$$
\begin{aligned}
& \log m=\overline{5 \cdot 648927} \\
& \text { Ordinate at } 10^{\prime}=0.04^{\prime} \\
& 20^{\prime}=0 \cdot 36^{\prime} \\
& 30^{\prime}=1 \cdot 20^{\prime} \\
& 40^{\prime}=2 \cdot 85^{\prime}=y_{c} \\
& \text { Secant, } \mathrm{HQ}=(\mathrm{R}+\mathrm{h}-10) \sec \frac{\boldsymbol{a}}{\boldsymbol{2}}-\mathrm{R}_{1} \text {. } \\
& =118^{\prime} \\
& \text { Secant, } \left.\mathrm{PQ}=\mathrm{R}_{1}+\mathrm{h}_{1}\right) \sec \left(\frac{a-2 \gamma}{2}\right)-\mathrm{R}_{1} \\
& =8 \cdot 54^{\prime} \\
& \therefore \mathrm{HP}=3 \cdot 34^{\prime} \\
& \mathrm{HV}=\frac{3.34 \sin 68^{\circ}}{\sin 2^{\circ}}=88.73^{\prime} \\
& \text { and } \mathrm{PV}=\frac{3.34 \sin 66^{\circ}}{\sin 2^{\circ}}=87.43^{\prime} \\
& \mathrm{P} T=\left(\mathrm{R}_{1}+\mathrm{h}_{1}\right) \tan \left(\frac{a-2 \gamma}{2}\right)+\left(\mathrm{x}_{\mathrm{c}}-\mathrm{x}^{\prime}\right) \\
& =59.75^{\prime} \\
& \mathrm{VS}=1,500 \tan \frac{\gamma}{2} 1,500 \tan 1^{\circ}=26 \cdot 18^{\prime}=\mathrm{U} \mathrm{~V} \\
& \mathrm{ST}=\mathrm{P} V-(\mathrm{PT}+\mathrm{V} \mathrm{~S})=1 \cdot 50^{\prime} \\
& \text { Total tangent (H U) }=114.91^{\prime} \\
& \frac{1}{2} \text { Circular }{ }^{\text {Arc }}=\mathrm{R}_{1} \times \text { arc }\left\{\left(\frac{a-2 \gamma}{2}\right)-\phi\right\} \\
& =17 \cdot 33^{\prime} \ldots \ldots \mathrm{Q} \mathrm{~K}
\end{aligned}
$$

Example (4). Fig. 5 shows a curve of large radius with a small deflection angle. Suppose the deflection angle to be 10°. A suitable radius to adopt is 500 feet. Take this for the inner curve. The track centres should be $10 \cdot 3$ feet apart; an outer radius of 5103 feet, therefore, will suit the case, and give concentric curves. The outer curve need not be transitioned ; but a transition curve having a value of $h=0 \cdot 30^{\prime}$ will give the necessary clearance to the inner curve.

Since $h=0 \cdot 30$,

$$
\frac{\mathrm{h}}{\mathrm{R}}=\frac{0 \cdot 30}{500}=.0006
$$

The nearest value of h in the Table is
-000599
and the corresponding value of $\frac{\mathbf{x}_{\mathcal{C}}}{\mathbf{R}}$ is 0.12
This will give a transition of 60 feet, the details of which together with the other dimensions of the curve may be readily calculated as in previous examples.

Some tables of dimensions usually adhered to in laying out tramway curves are appended ; and the writer hopes the information contained in them may be useful to the reader.

