell et al. 2004). Sex pre-selection also has important implications for human medicine 

by negating the risk of inheritance of sex-linked genetic diseases by selecting for female offspring (Seidel 

2003b).     

 
Current status of sex-sorting 
 

Countless numbers of offspring have been produced using the Beltsville sperm-sexing technology since 

the first reported case of successful pre-determination of sex in rabbit pups in 1989 (Johnson et al. 1989). 

At this time, standard speed orthogonal sperm-sorters had been developed and were capable of sorting 

350, 000 sperm per hour, after modifications were made to account for the asymmetry of sperm head 

morphology and to reduce the random orientation of sperm relative to the fluorescence detector. This led 

to the incorporation of a second detector measuring forward fluorescence and a beveled needle that 

altered the fluid stream from cylindrical to flat (Johnson and Welch 1999) and correctly orientated 20-

40% of intact sperm to the laser beam (Johnson and Pinkel 1986).  

 
The paddled shape and general asymmetry of sperm head morphology makes orientation relative to the 

detector crucial to maintain high accuracy during the sorting process. If not correctly orientated the 

asymmetry of the sperm head was shown to cause differential fluorescence after staining with DNA-

binding dye, Hoechst 33342, concealing the relatively small differences in DNA content that flow 

cytometry operates on. Without a clear distinction of the DNA content of a sperm head, individual 

spermatozoa may be sorted into incorrect tubes or flow directly through the system as waste (Johnson 

1999). Generally speaking, a greater difference in DNA content between X and Y sperm populations 

allows for a more accurate and efficient separation of the two populations (Maxwell et al. 2004). The 

inherent difference in DNA content has been characterised for most domestic livestock and recently this 

has extended to include wild primates and ungulates (O’Brien et al. 2003; Maxwell et al. 2004). 

 
Further refinements to standard flow cytometric technology included replacement of the beveled needle 

by an orientating nozzle with a ceramic tip giving sperm less time to lose orientation, which improved 

correct orientation of sperm to 70% (Johnson and Welch 1999). Conversion to high speed modified flow 

cytometers operating under increased pressure (40-50psi) improved the accuracy of sperm sorting - the 

purity of sorted populations, and the efficiency - the time taken to sort a sample (Maxwell et al. 2004). 

 

It is due to the advancements in flow cytometric technology that it is currently possible to operate at high 

sorting speeds in the order of 10-15 million sperm per hour with purities in excess of 95% (Evans et al. 

2004; Maxwell et al. 2004).  Johnson and Welch (1999) reported that sorting speeds of up to 20 million 

sperm per hour are achievable, although these speeds are generally associated with sexed populations of 

lower purities (75-80%). Although faster sort rates are theoretically possible and achievable, at this point 

where advances are still being made to reduce the high levels of sperm loss from handling, a compromise 

of lowered purity renders this approach less desirable.     

 

Considerable between-species differences in sperm characteristics necessitate the need for establishing 

species-specific protocols for the handling and processing of sperm during sorting. De Graaf et al. 

(2007c) described the standard procedure for the preparation, processing and flow cytometric sorting of 

ram spermatozoa. Ejaculates are collected, diluted to a concentration of 200 x 10
6
 sperm/ml and stained 

with the bisbenzimide fluorescent DNA-binding-dye Hoechst 33342 in a 34
°
C waterbath for one hour. As 

Hoechst has been deemed detrimental to sperm in large amounts (Durand and Olive 1982), it is best to 

minimise the concentration of Hoechst prior to sorting to reduce sperm damage whilst adding enough to 

ensure adequate resolution for sorting. 

 

 X-chromosomes intrinsically have a higher DNA content than Y-chromosomes, thus spermatozoa 

bearing X-chromosomes will absorb more dye and fluoresce more brightly compared with spermatozoa 

bearing Y-chromosomes. Food dye is added, and acts by permeating through the membranes of dead and 

membrane compromised spermatozoa, quenching their fluorescence. The modified flow cytometer then 

acts to remove the compromised population through the manual addition of ‘gates’ to select for the 

fluorescing population; thus the collected population should be composed of sperm with higher viability.  

