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THE METHOD OF TWO ORIGINS FOR DEDUCING THE
DEFLECTION OF A BEAM AND THE EQUATION
OF THREE MOMENTS

(A Paper read before the Sydney University Engineering Society.
on fuly 14th, 1915.)

By R. W, Hawkey, B.E., Assoc. M. Ixst. C.E.
(Lecturer in Civil Engineering, University of Queensland).

The proofs given below were evolved in 1912 and shewn to the
students of the time, when the author was giving a portion of the
lectures in Civil Engineering at the University of Sydney, during
the absence of Professor Warren.

Later it was found that an analogous device to that used for
shortening the proofs had been used by Professor Morley.* As the
method was a rediscovery only, it was not published, but as it does not
seem to be well-known, modern books?t still preserving the older form
of analysis, some useful purpose may be served by submitting it to
this Society.

The ordinary ‘ analytical ” method is used generally though the
semi-graphical methods shewn in Goodman’s ‘“ Applied Mechanics,”
Fidler’s «“ Bridge Construction ” may be applied to check results.

Proving the Equation of Three Moments may need some apology
as an Engineer is not usually asked to do so, but it will be admitted
that its limits of application, and correct manipulation cannot be fully
understood unless its basis and the assumptions made are kept in mind.
As one instance of this it will be seen that all the subsequent deduc-
tions, which are the usual standard results, take account of Bending
Moment effects only, though in certain cases shear effects may be
appreciable.

Assumptions as to Elasticity, Supports,etc., are indicated in the text.
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DeFLECTION OF A SIMPLY-SUPPORTED BrAM DUE 10 A SINGLE LOAD
UNSYMMETRICALLY PLACED.
Referring to Figure 1. .
Let P be a load at the point P.
/ be length between supports Oy, O,.

* Morley.—*‘ Theory of Structures.” Mr. Mansfield Merriman writes under date Dec. 27th,
1913. ““ Your method of using two origins for the discussion of deflection and the Theorem
of three moments is an excellent one which much abridges the algebraic work,” Something
similar I have seen in German books, but cannot now give you references.”’ )

t+ Andrews.—*“ Theory and Design of Structures.”
t Merriman.—'* Mechanics of Engineering.”
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k/ be distance of load from left support.

p be radius of curvature at any point.
M be Bending Moment at any point.

E be Modulus of Elasticity at any point.

I be Moment of Inertia at any point.
R, and R, be Reactions at ends.

y, x be co-ordinates of points on the deflection curve, with origins

as indicated below in the text, later u/is written for x.

Q,, ¢, etc., be Constants.
=k — k¥ =k (1 —k) (14 k).

K, = | (l—k)-—(l—k)"’s =k (1 —k) (2 - k).

I,/ = distances of load from other support to that which is chosen
as origin.
m/ = distance of point of max. deflection from one end.

wu/ = distance of point from origin, i.e., abscissa of any point.

M
If E or I vary plot BT at each point in solving practical ex-

amples (see appendix).

By the principles of elasticity it is proved*

& 1 _ M dy M
Spts o et o e d N — d C .
x  p B T JE T .

B —_—!' j‘#dx dx + C x + C,

Now R; = P (1 - k).
Tooking to Left of P with origrin at O, axis of x being Oy O,.
M = R, x up to the load.

y Y. 2
~ EI 3_; = fMax=m 2 0.

3
El y :ffdedx:Rl% + Cyx + C,.

now whenx = 0y=0 .. C,=0.
*. Equation of curve of deflection up to the load
8
is EIy:Rl% +C x poi R e )
Again R, = P (k).
Looking to right of P, with origin at O, axis of x being O, O.
M = R, x up to the load.

. milL: fde = R,
ax

L) ) x.‘l
Ely = Jerxdx:R,T+Csx+C4.