With regard to the table of Compensations for Curvature, the rate of compensation is calculated from the formula-

$$
\mathbf{S}=5+025\left(\mathrm{D}^{\circ}-10^{\circ}\right)
$$

where $\mathrm{D}^{\circ}=$ degree of curve（i．e．，the central angle subtended by a chord of 100 feet）．
The transition should be compensated for gradually，from zero to a maximum where it merges into the circular arc ；but in practice an approximate average is computed in the following manner ：－

In Fig． 1 the radius is 80 feet and the transition 40 feet．
The transition angle，ϕ ，is $15^{\circ} 38^{\prime} 24 \cdot 5^{\prime \prime}$ ．
The degree of curve of the transition is taken as equivalent to

$$
\frac{15^{\circ} 38^{\prime} 245^{\prime \prime} \times 100}{40}=39^{\circ} 06^{\prime} 00^{\prime \prime}
$$

On a ruling grade of 1 in 15，the compensated grade for this transition becomes 1 in $18 \frac{1}{2}$ ，and for the circular arc 1 in $22 \frac{1}{2}$ ，as may be seen by reference to the table．

Gauges，Grooves，Super－Elevation and Distance between
Tracks on Tramway Curves．

Radius	Girdir Ram		T Rall				Super－elevation 12 Miles per Hour	
	Weight	Gauge of Road．	－Weight．	Gauge of Road．	Widthof Groove		$\begin{gathered} \text { Old } \\ \text { Table. } \end{gathered}$	$\begin{aligned} & * \text { New } \\ & \text { Table. } \end{aligned}$
feet				ft．in．	in．	ft．in．	in．	in．
50	9	a	$(80 \& 60 \mathrm{lb}$ ．	493	$1 \frac{11}{16}$	1210	$4 \frac{1}{2}$	in
55	\％	¢	$\left\{\begin{array}{c}80 \text { \＆} 80 \mathrm{lb} \text { or } \\ \text { or }\end{array}\right\}$	$49{ }^{\frac{5}{16}}$	$1{ }^{\frac{5}{8}}$	128	，＂	$1 \frac{13}{13}$
60	$\stackrel{\square}{\square}$	＋	60 \＆ 60 lb ．	491	$1 \frac{9}{18}$	124	＂	$1 \frac{11}{16}$
66		8	，＂	$49 \frac{3}{16}$	$1 \frac{1}{2}$	122	＂，	$1 \frac{1}{2}$
70	$\stackrel{\oplus}{\bar{\alpha}}$	－	，＂	$49 \frac{1}{8}$	$1 \frac{7}{16}$	120	＂	$1 \frac{7}{16}$
75	นึ	\％	＂	4918	$1 \frac{7}{16}$	1111	＂	$1 \frac{5}{16}$
80	$\stackrel{4}{6}$	g	＂，	$49 \frac{1}{16}$	$1 \frac{13}{8}$	1110	＂	$1 \frac{1}{4}$
85	\％	¢	＂	$49 \frac{1}{16}$	$1 \frac{3}{8}$	119	＂	$1 \frac{3}{16}$
90	で	固	＂，	49	$1 \frac{5}{16}$	118	＂	11 ${ }^{1}$
100	109 lb	$4^{\prime} 8 \frac{15}{16}{ }^{\prime \prime}$	＂	$48 \frac{15}{16}$	$1 \frac{1}{4}$	116	＂	1
110	＂	＂	＂	$48 \frac{7}{8}$	$1 \frac{3}{16}$	116	＂	$\frac{7}{8}$
120	＂	＂	＂	$48 \frac{7}{8}$	$1_{1{ }^{\frac{3}{6}}}$	112	＂	$\frac{1}{1} \frac{3}{6}$
132	＂	，	＂	$48 \frac{13}{16}$	$1 \frac{1}{8}$	111	4	$\frac{3}{4}$
150	＂	＂	＂	$48 \frac{13}{16}$	$1 \frac{1}{8}$	110	＂	$\frac{11}{6}$
165	＂	＂	＂	$48 \frac{3}{4}$	$1 \frac{1}{16}$	110	＂	
180	＂，	＂	＂，	$48 \frac{3}{4}$	$1 \frac{1}{16}$	110	＂	${ }_{1} 9$
198	＂，	＂	＂	$48 \frac{3}{4}$	$1 \frac{1}{16}$	1010	$2 \frac{3}{4}$	
${ }_{3}^{\text {chains }}$	＂	＂	＂	$48 \frac{11}{16}$	1	109		$\frac{7}{16}$
4	＂		＂，	$48 \frac{11}{16}$	1	108	$2 \frac{1}{8}$	
$4 \frac{1}{2}$	100 lb	$4^{\prime} 8 \frac{9}{16}{ }^{\prime \prime}$	＂	488	$\frac{15}{16}$	107		$\frac{5}{16}$
5	，	－	＂	485	$\frac{15}{15}$	106	$1 \frac{5}{8}$	$\frac{5}{16}$
51 $\frac{1}{2}$	＂	＂	，	485	$\frac{15}{16}$	105		$\frac{1}{4}$
6	＂	＂	＂	488	$\frac{15}{16}$	104	$1 \frac{3}{8}$	$\frac{1}{4}$
$6 \frac{1}{2}$	＂	＂	＂	485	$\frac{15}{15}$	104	＂	4
7	＂，	＂	＂	$48^{\frac{9}{16}}$	$\frac{7}{8}$	104		$\frac{3}{16}$
8	＂	＂	＂	$48 \frac{9}{16}$	$\frac{7}{8}$	$10 \quad 2$	11 $\frac{1}{8}$	$\frac{3}{16}$