 

Orientation of sperm relative to the fluorescent detectors and the break of fluid stream into small, 

uniform droplets are crucial for sorting with high accuracies (Johnson 1995). Theoretically, each droplet 

should contain a single live spermatozoon, under ideal working conditions (Suh et al. 2005). Droplets 
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that are empty, contain multiple spermatozoa or are incorrectly oriented pass directly through the laser 

and collect as waste (Johnson 1995). The brightest fluorescing population, displayed by the 90
°
 

histograms, are manually ‘gated’ and selected as the viable, correctly orientated sperm populations for 

sorting to simulate high purity populations (Johnson 1999; de Graaf et al. 2007c). Sperm that are not 

showing fluorescence are considered non-viable and not included in sorted populations. Orientated, 

fluorescing sperm are seen by the 0
°
 detector and charged either positively or negatively depending on 

their classification as either an X- or Y-chromosome-bearing sperm, depending on the degree of 

fluorescence. As the droplets pass through the electrostatic field they are deflected by oppositely charged 

brass plates and collected in separate tubes (Johnson 1999). 

 
Limitations 
 
Since the successful inception of sexed sperm to produce offspring in 1989 (Johnson et al. 1989), the 

techniques and equipment associated with sorting have undergone continual refinement to reduce the 

inefficiencies inherent in the process. Despite this, substantial losses are still evident before, during and 

after sorting alongside a general reduction in the survival, membrane integrity and fertilising ability of 

sexed sperm compared with non-sexed counterparts (Suh et al. 2005). The poor physiological condition 

of sperm post-sorting combined with the lowered fertility, high costs inherent in the process and low 

availability of sexing services limit the adoption of this technology for commercial purposes (Seidel 

2003).  

 

Despite improvements in the sorting technology, the relative inefficiencies still result in a limited number 

of sperm able to be sorted (Johnson 1999; Maxwell et al. 2004). A major loss of 30% of sperm occurs 

due to incorrect orientation during sorting even with integration of the ceramic tipped orienting nozzle 

(Maxwell et al. 2004). Seidel and Garner (2002) reiterate the concept and state that with an accuracy of 

90%, recovery of sperm is limited to 22%, and of this number half belong to each chromosomal 

population. Johnson (1999) attempts to quantify this phenomenon by attributing the cause to 

compromised flow integrity; the orientation of sperm relative to the detector, aggregates of sperm in each 

droplet, non-uniform staining, poor resolution and coiled tails of sperm. Regardless of the cause, until 

further refinements are made to reduce the losses associated with sorting, optimisation of methodologies 

for collecting, preparing and handling sperm prior to and post sorting are necessary.     

 

Several authors (Maxwell et al. 2004; Suh et al. 2005; Garner et al. 2006) report damages to sperm due 

to the effects of high dilution rates, staining with Hoechst 33342, mechanical stress, changing media, 

exposure to a UV laser and high pressures. Furthermore, they clarify that damage can be minimised by 

ensuring constant temperatures (37
°
C), optimal osmolarities, species specific collection and 

cryopreservation media and appropriate laser intensities. Due to the high pressures necessary for 

sufficient speed of sorting, sperm are expelled from the nozzle into a tube containing collection media at 

a rate approaching 90km/hr (Suh et al. 2005). Not surprisingly, this has been found to cause considerable 

reductions in viability and motility, not only from the speed, but also as a result of the rapid immersion of 

sperm into new medium (Johnson 1999).  

 

A study by Suh et al. (2005) aimed to quantify the damage to sperm as a result of high pressure 

cytometric sorting and found that reducing the operating pressure significantly improved post-sort 

viability of sperm. A recommended reduction in pressure from 50psi to 40psi is warranted following this 

study, as although reducing pressure to 30psi showed most improvement in viability, the difference 

between 30-40 psi was not significant enough to justify the reduction in sorting resolution (Suh et al. 

2005).   

 

The composition of the catch medium- the medium that sperm are expelled into post-sorting- also has 

important implications in the maintenance of viability and motility of sex-sorted spermatozoa. A good 

catch medium will buffer the fall of sorted sperm from the flow cytometer, provide a nutrient base for 

sorted sperm while sorting is underway and be compatible with other media used throughout the sorting 

process (Bathgate 2008 pers. comm).  