Whenx =0 y=0 . C, = 0.
.. Equation of curve of deflection up to the load

3
isEI y = R, _% + O & el DR e Y

+ Ciis - oaee (D

r.'>| W

* Warren ‘‘ Engineering Construction.” p. 193, etec.
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Equation (4) could be written from Equation (2) at once by the
consideration that if we imagined we were looking through the back
of the paper the point O, becomes O,, and vice versa. However it
was thought better to write it in full as probably what follows will be
easier understood.

At the point P, 7.¢., under the load the j%and y respectively

must be the same in amount whether derived from Equations (1) and

(2) or Equations (3) and (1), but the sign of ((ii:}:’ is of opposite sign,

since as x increases in (1) it decreases in (3).

This use of 7wo origins is where the present proof differs from
previous methods : it will be seen that it eliminates one constant (C,
would not be zero if equation (4) were to origin O,), thus saving con-
siderable labour in deducing the constants.

AtPin (1) x = ki In(3)x = (1 — k) /
R, = P (I — k). R, = P (k).
SPA-k) B o =—P =K% _, from
(1) and (3) el )
And P (1 — k)_k;—li+01kl:Pk.§1_Tk)all‘+Ca(l —k)/
from (2) and (4) ... (6)

Equations (5) and (6) are simultaneous equations to deduce
Cl and C3_

Multiply (5) by (1 —k) /and add to (6). After collecting terms

j2 2

woget Ci= — L k(1-K)(2-k)=- 0K @

by putting k = (1 — k) in (5) by reasoning as above, or by solving
the simultaneous equations.

P2 P2

G=— S kl-Hl+==—K .. (3

Equation (2) f.e., equation of curve of deflection from O; to P
may be written with origin at O\
6 EI )
’, —P—y:(l—k) x¥—2K,x+t 9
Equation (4) 7., equation of curve of deflection from O, to P
may be written with origin ar O,

6 EI :
5 V= kx3.—/ K, x7¥ .. (10)

t For table of Kl and K2 see Merriman & Jacoby ‘‘Higher Structures.’” Part 1V., p. 85,

quoted in the author’s paper on “Influence Lines.” Proc. S.U.E.S., 1903 ; also in Warren's
** Engineering Oonstruction,” p. 233.
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It will be seen from (9) and (10) and Figure 14 that the curve of
deflection changes its equation under the load though curves are tan-
gential ; this may be seen readily by putting (1 — x) for x in (10), we
would get the equation to origin at O, such equation not Leing the
same as (9). 'The method of analysis also shows such to be the case.
We may write (9) and (10) in the form

GI],EI y = k; x3 — 22 (k; — k,°) x.

‘Where k;/ is distance from ozzer €nd to that which is chosen as
origin.

Or put in neater form using p as the coefficient lengths, u/ being
written for x.

y={ae} () {aw—@m—mu} .

for instance at point -3 from left end.

Equations of curves of deflection are since k; = 7.
From O, to Load} _ BB 1o }
origin at Oy ~ EI 6 { o (:3570) uj.
From O, to Load} _Pr 1 [a .8 _ (.
origin at Oy Y= R 6\ Sr (:2730) ”:

Figure 1a shews graphically the results obtained and Figure 1B
several typical curves. .
Points oF MaAxiMum DEFLECTION.

We may use equations (1) and (3), z.e., the equations of slopes
and maximum deflection is where the slope is zero ; or may take (3)

- . d
and (5), the equations of deflections, and where _ly_ is zero the deflec-
dx

tion is a maximum, either course leads to the same results.
Taking the equations of slopes

since R = (1 — k) Pand C; = — —Ig? P for unit 7 (12)
Kl .
R, = k Pand C; = — —= Pforunit/ (13)

6
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CURVESor DEFLECTION
BEAM witH SINGLE LOAD
_Scale or Vertical Derlections
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we get if ¢ — slope

2 /
¢ = —%{ (1 - k)%2 _Lng_) } from origin O, to P
and origin at Oy o (14)
2 2
¢ = —i“‘ll {k ’; —%—1 } from origin O, to P
and origin at Oy .. (15)

If m;/ = distance of point of max. deflection from Oy
m,/ = distance of point of max. deflection from O,