[^0][The table on opposite page was adopted by the Dept. of Public Works, on March 18th, 1911, and is inserted here in place of that given by Mr. Try.]

Compensation for Curvature on Ruling Grade of 1 in 15.

Radius.	$\begin{aligned} & \text { Degree } \\ & \text { of } \\ & \text { Orrve. } \end{aligned}$			$\begin{gathered} \begin{array}{c} \text { Rate of } \\ \text { Compensation. } \\ \% \end{array} \end{gathered}$	Grade. $\%$.	
Straight	0°		00	-00	$6 \cdot 66$	1 in 15
5 chains	17	30	00	-69	$5 \cdot 97$	1 in $16 \frac{3}{4}$
4 "	22	00	00	-80	$5 \cdot 86$	1 in 17
$3 \frac{1}{2}$,",	25	00	00	. 87	$5 \cdot 79$	1 in $17 \frac{1}{4}$
3 ,,	29	15	00	. 98	$5 \cdot 68$	1 in $17 \frac{3}{4}$
$2 \frac{1}{2}$,	35	15	00	$1 \cdot 13$	$5 \cdot 53$	1 in 18
2 "	44	30	00	1.36	$5 \cdot 30$	1 in 19
115 feet	51	30	00	$1 \cdot 54$	$5 \cdot 12$	1 in $19 \frac{1}{2}$
100 ,	60	00	00	$1 \cdot 75$	$4 \cdot 91$	1 in $20 \frac{1}{2}$
90 ,,	67	30	00	1.94	$4 \cdot 72$	1 in $21 \frac{1}{4}$
80 ,	77	30	00	$2 \cdot 19$	$4 \cdot 47$	1 in $22 \frac{1}{2}$
70 ",	91	15	00	$2 \cdot 53$	$4 \cdot 13$	1 in $24 \frac{1}{4}$
66 ,"	98	30	00	$2 \cdot 71$	3.95	1 in $25 \frac{1}{4}$

APPENDIX B.

TRAMWAY SURVEYS.

Paper read at a Meeting of the Institution of Surveyors, N.S.W., on Tuesday, September 21st, rgog.

By Thomas Kennedy, Assoc. M. Inst. C.E.

The tramway system of Sydney and suburbs has become a huge concern, and is rapidly increasing. On the 30th of June, 1909, the street miles of tramway amounted to 118 miles 75 chains; this embraced 185 miles 11 chains of single track tramway. In the country there are 32 miles 29 chains of street miles of tramway totalling 35 miles 35 chains of single track tramway ; the sidings, loops and crossovers amount to 34 miles 32 chains.