 

The use of Hoechst staining has met with much controversy, with suspicions that the DNA-binding stain 

has mutagenic properties likely to increase the probability of abnormalities in animals produced using 

sexed sperm (Durand and Olive 1982). Hoechst is a bisbenzimide stain that binds to the grooves of the 

DNA helix and is subsequently excited by a UV laser light, resulting in fluorescence. Despite reports of 

damage to DNA integrity and potential for mutation, numerous studies performed since this time have 
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found no evidence to support these claims. Catt et al. (1997) found no evidence of increased DNA 

‘nicks’ after exposure to high levels of Hoechst stain. Seidel and Garner (2002) also report no difference 

in motility or DNA integrity after analysis with a chromatin stability assay. Although no effects on sperm 

DNA are currently apparent, further investigations into resultant embryos from sorted spermatozoa are 

warranted. Offspring derived from sex-sorted sperm are physiologically normal with no reports to date of 

obvious genetic abnormalities (Johnson 1989; Johnson and Welch 1999; Seidel and Garner 2002; de 

Graaf et al. 2007c).  

           

The aforementioned speed of sorting is one of the main limitations to commercialisation of the sex-

sorting process. As mentioned previously, cattle are the only production species with commercially 

available sex-sorted sperm and this is in part due to the low dose of insemination required. Seidel and 

Garner (2002) report the process of sorting bull spermatozoa requires 8 minutes to achieve sufficient 

numbers of sexed sperm for a commercial cattle AI dose; 2 x 10
6
 spermatozoa per insemination dose. In 

comparison, sorting of ram spermatozoa generally requires 30 minutes to achieve sufficient numbers of 

sperm per dose; 8 x 10
6
 spermatozoa (Maxwell et al. 2004; de Graaf et al. 2007a).    

 

Overall the main constraint to sexing technology is the depressed viability and fertility of sperm post 

sorting. Numerous studies have documented lowered pregnancy rates compared with unsexed controls 

(Johnson et al. 1989; Seidel et al. 1999; Hollinshead et al. 2002) due in part to embryo mortalities 

(Morton et al. 2005), reduced insemination dose, timing of insemination relative to ovulation and 

reduced viability in the female reproductive tract (Maxwell et al. 2004). Sperm physiology has been 

characterised in part, particularly in relation to the reactions necessary for fertilisation. Sorted 

spermatozoa have been found to exhibit altered membranes and partial capacitation in response to the 

sorting process (Maxwell et al. 2004); such a response is a function of acrosomal reactions as the sperm 

matures. Thus, sorting is causing premature ageing of the sperm populations, similar to that experienced 

during transit in the female tract, freeze thawing and long term chilling of sperm (Seidel 2003b; Maxwell 

et al. 2004). The reduction in the in-vitro and in-vivo fertilising lifespan of spermatozoa necessitates the 

use of higher doses of sperm for AI whilst also timing AI closer to ovulation and inseminating close to 

the ovaries (Seidel and Garner 2002).   

      

Upon consideration of the constraints involved with sex-sorting sperm it comes as no surprise that there 

is still progress to be made before the technology will be ready for extensive industry incorporation. At 

this point, sexed sperm are considered very valuable due to the cost and time involved in their 

preparation, and as a result low numbers should be used in conjunction with ARTs such as IVF, 

laparoscopic intrauterine insemination, intra cytoplasmic sperm injection and low dose insemination 

(Maxwell et al. 2004). 

 

Incorporation of sex-sorted sperm into the dairy goat industry 
 
At the time of writing, only one published paper has attempted the flow cytometric sorting of goat sperm 

based on the difference in DNA content between X- and Y- bearing populations. Parrilla et al (2004) 

demonstrated that goat sperm could be separated into high purity X- and Y-chromosome-bearing 

populations with high sort rates and good accuracy. However, this study did not further assess the post-

sort quality and viability of sperm or the potential for sorted sperm to retain fertilising ability in-vivo and 

in-vitro. 

  

The relative merit of the study lies in the characterisation of the average difference in DNA content 

between X- and Y-chromosome-bearing goat spermatozoa; determined to be 4.4% (Parilla et al. 2004). 