When ¢ = o in (14)

m,? K, e k)2
(l—k) —'.),_:‘6— 0[‘0)12_——3—“ (16)
When ¢ = o in (15)
m? K o, _ 1Kk T
k 5 = § O’ 3 (17)
It is readily seen that when k —= }; m = }.
Writing k = } + dk we get in (16).
0
k2 — m? = ;‘;5 (1 + 2 dk).
.4 . negative . [ negative
Which is { positive when dk is { positive
Ze, m < k when k > } and max. point is within the limit of the
equation.
When m > k, se, when k < 4 we are outside the limit of the
curve which only applies up to x = k/ there being two curves of

deflection which are tangential under the load.
Also in (17) my > k to be within limits of the equation,

— k2
orin (17) (1-m; )2 = 1—3—1‘- whenk < § ... (18)

1;(;—&2 whenk >3 .. (19)

and in (16) m;2 =

We can drop the suffix in m;
Thus the equations giving m are

(l~m)2=l_ fiomk =Ouptok =4 ...  (20)

—(1—Kk)2
m? = 1(#) fromk =tok =1 .. (21)

These are the equations of ellipses. They show the curious effect
that by putting the load ever so small a distance from the origin the
point of max. deflection is near the centre, the limit of range being
m = ‘42 to m = ‘58. The point of max. deflection is always between
the point of application of the load and the centre of the beam. So
far as the author is aware, the change of the equation of deflection
at the load has not been emphasised sufficiently, and using this method
there is a liability of error in calculating the point of max. ‘deflection
unless the above principles as illustrated by the curve, Fig. 2, are
borne in mind,
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0,
~ POINT OF )
Y|  MAXiMUM DEFLECTION /
Q for /
] Bearn witnSirigle Load J
3 p
3 -
N -
% _= ol —
S 3-mfar-nc? 77y -0-1)
I § 1 ,/’/
O // \“L,
| g 7 g Al x
8 b R B
i:: Q\ I/ E $
/ N
/
/
2 3 [} A 0
Qg Drsyarrce of Load frorm Support=A/
— Flg.2. —
For instance taking k = 3

If we use equation (9) for curve of deflection we get

- k (2—k) as usually written this is the formula which
m= \/ £ (2-k) the position of the max. point is found

— 419, 3 either in this or other notation
whereas the true value
of my = \/ 7 (13) — 55
3

orm = 1—-55 = -45.
The curve of Fig. 2 shews graphicallv the results obtained.

Many important facts may be deduced from the study of the
equations and diagrams deduced above.

For example :—

From (14) when x = o ¢ = 562 giving the slope at O
From ( Ky ..
rom (15) when x = o = —¢ - siving the slope at O

Thus it may readily be seen that the amount of the slope at the
support is equal to the reaction at the same suppqrt when the B. Mt. dia-
gram is treated as a load diagram. From this fact is deduced the elegant
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method for simple beams—1lo ad the beam with the B. Mt. diagram and

the resultant Shears and Bending Moments (treating the B. Mt. diagram

as a load), are the slopes and deflections respectively referred to the
line through the supports as zero (this latter is usually horizontal).

y Again all the summations give slopes and deflections referred to

the tangent at the end from which summation starts; similarly if

/dex is used instead of//Md}idx the quantity deduced is the

detlection referred to the tangent at the ether extremity from that at
which moments are taken.

It is beyond the limits of this paper to examine the question of
deflections in general, but, as an appendix, Fig. 5 is given to show a
general case that practically includes perhaps most of the difficulties
that occur in connection with beam deflections. The diagrams shown
may be used to illustrate most of the principles and results of com-
puting shears, bending moments, slopes and deflections.

Curves for slopes are not given as these are not used much in
practice, but they could readily be drawn from equations (14) and (15)
if required.

Figure 1B shows the curves of deflection for the typical points ;
if the load is on the right of the centre the corresponding curves are
readily deduced, in fact looking through the back of the paper this
may be seen at once.

Tae EquarioN oF THREE MoMENTS FOR A CONTINUOUS GIRDER.