It will be seen by the above figures that the surveying and setting out of these tramways involves a considerable amount of work for the surveyor requiring technical skill. It is proposed to describe the methods adopted in the location and surveying of the different lines. Mr. Try, of the Works Department, has in his paper contributed a collection of valuable information, which will prove useful to the surveyors who have to deal with tramway surveys. The subject is practically a new one, and the information obtainable is limited.

The firstinception of a tramway is that a suburb or town finds that a tramway is necessary. It will either be a new tramway isolated like the Arncliffe to Bexley, and Manly to Curl Curl, or perhaps the extension of an existing line. A deputation is formed and the Minister for Works is approached, he is urged to grant the proposed request. If satisfactory, the matter is investigated by a responsible officer, and say a survey recommended so that an estimate can be prepared. This survey is a trial line or preliminary, and when there is no difficulty as to grades, a set of levels are taken down the centre of the streets, noting any sharp angles that would require resumption of property, a section is plotted and an estimate made. In cases where the grades are difficult the location is by no means easy, and the skill of the surveyor is at once taxed to find the best line; the steepest grade allowed is 1 in 15 and the sharpest curve 70 feet radius. So that with the steep grade and sharp curve a great many problems may be worked out before a final location is decided upon.

The system adopted by the writer is to take at first no notice of streets or property, but to look on the locality where a difficult tram is proposed as one devoid of houses and streets, and so to locate a line with the ruling grade and minimum curves in the most suitable place. It is usually found that this first location will not be far from the final line adopted; the question of avoiding resumption and making use of the existing roadway then become matters of detail. In the location
of the tramway from the Lighthouse to Watson's Bay, and on the descent of the Spit to Manly tramway into Manly, it was found that the location favoured a route through the parks in each instance, and no objection was raised by the residents as it meant either a sacrifice of portion of the park or the tramway would not be built. In difficult places it is advisable to locate from contours and the tacheometer is found expeditious in getting the information, as the obstacles to chaining and levelling would greatly retard the ordinary method of taking cross sections. The compensation for curvature must be allowed for in the preliminary location, although it is finally adjusted in the permanent survey of the line. The formula in use is $\cdot 5+{ }^{\circ} 025$ ($\mathrm{D}^{\circ}-10^{\circ}$) when D° equals the degree of curve. A table has been supplied by Mr. Try shewing the compensation adopted for different curves. The scales of the preliminary plans and sections are usually 2 chains to 1 inch for the plan, and 2 chains to 1 inch horizontal and 20 feet to 1 inch vertical for the section.

When resumption of land is necessary and buildings to be avoided the detail survey is made use of. These detail sheets shewing an accurate survey of the building and streets have proved valuable in the location of tramways and other public works round the city: unless they are revised and kept up to date it will only be a matter of a few years when they will become obsolete. The azimuth of the tranway survey when possible is referred to the trigonometrical meridian.

After the preliminary surveys have been completed an estimate is made, and if the cost of the tramway is under $£ 20,000$ it is then only a matter for the Cabinet to decide on its construction, but if over that amount the line must be submitted to the Public Works Committee, and if approved, be finally passed by both Houses of Parliament.