In comparison with other production species, the ‘split’ of goat sperm into two populations is more 

resolved, and the larger difference in DNA would increase the accuracy and efficiency of sorting goat 

sperm. The DNA difference is similar to values established for ram spermatozoa; 4.2% (Figure 2) 

(Johnson and Welch 1999) providing further support to arguments of considerable between-species 

similarities. Between-species similarities in other ARTs, namely; cryopreservation media and chilled 

storage IVF hint at the potential for initial use of ram protocols for the sexing of goat sperm (Bathgate 

2008 pers. comm.). 

 

Further investigations are warranted to characterise the fertilising ability of sex sorted goat sperm in-vivo 

and in-vitro. Initial research (Parrilla et al. 2004) suggests that the difference in DNA between 

chromosomal sperm populations will contribute to the accuracy and efficiency of this process. 
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Cryopreservation 
 
Goat sperm was first frozen at -79°C in 1950 (Smith and Polge) with the resulting fertility of thawed 

sperm deemed to be too low for any practical application (Barker 1957). Since then, alterations and 

refinements to the process of freezing; addition of cryoprotectants and the rate of cooling, has led to 

improvements in the post-thaw survival, membrane integrity and fertilising ability of frozen goat 

spermatozoa (Leboeuf et al. 2000). Artificial insemination of sexed, frozen sperm will likely drive the 

commercialisation of sex-sorting technologies so improvements in determining optimal freezing methods 

are warranted. Based on protocols established for rams it is likely that sex-sorting goat sperm will take 

approximately 30 minutes per sample, due to the considerable between-species similarities. Coupled with 

the fact that inseminate doses should also be doubled to counteract the inherent losses involved with 

sorting and freezing, the need arises for a ‘bank’ of sorted sperm in preparation for heat onset of the doe.  

 
Practical applications 
 
The need to store and transport sperm are the drivers behind the development of cryopreservation 

protocols. Limitations to sexing technologies include the distance between males, females and the flow 

cytometer. At present, reliable sorting relies on the use of fresh or chilled (4-5°C) ejaculates, 

necessitating the need for males to be located close to the flow cytometer (Maxwell et al. 2004).  More 

importantly, sorted sperm may need to be transported considerable distances for use in the artificial 

insemination of females. Seidel (2003b) reports that in well-managed herds, fertility of frozen, sexed 

sperm is 70-80% of non-sorted sperm. 

 

In relation to the Australian dairy goat industry, both artificial insemination and cryopreservation have 

potential benefits in improving the progress of industry commercialisation. Artificial insemination may 

serve to improve the production of milk, meat and hair by controlling reproduction, in particular 

synchronising the time of kidding, selecting for improved genotypes, storing genetic material and 

increasing the number of offspring produced per sire (Leboeuf et al. 2000). Controlling reproduction can 

achieve acceptable fertility in the non-breeding season thereby improving the productivity of an 

enterprise by supplying end-products year round. Artificial insemination also allows for the efficient 

spread of superior genetics on a spatial and temporal basis without transmitting disease, improving 

genetic gains on an industry basis (Leboeuf et al. 2000). 

 

Recently Mara et al (2007) characterised the potential for long term viability of chilled sperm as an 

alternative to freezing. No compromise to fertility was reported with semen chilled at 4°C over 24hr, 

warranting the investigation of long term chilled preservation of sperm to overcome the inherent losses 

involved with current cryopreservation protocols. This study has arisen due to consumer pressure for 

organic dairy milk products, free from the hormones used to routinely synchronise oestrus in AI 

protocols including those involving frozen sperm. 

 

Cryopreservation of goat sperm 
 
Protocols for the cryopreservation of goat sperm have long been established (Evans and Maxwell 1987) 

with nuances specific to goats characterised and circumvented to maintain viability and fertility post-

thaw. The main hindrance of goat ejaculates relative to other domestic species is the deleterious effects of 

egg yolk on sperm survival through an interaction with seminal plasma components (Chauhan and Anand 

1990; Ritar and Ball 1993; Leboeuf et al. 2000). This concept will be further evaluated in the proceeding 

section.   