In a continuous girder the “Equation of Three Moments” con-
nects the bending moments at three contiguous supports with the
loads and spans, by the relation to be deduced.

Applications of the use of the equation are illustrated in text-
books¥, and in the paper by the author on ‘“Influence Lines.”{

The proof follows the method used in Merriman & Jacoby’s
“ Higher Structures,” Vol. IV., in the analytic method of reasoning ;
but the introduction of #wo origins shortens the work considerably
and practically remodels the proof.

|

k—‘ A
Ny T e VR
3T = | X 4

\p

Fig.3
Referring to the Figure

Let V = sum of all vertical forces to left of P (4 ve upward).
M,= B. Mt. at 3,
M,= B. Mt. at 4.
hy, h, = heights of supports above datum.
P,, P, = Loads of Spans 7, /.

*See ‘‘ Engineering Construction,” by W. H. Warren, Chap. XI., &ec,
t Proceedings 8,U.E,8,, 1903,
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Then witH ORrIGIN AT 3. Curve to left of P.

B.Mt.3toP. M=M 4+ Vx .. .. . ()
EY=Mx+ VX 10 ... . (@
dx P
EIy:Ma_’;Jr v%’.’+ Cx +Cyue e e (3)
C, is zero since when x = o, y = o.

again M, = M, + V/— P (1 — k) / (4)
LV = %_7“.43 FPUA =Kk e e e (D)
Substituting in (2) and (3) th.e value of V in (5).

Elgizmswr “7'4’;_1%*§+ PA-K) Y +C ()
Ely :hls§+ l%*;f _ _/Ifzis +PQA- k)§+01x (1)

Now for the curve to right of P by symmetry with origin at 4.
Equations (6) and (7) are to be modified by putting k for (1 — k)
and C, for C; (C, is got from C; by putting (1 — k) for (k) in C,).

"This may be realised clearly by putting the paper up towards the
light and looking through the back of the paper: it is discussed in
detail under the deflection of a beam, so that:

With origin at 4. Curve to right of P.

f 2 2 2
BT =mx+ D XWX ipmi+a @
x 3

52 2
o X, My x* M, x® x? y
EIy—M‘§+76‘_7'€+Pk6—+b3X (9)

Note that there is no C, analogously with (3) and (7) above, this
means a great saving of work in deducing the final result, as there are
only two constants to be deduced.

At the point P the curve is continuous so that putting x = k/
in (6) and (7) and x = (1 — k) /in (8) and (9) the j—i’ is same in
each, but of different sign and the y is the same in each with same
sign ; this follows from the fact that as x increases in (6) it decreases
in (8), but the y increases or decreases in (8), as it increases or
decreases in (9) ; the curves are of different equations as shewn in
first part of this paper, but are tangential at the common point.

If the supports are on different levels, with differences of height
say hy — hy _ g, thenyof (7) =y + hy — h, _; of (9). The effects
of supports being on different levels will be shewn by the portion in
italics in the equations.

From equations (6) and (8), putting x = k/ right side of the
equation (6) becomes.
2 ] 4 2
M, k7 + N_lle g 1\11_3 k_;/_’+ P(l — k) ]_‘2l’+ c,
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dy Mgk (2 — k) | MyIk* PP (k* (1 —k)

- 2 EI = =2 4

- A 5 + =5 + 5 + G, (10)
by analogy in equation (8).

_dy g M=kt M=) (1 + k)
dx 2 2
— 2
PRRAZ )
Since gl_of (10) = — j_yof (11).
{C +Cl=Y ke -]+
M {(1 —k*) + k* {+_k(1—k)11_k+k}
_ M 14+ M, 1+ P*k(l —k) (12)
i 2 e sese

From equations (7) and (9), putting x = ki
Equation (7) becomes
kl2 Myk38 M k323

Ely =M< 4 2457 : *_+P(1-—k)*A+Clkl
i.e.,EIy:M?élz{w_ks% +“4 K3 4
P
Z(l—k)k3+CIkl e e (13)

by analogy in equation (9).
M; 2 M, 2
Ely = 2 {(1—k)3}+%{3(1—k)2—(1—k)3}

PB
+ 2 k(- + G- . (14

loft side becomes EI (y + hy,— hg) when subports are at
different levels. -
Equating the right sides of (13) and (14).