After a tramway is authorised the permanent survey is commenced. The curves are all accurately set ont; the method of calculating the curves both of a single and double line has been described by Mr. Try. A single line presents very little difficulty, but with a double set of rails provision has to be made for clearance of tracks as describedin the former paper. Iron spikes are used in the metal road and wooden pegs through vacant land. All the pegs are preserved during construction, and no further setting out is required. An inspector takes precaution to reference all pegs so that they can be replaced, to finally set the rail centres in the proper position to give the required clearance when passing round corners. Levels and cross sections are taken at each chain, and where streets are crossed a longitudinal section is taken along the cross street for 3 chains on each side of the tramway. All pipes, gas, sewers, manholes, water supply, lamp posts, telephone poles, and any obstructions have to be shewn in detail on the finished plan; this is necessary, so that the poles to carry the overhead wiring may be fixed not to interfere with anything on the street. The permanent section is plotted to a scale of 10 feet to 1 inch horizontal and 10 feet to 1 inch vertical. Detail drawings are made of all curves on the double line to a scale of 10 feet to 1 inch shewing all dimensions. After the curves have been set out for a double line it is then necessary to mark a line midway between them for purposes of taking a longitudinal section and cross section, also to
obtain the exact length of line. The chainage of the curve commences at the mean tangent on the centre of a line, joining the tangent points of the inner and outer curves, and ends at the centre of the mean tangent point at the ends of the curves; the distance adopted for the chainage being a mean of the total lengths of the inner and outer curves. The circular arcs of the curves are set out from the secant point, and the arc is usually divided into a number of short chords.

A simple method of setting out these curves is to divide the arc and half the central angle subtended by the same suitable number, then the distances and tangential angles are at once available for setting out the curves without any further calculation. The chord is taken at such a length so that the difference between chord and are will not be appreciable in chaining round the curve. As an example, in a curve of 100 feet radius it is found that the circular area is, say, 78.48 feet and the central angle is $44^{\circ} 58^{\prime}$. The length of chord used would be 78.48 divided by $9=8.72$ feet, half the central angle $=$ $22^{\circ} 29^{\prime}$, this divided by 9 equals practically $2^{\circ} 30^{\prime}$; this is the tangential angle for the length 8.72 feet.

It will be seen that the chord of an angle of 5° for radius 100 equal 8.72 , that is the chord and are are practically equal; by adopting this method of setting out the curving a complete check on the whole of the calculation is made, for the circular curves must close on the transition points. To approximately indicate the position of the pegs in the roadway, lines are squared off by the eye and a painted mark made on each side of the roadway shewing tangent points and chain pegs; the chain pegs are numbered on the edge of the kerb or fence, the tangent points are marked by three pegs at right angles to the line, transition points by three pegs along the direction of the tramway; all other points are single pegs. Round-headed spikes are used weighing about $2 \frac{1}{2}$ to the lb., 4 inches long, $\frac{3}{4}$ inch thick; these are readily driven into the metalled road and the exact centre marked with a punch. Bench marks are left at least every half mile, and levels are referred to standard datum or mean sea level.

APPENDIX C.

TRANSITION CURVE TABLE.

(Compiled by Mr. C. J. Merfield.)
From "Journal of the Royal Society of N.S. W.," vol. xxxiv.