 

Leboeuf et al. (2000) describes the conventional method for freezing goat sperm. Initial dilution using a 

glycerol-based cryoprotectant at 30°C is followed by cooling to 4°C over 1-1.5 hours by placing the tube 

containing sperm in a volume of water and cooling the body of water. Sperm can then be frozen as 

pellets or straws and immersed in liquid nitrogen. The method for freezing in straws involves a two-step 

process; straws are loaded, capped and suspended horizontally in liquid nitrogen vapour 4-5cm above 

liquid nitrogen and after 4-5 minutes straws are immersed in the liquid nitrogen. The procedure for 

freezing on dry ice is comparably simpler, involving the freezing of a pellet of sperm on -79°C dry ice 

until solid and then immersing in -196°C liquid nitrogen.  
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The velocity of freezing is able to be regulated by the size of the pellet. Maxwell et al. (1994) report that 

the rates of cooling, freezing and thawing ram sperm are dependent on the surface-volume ratio of the 

package in which the sperm is frozen. Furthermore, Salamon and Maxwell (1995) describe that ram 

spermatozoa frozen in pellets are able to tolerate a wide range of freezing temperatures, ranging from -

79C to -160C, rendering them the most versatile method for freezing. Holding straws in liquid nitrogen 

vapour prior to immersion attempts to create a freezing temperature close to that of dry ice (-60C to 

80C) (Maxwell et al. 1994) 

 

In terms of time, post-thaw motility and survival, freezing in pellets imparts better viability (Ritar et al. 

1990; Ritar and Ball 1991; Maxwell et al. 1995) compared with straw freezing, but with the advent of 

computerised freezing machines this difference may be inconsequential upon consideration of an 

industry requirement for labeling of biomaterials (Purdy 2006). Identification of the date and dose of 

semen is possible with polyvinyl chloride (PVC) straws and this is particularly useful during banking for 

long-term storage of cryopreserved sperm. The drawback of freezing in pellets on dry ice not only relates 

to the limitations of labeling but also extends to cover the threat of contamination throughout the process. 

Sperm come into contact with the surface of the dry ice and are plunged directly into liquid nitrogen, 

neither of which can be assumed sterile.     

 

With regards to the in-vivo fertility of cryopreserved sperm, numerous studies have documented the 

pregnancy rates following AI of frozen sperm in various breeds of goats; 51% in Angoras (Ritar and 

Salamon 1983), 39% in Cashmeres (Ritar et al. 1990), 47% in Floridas (Dorado et al. 2007), 50% in 

Beetals and Bengals (Singh et al. 1995) and 57% in Murciano-Granadinas (Salvador et al. 2005). Studies 

have also reported fairly high kidding rates of goats inseminated with sperm stored for long periods. 

Fougner (1979) observed kidding rates of 63% after intrauterine insemination of sperm stored for 1-3 

years. Similarly Waide et al. (1977) witnessed kidding rates of 63%, 79% and 77% with sperm stored for 

1-30 days, 31-102 days and 210-1022 days, respectively. These studies demonstrate that goat sperm can 

be successfully cryopreserved whilst maintaining reasonably high fertility in-vivo. 

 

Current status and limitations 
 
Inherent to any cryopreservation protocol are losses in sperm numbers and viability due to the extra 

handling involved with the actual process of freezing. This has been attributed to the cooling rate, cold 

shock associated with temperature changes and the introduction of egg yolk and glycerol as 

cryoprotectants. Species differences and male to male variation in sperm numbers and viability post-thaw 

have also been observed (Leboeuf et al. 2000; Purdy 2006).   

  

Freezing and thawing compromises the structural integrity, biochemical processes and functionality of 

sperm; motility is reduced, membrane integrity is compromised, fertilising ability is suppressed and 

transport through cervical mucus is impaired (Maxwell et al. 2004; Purdy 2006; Dorado et al. 2007).  

Interestingly, Cox et al. (2002) observed a direct correlation between the ability of spermatozoa to 

migrate efficiently in cervical mucus in goats with the ability to colonise the oviducts and fertilise mature 

oocytes in vivo.  