Cyl — (Ot Cy) kI = MZF [{36 -k} = — 0]+
l‘EF_[H — {301 =k — (1=t} ] +I_;£3.[(1—k) K — k(1 -k)]

+ (s — /ls)Ef
=%l k1) +

Ll 5| 3k — 2] + —(1—1\) (k) (2k—1)
+ (hy — hs) ET e e (15)

From (12) and (15) substituting for (C; + Cy)

o+ SMul+ My L+ BPR () (1 —K)

6
_ M7 (3k — 1) 4 M, 7(3k — 2) + PR(1 — k) k (2k — 1)
Fia — g 6
+ (—1 ) EI




47

% Yo M32—2M4Z—Pl'36(k)(1 — k)1 +k) n Iul—lst[
_ My +2M46l + PR K, 3 2y —//za EI . .. (16)
by analogy or substituting in (12).
0, aia Ma b 2M,36li,,P’2 Ko p 58 = Mproo.. ..an
The investigation above is perfectly general.
e o (-} e oo e, el 2 —’—*_3

2 G- 1 —’1 Y 3£|}_. Ksls _i,g 4A
Fig.4

and looking at Span 3-4. Fig. 4 slope at 3.
Origin at 3, x measured to right, here x = o.
e, BIY —gp Mol + My ls +Ps 3Ky I — sy (14,
dx 6 /3
looking at Span 2-3. Slope at 3.
Origin at 3, x measures to left, here x = o,

/ 9N 9 g3
EI(}X —C = — Myl + 2M3 Iy + Py 15 2K, +ﬁ3 }"E] (19)
dX 6 /2
dy _ dy
The Ax of (18) = — ix of (19).
< 2M;3 75 + M4673 + P3732K2+/l41—3&3 El
- Mol + 2M3 I + Py 12K, B hy — Ay El
6 la
Putting 3 for sum.
oMol + 2M3 (12 “+ 13) -+ 1\/[4 Isg = — 3 P, ls 2K1 -3 P3 [32K2
B By Ak By
(- e )6EI .. .. (20)

which is the Equation of Three Moments,

By putting in the amount of relative movements of supports (if
any), the effects of end movements are readily deduced. For Distri-
buted Loads (the equation is often quoted in this form).

Let w be the load per unit of length.
.. Right hand side of the equation becomes—

!
- fjvz (k — k% 2 dk I — flws la-w-u- )P} die 1.

o
=—iwz]23—}W3733
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Thus Clapeyron’s Equation is—
M2l2+21\'13(lz+ls) + My ls = — } wa I3 — iWslaa —

ﬁ,‘{ _ b; ﬁ2 el ﬁ3}
- 6 EL
{ A 22
APPENDIX.
Q--w-”'—b:;:ﬁ" e fg . _i‘_’ﬂ,es -fg—--&--—ft e 50
o SHEARS '—|_l O i
 — ’
'_J ENDINC MOMENTS ‘v ”

SLOPES
Datirre _Tangent ar (),\"_—'/ // E
0 3
.
100
oo 5 on
e Datuum_ Tangeric at O, |
o
(
Dalrm Zero _Defleclion Line
= w00
Fig.5

The author wishes to thank students of second, third and fourth
year engineering at the University of Queensland, for their assistance
in preparing curves, diagrams and reading the manuscript.



	sues_1915_xx_036
	sues_1915_xx_037
	sues_1915_xx_038
	sues_1915_xx_039
	sues_1915_xx_040
	sues_1915_xx_041
	sues_1915_xx_042
	sues_1915_xx_043
	sues_1915_xx_044
	sues_1915_xx_045
	sues_1915_xx_046
	sues_1915_xx_047