$\frac{\mathrm{x}_{\mathrm{c}}}{\mathrm{R}}$		ϕ		$\begin{aligned} & \text { Log. } \\ & \left(\mathrm{mR}^{2}\right) \end{aligned}$	$\frac{\mathbf{x}^{\prime}}{\mathbf{R}}$	$\frac{\mathrm{y}_{\mathrm{c}}}{\mathrm{R}}$	$\frac{\mathrm{h}}{\mathrm{R}}$	$\frac{\mathrm{s}}{\mathrm{R}}$	$\frac{\mathrm{K}}{\mathrm{R}}=\frac{2 \phi}{\mathrm{R}}$
0.00			0.0	∞	0.000000	0.000000	0.000000	$0 \cdot 000000$	0.000000
0.01	0	17	$11 \cdot 3$	1-221855	0.005000	0.000017	$0 \cdot 000004$	0.010000	0.010001
$0 \cdot 02$	0	34	22.9	0.920878	0.010001	$0 \cdot 000067$	$0 \cdot 000017$	$0 \cdot 020000$	0.020002
0.03	0	51	$34 \cdot 8$	0.744872	$0 \cdot 015003$	$0 \cdot 000150$	$0 \cdot 000038$	0.030001	0.030008
0.04	1		$47 \cdot 2$	$0 \cdot 620049$	$0 \cdot 020008$	$0 \cdot 007267$	$0 \cdot 000067$	$0 \cdot 040002$	0.040019
0.05	1	26	$0 \cdot 4$	$0 \cdot 523287$	0.025016	$0 \cdot 000417$	0.000104	$0 \cdot 050004$	$0 \cdot 050037$
$0 \cdot 06$	1	43	14.5	$0 \cdot 444376$	$0 \cdot 030027$	$0 \cdot 000601$	$0 \cdot 000150$	$0 \cdot 060006$	$0 \cdot 060063$
0.07	2	-	$29 \cdot 6$	$0 \cdot 377552$	0.035043	$0 \cdot 000818$	$0 \cdot 000204$	0.070009	0.070100
0.08	2	17	$46 \cdot 1$	0.319806	0.040064	$0 \cdot 001069$	$0 \cdot 000266$	0.080013	0.080150
$0 \cdot 09$	2	35	4.0	0-268932	0.045092	0.001354	0.000337	$0 \cdot 090018$	$0 \cdot 090214$
$0 \cdot 10$	2	52	23.6	$0 \cdot 223487$	$0 \cdot 050126$	0.001673	$0 \cdot 000416$	0-100025	9•100294
0.11	3	9	$45 \cdot 0$	$0 \cdot 182442$	0.055168	0.002026	$0 \cdot 000503$	$0 \cdot 110034$	$0 \cdot 110392$
$0 \cdot 12$	3	27	85	0.145034	0.060218	$0 \cdot 002413$	$0 \cdot 000599$	$0 \cdot 120044$	$0 \cdot 120510$
0.13	3	44	$34 \cdot 2$	$0 \cdot 110687$	0.065278	0.002835	$0 \cdot 000703$	0•130056	$0 \cdot 130650$
$0 \cdot 14$	4	2	$2 \cdot 4$	0.078953	0.070348	0.003291	$0 \cdot 000814$	0.140070	$0 \cdot 140813$
$0 \cdot 15$	4	19	$33 \cdot 2$	$0 \cdot 049474$	0.075429	0.003782	$0 \cdot 000933$	0-150086	$0 \cdot 151002$
$0 \cdot 16$	4	37	6.9	$0 \cdot 021966$	0.080522	0.004308	0.001061	0-160104	$0 \cdot 161219$
0.17	4	54	$43 \cdot 7$	9.996194	0.085628	0.004870	0.001197	$0 \cdot 170125$	$0 \cdot 171465$