 

A study by Dorado et al. (2007) found that freezing Florida goat sperm decreased motility substantially, 

yet the in-vivo fertility results obtained in the study remained in the average range of values determined 

by other authors for other breeds of goat to be representative of successful freezing. The group also 

identified that the structural integrity of the plasma and acrosome membranes of goat spermatozoa were 

more vulnerable to freezing (50% of acrosomes remained intact one hour post thawing) than the 

locomotor apparatus, as motility was not suppressed to the same extent as damage to membranes 

(Dorado et al. 2007).  The general conclusions of the study included the use of a greater number of sperm 

per insemination, inseminating close to the site and time of ovulation and by using goat sperm 

populations with highly rapid forward progressive motility to overcome the defects inherent in 

cryopreservation of goat spermatozoa. 

 

The addition of egg yolk to cryopreservation media as a cryoprotectant is routine in formulating freezing 

protocols for most domestic species. Egg yolk protects the plasma and acrosome membranes of sperm 

against temperature related injury such as cold shock, as during freezing the rate of cooling goat sperm is 

quite variable and at times rapid (from 4°C to -79°C in one step, and -79°C to -196°C in another; Dorado 

et al. 2007). During preservation, sperm cells also lose anti-oxidant enzymes and proteins, increasing the 

vulnerability to peri-oxidative damage and compromising survival and fertility (Mara et al. 2007).  



Orbit: The University of Sydney undergraduate research journal 
 

 

Vol. 1 No. 1 (2009) 
 

Remarkably the seminal plasma components, namely the enzyme originating from the bulbourethral 

gland secretion of a goat ejaculate causes specific problems in relation to preserving semen in egg yolk 

based diluents (Ritar and Salamon 1982; Mara et al. 2007). An egg yolk coagulating enzyme (EYCE) 

present in the seminal plasma of buck sperm exhibits a lipase activity on lecithin, a compound found in 

egg yolk and subsequently employed in many semen extenders, resulting in fatty acid and lysolecithin 

production (Dorado et al. 2007). Lysolecithin in particular is quite toxic to sperm cells, resulting in 

acrosomal damage and reduction in motility and survival (Leboeuf et al. 2000). 

 

The problems with EYCE can largely be circumvented by one of two methods; washing sperm 

immediately after collection to remove excess seminal plasma, or by using a lower percentage of egg 

yolk in the cryodiluent (in the range of 1.5-5%) (Leboeuf et al. 2000). Washing to remove seminal 

plasma coupled with the addition of 1.5-6% egg yolk was found to improve survival of sperm kept at 

37°C for six hours (Ritar and Salamon 1982).  The relative downfall in this method lies in its complexity 

and the time it takes to wash and equilibrate sperm samples and despite all these efforts sperm losses still 

ensue. A study by Corteel (1975) observed that washing for removal of seminal plasma in dairy goat 

breeds caused no improvement in fertility. Similarly Leboeuf et al. (2000) documented that the 

detrimental interactions involving seminal plasma proteins vary in intensity between the breeding and 

non-breeding season, as well as observing considerable male to male variation within breeds. 

 

Concluding remarks 
 
Domestic and global drivers for commercialisation of the dairy goat industry in Australia are demanding 

high quality goat milk products at low costs with a consistent supply year-round. Realistically these goals 

may only be achieved through adoption of assisted reproductive technologies; namely sex-sorting, 

cryopreservation and artificial insemination of buck spermatozoa.  Artificial insemination and 

cryopreservation protocols have already been established for dairy goats in Australia to improve the 

efficiency of production and dissemination of superior genetics, yet are not widely practiced.  It is likely 

that artificial insemination of sexed, frozen sperm will drive the commercialisation of sex-sorting 

technologies in the dairy goat industry.  

 

It has been shown that goat sperm can be sex sorted (Parrilla et al. 2004) and frozen (Leboeuf et al. 2000; 

Dorado et al. 2007). It is not known whether sex-sorted goat sperm retain their fertilising ability post-

sort, and furthermore, the viability of goat sperm after coupling sex-sorting with cryopreservation. As 

documented in other species, further refinements are needed in relation to the collection, preparation and 

handling of sperm prior to and post-sorting to reduce the loss of sperm numbers and reductions in 

viability inherent in flow cytometric sex-sorting. In relation to dairy goats, a protocol to circumvent the 

problems of egg yolk as a cryoprotectant is warranted.  
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