$0 \cdot 18$	5	12	23.7	9.971962	0.090747	0.005467	0.001341	0.180149	0.181744
$0 \cdot 19$	5	30	$7 \cdot 4$	9.949111	0.095881	0.006100	$0 \cdot 001493$	0.190176	$0 \cdot 192058$
0.20	5	47	54.8	9.927502	0.101031	0.006770	$0 \cdot 001653$	0-200206	$0 \cdot 202408$
$0 \cdot 21$	6	5	$46 \cdot 2$	9.907018	0-106198	$0 \cdot 007476$	$0 \cdot 001821$	0-210239	$0 \cdot 212797$
$0 \cdot 22$	6	23	$41 \cdot 9$	9-887559	0.111382	0.008219	0.001997	$0 \cdot 220276$	0.223227
$0 \cdot 23$	-	41	$42 \cdot 1$	9-869036	$0 \cdot 116585$	0.009000	0.002181	$0 \cdot 230317$	$0 \cdot 233701$
$0 \cdot 24$	6	59	$47 \cdot 1$	9-851375	0-121808	0.009818	0.002372	0-240361	0.244221
0	7	17	$57 \cdot 2$	$9 \cdot 834510$	$0 \cdot 127051$	0.010674	0.002571	$0 \cdot 250409$	0-254790
$0 \cdot 26$	7	36	$12 \cdot 5$	$9 \cdot 818382$	0.132317	0.011569	0.002777	0-260462	$0 \cdot 265411$
$0 \cdot 27$	7	54	33.6	9.802939	$0 \cdot 137606$	0.012503	0.002991	0-270520	$0 \cdot 276087$
$0 \cdot 28$	8	13	0.5	${ }_{0}^{9.788135}$	0.142919	0.013477	0.003212	0.280582	$0 \cdot 286820$ 0.297614
$0 \cdot 29$	8	31	$33 \cdot 8$	9•773930	0.148258	0.014491	0.003440	0.290650	$0 \cdot 297614$
$0 \cdot 30$	8	50	13.6	$9 \cdot 760287$	0.153625	0.015547	0.003676	0.300723	0.308473
0.31	9	-	$0 \cdot 4$	$9 \cdot 747173$	0-159021	0.016644	0.003919	0.310802	0.319399
$0 \cdot 32$	9	27	$54 \cdot 4$	9.734558	$0 \cdot 164447$	0.017783	0.004169	0.320886	$0 \cdot 330395$
$0 \cdot 33$	9	46	$56 \cdot 2$	$9 \cdot 722417$	0-169905	0.018965	$0 \cdot 004426$	0.330977	0.341466
U.34	10	6	$6 \cdot 1$	$9 \cdot 710725$	0.175396	0.020191	$0 \cdot 004689$	0.341074	0.352616
$0 \cdot 35$	10	25	24.5	$9 \cdot 699461$	0.180922	0.021462	0.004959	$0 \cdot 351179$	$0 \cdot 363848$
$0 \cdot 36$	10	44	51.9	$9 \cdot 688605$	$0 \cdot 186485$	0.022778	0.005236	$0 \cdot 361291$	$0 \cdot 375167$
$0 \cdot 37$	11	4	$28 \cdot 7$	9.678139	0-192087	0.024140	0.005519	$0 \cdot 371410$	0.386578
0.38	11	24	$15 \cdot 5$	$\mathbf{9} \cdot 668046$ 9.658313	0.197730	0.025550	0.005807	0.381538	0.398085
$0 \cdot 39$	11	44	$12 \cdot 7$	9.658313	0.203417	0.027009	0.006101	$0 \cdot 391674$	0-409693

Transition Curve Table-Continued.

$\frac{\mathbf{x}_{\mathrm{c}}}{\mathbf{R}}$	ϕ			$\begin{aligned} & \log \\ & \left(m R^{2}\right) \end{aligned}$	$\frac{\mathrm{x}^{\prime}}{\mathrm{R}}$	$\frac{y_{e}}{\text { R }}$	$\frac{\mathrm{h}}{\mathrm{R}}$	$\frac{\mathbf{s}}{\mathbf{R}}$	$\frac{\mathrm{K}}{\mathrm{R}}=\frac{2 \phi}{\mathrm{R}}$
0.40	12	4	$20^{11} 9$	$9 \cdot 648927$	$0 \cdot 209149$	$0 \cdot 028517$	0.006401	$0 \cdot 401818$	$0 \cdot 421408$
0.41	12	24	$40 \cdot 8$	9.639875	$0 \cdot 214923$	0.030077	0.006706	0.411972	0.433237
$0 \cdot 42$	12	45	130	9.631147	0220758	0.031688	0.007016	0.422137	0.445185
0.43	13	5	58.0	9.622733	0226642	0.033353	$0 \cdot 007331$	0.432312	$0 \cdot 457257$
$0 \cdot 44$	13	26	$56 \cdot 8$	$9 \cdot 614624$	0.232581	0.035074	$0 \cdot 007651$	0.442497	$0 \cdot 469462$
0.45	13	48	$9 \cdot 9$	$9 \cdot 606814$	$0 \cdot 238580$	0.036851	$0 \cdot 007974$	0.452694	$0 \cdot 481807$
0.46	14	9	$38 \cdot 4$	$9 \cdot 599295$	0244642	0.038687	0.008301	0.462903	$0 \cdot 494301$
0.47	14	31	$23 \cdot 1$	9-592062	$0 \cdot 250770$	$0 \cdot 040583$	$0 \cdot 008631$	0.473125	$0 \cdot 506951$
0.48	14	53	24.9	$9 \cdot 585110$	$0-256968$	0.042543	$0 \cdot 008963$	$0 \cdot 483361$	$0 \cdot 519768$
0.49	15	15	$45 \cdot 0$	$9 \cdot 578435$	$0 \cdot 263242$	$0 \cdot 044568$	$0 \cdot 009298$	$0 \cdot 493612$	$0 \cdot 532762$
0.50	15	38	$24 \cdot 5$	9.572035	0.269595	0.046660	$0 \cdot 009634$	0.503878	$0 \cdot 545944$
0.51	16	1	$24 \cdot 7$	9-565907	0.276032	0.048822	0.009970	0514160	$0 \cdot 559326$
$0 \cdot 52$	16	24	$46 \cdot 9$	$9 \cdot 560051$	$0 \cdot 282560$	$0 \cdot 051058$	0.010307	0.524460	0.572923
$0 \cdot 53$	16	48	$32 \cdot 8$	9-554465	0-289184	0.053370	0.010643	0.534778	0.586748
$0 \cdot 54$	17	12	$43 \cdot 8$	$9 \cdot 549151$	$0 \cdot 295911$	$0 \cdot 055761$	0.010976	$0 \cdot 545116$	$0 \cdot 600818$
0.55	17	37	$2 \cdot 1$	$9 \cdot 544112$	0.302749	0.058236	0.011306	0.555475	$0 \cdot 615152$
0.56	18	2	$29 \cdot 6$	9.539349	0.309706	0.060801	$0 \cdot 011633$	0. 565857	0.629769
0.57	18	28	$8 \cdot 6$	$9 \cdot 534869$	$0 \cdot 316792$	0063459	$0 \cdot 011954$	$0 \cdot 576264$	0.644692
$0 \cdot 58$	18	54	21.9	$9 \cdot 530677$	$0 \cdot 324018$	$0 \cdot 066216$	$0 \cdot 012267$	0.586698	0.659947
0.59	19	21	$12 \cdot 4$	$9 \cdot 526782$	$0 \cdot 331395$	0.069078	$0 \cdot 012570$	0.597160	0.675563
0.60	19	48	43.5	$9 \cdot 523193$	$0 \cdot 338937$	0.072052	$0 \cdot 012861$	0.607654	0.691572
0.61	20	16	592	$9 \cdot 519923$	$0 \cdot 346659$	0.075147	0.013138	0.618182	$0 \cdot 708014$
062	20	46	40	$9 \cdot 516917$	$0 \cdot 354581$	0.078372	0.013397	$0 \cdot 628748$	0.724932
0.63	21	16	$3 \cdot 1$	9-514405	$0 \cdot 362723$	0.081738	0.013635	$0 \cdot 639355$	0.742376
0.64	21	47	2.9	$9 \cdot 512199$	$0 \cdot 371111$	0.085259	0.013847	$0 \cdot 650009$	$0 \cdot 760409$
0.65	22	19	110	9-510399	$0 \cdot 379774$	0.088949	0.014028	$0 \cdot 660715$	0779105
$0 \cdot 66$	22	52	36.5	9-509041	0.388751	0092827	0.014170	0.671479	$0 \cdot 798551$
0.67	23	27	$30 \cdot 8$	$9 \cdot 508171$	$0 \cdot 398085$	0.096916	0.014265	0.682310	$0 \cdot 818858$
0.68	24	4	80	$9 \cdot 507848$	$0 \cdot 407835$	0.101245	0.014301	0.693219	$0 \cdot 840163$

[^0]: ＊New Table to be used except where greater elevation would meet the contour，or through reserves，where old table will apply－

